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Basics of the Viper language

= Viper Is an imperative,

method indexOf(s: Seq[Int], e: Int) returns (res: Int) Statlca”y_typed’ Sequentlal
requires 0 < |s| language
ensures res < 0 ==> !(e in s)
ensures 0@ <= res ==> res < |s| && s[res] =

e

{ = Programs include a
if(s[@] == e) { res := 0 } sequence of method
else { declarations
if(|s| == 1) { res := -1}
else {
res := indexOf(s[1..], e) = Methods have specifications
if(res != -1) { res :=res + 1 }
} . .
} = Method bodies contain
} statements

- Structured and unstructured
control flow



Type system

= Viper has built-in primitive types with the usual operations

Bool, Int, ..

and built-in generic datatypes

Seq[T], Set[T], Multiset[T], Map[S,T]

= Programs may declare generic ADTs and uninterpreted sorts (as part of custom
theories)

adt List[T] { domain List[T] {
Nil() function length(1l: List[T]): Int
Cons(value: T, tail: List[T]) axiom nonneg {

} forall 1: List[T] :: @ <= length(1)

¥
}



Method specifications

method indexOf(s: Seq[Int], e: Int) returns (res: Int)
requires 0 < |s]|
ensures res < @ ==> !(e in s)

ensures @ <= res ==> res < |s| & s[res] == e
decreases s
» Method specifications may include = Viper verifies modularly that for all
- Preconditions method executions
- Postconditions - If the preconditions hold in the initial
_ A termination measure state then the execution will not abort

and if the method terminates, the
postconditions will hold in the final state

- That the execution terminates, if a
decreases clause is given



Loop annotations

method indexOf(s: Seq[Int], e: Int) returns (res: Int)
ensures res < 0 ==> !l(e in s)

ensures © <= res ==> res < |s| && s[res] == e -
decreases s = Verification of loops
{ requires invariants

var i: Int := @

while(i < [s| && s[i] != e) . ey -
AR B <o 4 <= |3 = Termination Is verlfle_d If
invariant forall j: Int :: 0 <= j < 1 ==> s[j] I=¢e a decreases-clause is
decreases |s| - i provided

{i:=1i+1}

res := (i == |s| ? -1 : i)
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Heap model: an object-based language

field val: Int

method foo() returns (res: Int)

{

var cell: Ref

cell

cell.

res

:= new(val)
val := 5

= cell.val

A heap maps object-field pairs to values

No classes: each object has all fields
declared in the entire program

- Type rules of a source language can be encoded

- Memory consumption is not a concern since
programs are not executed

Objects are accessed via references
- Field read and update operations
- No information hiding

No explicit de-allocation
- Conceptually, objects could remain allocated
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Access permissions

» Associate each heap location with a
permission

* Permissions are held by method
executions or loop iterations

= Read or write access to a memory
location requires permission

= Permissions are created when the
heap location is allocated

= Permissions can be transferred, but
not duplicated or forged




Permission assertions

Separation logic

= Separation logic denotes
permissions by points-to predicates

p.f—

» Disjointness of permissions is
expressed by separating conjunction

p.f» *qg.f»_=p #£q

Viper
* Viper's logic uses access predicates

- Access predicates are not permitted
under negations, disjunctions, and on
the left of implications

acc(p.f)

* Viper’s && acts like separating
conjunction

acc(p.f) & acc(q.f) =>p # q
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Verifying memory safety

» Memory safety is the absence of errors related to memory accesses, such as,
null-pointer dereferencing, access to un-allocated memory, dangling pointers, out-
of-bounds accesses, double free, etc.

» Using permissions, Viper verifies memory safety by default

var x: Ref method free(p: Ref) model de-allocation
x.f 1= 5 Q requires acc(p.f) via method call
var x: Ref free(x)

X := null x.f :=5

Xx.f :=5 0 0
free(x)
free(x) Q
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Implicit dynamic frames

» Viper uses a variation of separation logic called implicit dynamic frames, which
specify permissions and value constraints separately

» Assertions may contain both permissions and value constraints

acc(p.f) && p.f > © dv :: p.f>v *v > 0

= Most assertions that occur in a program must be self-framing, that is, include all
permissions to evaluate the heap accesses in the assertion

requires p.f > © Q requires acc(p.f) && p.f > @O

16



Implicit dynamic frames: example

method swap(a: Ref, b: Ref) method swap(a: Ref, b: Ref)
requires a.f—»v * b.fHw requires acc(a.f) && acc(b.f)
ensures a.fHw * b.fov ensures acc(a.f) && acc(b.f)
{ ensures a.f == old(b.f) & b.f == old(a.f)
var tmp: Int {
tmp := a.f var tmp: Int
a.f :=b.f tmp := a.f
b.f := tmp a.f :=b.f
} b.f := tmp
}

= old-expressions are evaluated in the pre-state of a method
= Labeled old-expressions allow one to relate arbitrary states within a method

17



Exercise

Implement a method

method gauss(n: Int, res: Ref)

that sums up the first n natural numbers and stores the result in
the val-field of reference res.

Tasks:

= Verify memory safety.

= Specify and verify functional correctness.
= Verify termination.

Hints:

= See template Exercisel.vpr.

= Use a while loop.

= Store intermediate results directly in res.val, not in a local.
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Predicates

» User-defined predicates consist of a predicate name, a list of parameters, and a
self-framing assertion

predicate node(this: Ref) {
acc(this.elem) && acc(this.next)

}

= Recursive predicates may denote a statically-unbounded number of permissions

predicate list(this: Ref) {
acc(this.elem) && acc(this.next) &&
(this.next != null ==> list(this.next))

}

20



Static verification with recursive predicates

= A program verifier in general cannot know statically how far to unfold recursive
definitions

predicate list(this: Ref) {
acc(this.next) &&
(this.next != null ==> list(this.next))

}

method client(x: Ref, y: Ref)
requires list(x)

{

y.next := null // do we have permission?

¥
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|so-recursive predicates

= An iso-recursive semantics distinguishes between a predicate instance and its
body

predicate list(this: Ref) { method client(x: Ref)
acc(this.elem) && acc(this.next) && requires list(x)
(this.next != null ==> list(this.next)) {

} x.next := null // no permission

} X
* [ntuition: permissions are held by method executions, loop iterations, either
directly or inside predicate instances
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Folding and unfolding predicates

= Exchanging a predicate instance for its body, and vice versa, is done via fold and
unfold statements in the program

* An unfold statement exchanges a » Afold statement exchanges a
predicate instance for its body predicate body for a predicate instance

method client(x: Ref) method client(x: Ref)

requires list(x) requires list(x)
{ ensures list(x)

unfold list(x) {

X.next := null unfold list(x)
} X.next := null

fold 1list(x)
}

» unfolding-expressions allow one to temporarily unfold a predicate during the
evaluation of an expression

23



Data abstraction

* To write implementation-independent specifications, we map the concrete data
structure to mathematical concepts and specify the behavior in terms of those

' mathematical
mathematical [, 14, 3,1, 12] {1, 3,12, 14}
sequence
1 14 3 1 12 /\
14 12

] (3
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Data abstraction via abstraction functions

= Viper provides heap-dependent functions  function cont(this: Ref): Seq[Int]
- side-effect free requires list(this)

L {
- terminating unfolding list(this) in
- deterministic (this.next == null ?
Seq() :
Seq(this.elem) ++ cont(this.next)
= Function bodies and function calls , )

are expressions
= Functions may be recursive

= Functions must have a precondition that frames the function body, that is,
provides all permissions to evaluate the body

25



ldiomatic abstraction in Viper

predicate list(this: Ref, cont: Seq[Int]) { predicate list(this: Ref) {

de,n :: this.elemm— e * this.next—n * acc(this.elem) && acc(this.next) &&
(n == null ==> @ == |cont]|) * (this.next != null ==> list(this.next))
(n !'= null ==> Jc :: }

cont == Seq(e) ++ c *

function cont(this: Ref): Seq[Int]
requires list(this)
{
unfolding list(this) in
(this.next == null ?
Seq() :
Seq(this.elem) ++ cont(this.next)
)
}

list(n, c))

= |[mplicit dynamic frames specify permissions and value constraints separately
and separate inputs (this) from outputs (cont)

- Facilitates incremental specification and verification

- Enables using deterministic, side-effect free code functions in specifications (e.g., equals) e



Exercise

Separation logic often uses predicates for list segments, for
Instance, to describe cyclic lists.

Tasks:

» Define a predicate 1seg for non-empty list segments.

= Define a function segcont that yields the sequence of
integers stored in a list segment.

= Implement and verify a method

method single(e: Int) returns (res: Ref)

that creates a cyclic list with one element, e.

Hint:
= See template Exercise2.vpr.
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Fractional permissions

» To distinguish read and write access, permissions can be split and re-combined

- A permission amount r is a rational number in [0;1] acc(x.f, m)

- Viper syntax allows fractions n/d, as well as write for 1,
none for 0, and wildcard for an arbitrary positive permission amount

- acc(E.f) is a shorthand for acc(E.f, write), and
P(E) foracc(P(E), write)

Fleld read requires some non-zero permission, field write requires full (write)
permission

Separating conjunction sums up permissions of the conjuncts

acc(x.f, 1/2) &% acc(x.f, 1/2) Isequivalentto acc(x.f, write)

29



Sharing In data structures

» Full permissions can describe tree-shaped data structures only

predicate person(this: Ref) {
acc(this.savings) &&
acc(this.savings.bal) }

» Fractional permissions allow sharing

predicate person(this: Ref) {
acc(this.savings) &&
acc(this.savings.bal, 1/2) }

* including unbounded (immutable) sharing

predicate person(this: Ref) {
acc(this.savings &&
acc(this.savings.bal, wildcard)

}

Person

Person

A\ 4

A\ 4

Account

Account

Person

Person

Account

Person Person Person

\

e

Account
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Predicates and fractional permissions

predicate P(x: Ref)

= Predicates may contain fractions of permissions { acc(x.f, 1/2) }

» |tis also possible to own fractions of a predicate instance

acc(P(x), 1/2) && acc(P(x), 1/2) Isequivalentto acc(P(x), write)

= Unfold and fold multiply the fraction of the predicate with the fractions in the
predicate body

method client(x: Ref)
requires acc(P(x), 1/4)
ensures acc(x.f, 1/8)

{
unfold acc(P(x), 1/4)

| O
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Limitations of recursive predicates

= Recursive predicates allow one to specify unbounded data structures
- Traversals happen in the order in which the predicate needs to be unfolded

= Predicates are not ideal for many other use cases

i ) ~—

______ Y —> —>
— —

——————————————————————————

Ilterative traversals Other traversal orders

ST

Random-access data structures Arbitrary cyclic data structures
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Quantified permissions

= To denote permission to an unbounded set of locations without prescribing a
traversal order, we allow permissions and predicates to occur under universal
guantifiers

forall x: T :: A

* Viper’'s forall quantifiers can be thought of as a possibly-infinite iterated
separating conjunction

forall x: T :: A = A[Xx,/x] & & A[Xx,/x] && ..

» Viper requires for each assertion acc(E.f) under a forall x:TthatE is
Injective, that Is:

X, # X, = E[x/x] # E[X,/X]

- The analogous rule applies to predicates (for parameter tuples)
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Explicit footprints

= As alternative to predicates, we can specify —
permission to an unbounded set of locations by \
- Maintaining an explicit set of references as ghost state @q’?
(the explicit footprint)

- Quantifying over the set elements in specifications

= We represent a graph as a set of nodes, each node stores a (possibly empty) set

of successors
field next: Set[Ref]

predicate graph(nodes: Set[Ref]) {
forall n: Ref :: n in nodes ==> acc(n.next) && (n.next subset nodes)

¥

= This idiom supports arbitrary traversals, random accesses, and arbitrary sharing
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Partial data structures

fi ft: Ref .

Fiold right: mef = To allow clients of getLeft to use the
predicate tree(x) later, getLeft needs

predicate tree(x: Ref) { to return permissions to the rest of the tree

acc(x.left) && acc(x.right)
&& (x.left != null ==> tree(x.left))
&& (x.right != null ==> tree(x.right))

}

method getLeft(x:Ref) returns (y:Ref)
requires tree(x)
ensures tree(y) && ...

—

{
y 1= X : : : :
while (y.left != null) = Not ideal: define a dedicated predicate
invariant tree(y) &% ... - Requires a way to identify the hole
{ ) :
unfold tree(y) Requires ghost code to plug the hole
y := y.left

}
} X .



Separating implication: magic wands

= A magic wand P — Q represents the difference between Q and P

A A

QP P-xQ

= This allows us to specify our getLeft method

method getLeft(x: Ref) returns (y: Ref)
requires tree(x)
ensures tree(y) & & (tree(y) --* tree(x))

* [ntuition: permissions are held by method executions, loop iterations, either
directly or inside predicate instances or magic wands
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Reasoning with magic wands
= Applying a magic wand
- Viper has a designhated statement to apply modus ponens for magic wands

apply P --* Q P« (PxQ) = Q

= Creating a magic wand

- Viper needs to determine which permissions from the current state need to be moved into the
wand such that the wand, together with P, yields Q

split current state such that
package P --* Q

* P = Q
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Example revisited

method getLeft(x: Ref) returns (y: Ref)
requires tree(x)
ensures tree(y) && (tree(y) --* tree(x))

y 1= X
package tree(x) --* tree(x)
while (unfolding tree(y) in y.left != null)

invariant tree(y) && (tree(y) --* tree(x)) y := getLeft(x)

{ y.update() // requires tree(y)
unfold tree(y) apply tree(y) --* tree(x)
var y_left: Ref := y.left x.update() // requires tree(x)
package tree(y left) --* tree(x)
{

fold tree(y)
apply tree(y) --* tree(x)

}
y :=y left
}



The Viper language
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Example: Go verification in Gobra

requires acc(x) && acc(y) field val: Int
ensures acc(x) & acc(y) method swap(x: Ref, y: Ref)
* —— * ) c
ensures *X = Oig(*y) requires acc(x.val) && acc(y.val)
ensures 7y " old( :? ensures acc(x.val) && acc(y.val)
functswa?fx* int, y *int) { ensures Xx.val == old(y.val)
mp .= "X ensures Yy.val == old(x.val)
*y = tmp var yLocal: Ref // declare locals
} var xLocal: Ref
xLocal := X // copy parameters
= (GO supports pointers to integers yLocal :=y
= Parameters can be assigned to var tmpé Hos Y CEEERS Tl
. mp .=
= Locals get initialized by default tmp := xLocal.val /] tmp = *x
xLocal.val := ylocal.val // *x = *y
yLocal.val := tmp // *y = tmp



Arrays

» Viper does not have bulilt-in arrays

* |n contrast to sequences, arrays are
mutable heap data structures

* We model arrays by a set of disjoint
references that can be accessed via
an index

» loc(a, i).val models a[i]

* More-dimensional arrays can be
encoded analogously

field val: Int // for integer arrays

domain Array {

}

function loc(a: Array, i: Int): Ref

function len(a: Array): Int
function first(r: Ref): Array
function second(r: Ref): Int

axiom injectivity {
forall a: Array, i: Int

}

axiom length nonneg {
forall a: Array ::

}

first(loc(a, i)) == a &&
second(loc(a, 1)) == 1

len(a) >= ©

:: {loc(a, i)}
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Accessing array locations

= Arrays are random-access data structures

= We can express permissions using quantified permissions

forall i: Int :: © <= i < len(a) ==> acc(loc(a, i).val)

- Similarly for sub-ranges of the array

= \We define macros for convenient access

define lookup(a, 1) define update(a, i, e) {
loc(a, i).val loc(a, i).val := e

}

- Bounds are checked implicitly via permissions
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Permission transfer

method set(p: Ref, v: Int)

{

requires
ensures

acc(p.f)
acc(p.f) && p.f == v

method client(x: Ref, y: Ref)
requires acc(x.f) && acc(y.f)
requires x.f == 2 && y.f == 7 {

set(x, 5) Framing!

assert x.f == 5 && y.f ==
h
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Permission transfer for method calls

—f| acc(p. )|} method set(p,y—[ acc(p.f) xp.f = v|}
{ acc(x.f) } set(x, 5)({ acc(x.f)xx.f=5}

\Hacc(x.f)H acc(y.f)xy.f = 7'» set(x, 5) \[Iaccix.fi *X.f =5 Hacc(y.f) xy.f= 7]
\ /'

» Calling a method transfers permissions from the caller to the callee (according to
the method precondition)

= Returning from a method transfers permissions from the callee to the caller
(according to the method postcondition)

= Residual permissions are framed around the call
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Permission transfer for loops and concurrency

jacc(x.f)l* x.f <10} x.f:=x.f ;171—-| acc(x.F)I}

{acc(x.f) } while(x.f < 10) { ... }({ acc(x.f)* —x.f < 10 }

acc(x.f)lHacc(y.f)«y.f =7} while(x.f < 10) { ... }\Iacc(x.f)l*ﬂx.f< 10 >1<|ac<:(y.1°)>1<y.f:TI}
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Permission transfer: inhale and exhale operations

= inhale A means: inhale acc(x.f) & & x.f == 2
- obtain all permissions required by assertion A
- assume all logical constraints

= exhale A means: exhale acc(x.f) & x.f == 2

- assert all logical constraints
- check and remove all permissions required by assertion A
- havoc any locations to which all permission is lost
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Encoding of method bodies and calls

method foo() returns (..) X := foo()
requires A
ensures B

{S}
* Encoding without heap and globals = Encoding with heap

assume A inhale A

- Body // encoding of S - Body // encoding of S
assert B exhale B
assert A[..] exhale A[...]
havoc x havoc x

- Cal assume BJ...] - Cal inhale B[...]

= inhale and exhale are permission-aware analogues of assume and assert
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Encoding structured parallelism

» The proof rule employs the familiar permission transfer

{Ar} St {Bi} {Ax} S {By}
{ArxAzx} Si||S2 {B1*By}
{Al*AQ*C} Sl HSQ {Bl*BQ*C}

= We can encode this proof rule via exhale and inhale operations

method S,(..) returns (res;: T) exhale A,[..]
requires A, exhale A,[..]
ensures B, havoc res,, res,

{ // encoding of S, } inhale B,[..]

inhale B,[..]
Encode left and right branch

as methods with specifications Encode parallel composition
like two half method calls



Encoding locks

{R} x:=new Lock() { isLock(x,R) }

{ isLock(x,R) } acquire x { locked(x,R) *R}

{ locked(x,R) *x R } release x { isLock(x,R) }

Vx :: isLock(x,R) < isLock(x,R) x isLock(x,R)

Encode custom resources as
abstract predicates

predicate islLock(x: Ref, ..)

predicate locked(x: Ref, ..)

Encode duplicable resources
as arbitrary positive fractions

acc(islLock(x, ..), wildcard)
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Encoding lock invariants

{R} x:=new Lock() { isLock(x,R) }

{ isLock(x,R) } acquire x { locked(x,R) «R }

{ locked(x,R) *x R } release x { isLock(x,R) }

Vx :: isLock(x,R) < isLock(x,R) * isLock(x, R)

= Specify invariant in a program
annotation

share x inv R

= Apply defunctionalization
- Assign unique constant c to each invariant
- Parameterize predicates

predicate isLock(x: Ref, inv: Int)

predicate locked(x: Ref, inv: Int)

- Declare macro or predicate for all invariants

define Inv(x, n) (
(n == ¢ ==> R) &&
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Encoding lock operations

{R} x:=new Lock() { isLock(x,R) }

{ isLock(x,R) } acquire x { locked(x,R) «xR }

{ locked(x,R) xR } release x { isLock(x,R) }

Vx :: isLock(x,R) < isLock(x,R) x isLock(x,R)

exhale
inhale

exhale
inhale

exhale
inhale

Inv(x,c)
acc(isLock(x, c), wildcard)

acc(isLock(x, c), wildcard)
locked(x, c) && Inv(x,c)

locked(x, c) && Inv(x,c)
acc(isLock(x, c), wildcard)
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Exercise

The following rules are adapted from Relaxed Separation Logic.

{true} [ := allocpna() {Uninit(l)}

{1+ Vv Uninit(D)} [[Jna := e {l = ¢}

(IS etr :=[na{z=exl+>e}
(I e * l&e’)@(e:e’*lk'ﬁ;,e)
Encode them in Viper and verify the client code on the right.

= Assume that | is an integer location.

= Recall that Viper does not support disjunction of impure
assertions.

Hints:
= See template Exercise3.vpr.
= Track initialization in the state.

method sum(p, q)

require
ensures
ensures

a = [p
b := [q

spév*qéw
pEv * qbu

result == v + w

]
]

return a + b

}

method cl
X := al
y := al
[x] :=
[yl :=

ient() {
loc()
loc()

s := sum(x, y)

assert

s == 5
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Scope of existing Viper encodings

Language features

Imperative code
Object-oriented code
Nominal and structural typing
Closures

Multithreading with shared state
and message passing

Weak-memory concurrency

Properties

Memory safety

Absence of overflows
Termination

Functional correctness
Race freedom
Linearizability

Deadlock freedom

Secure information flow
Resource manipulation
Worst-case execution time
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Vyper

OpenCL

Rust
(Prusti)

Pancake Kotlin

Python Go
(Nagini) (Gobra)

Viper language

OCaml

Java
(VerCors)

Symbolic Verification condition
execution generation

SMT solver

Prototypes
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Main limitations
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Formal Foundations for Translational Separation Logic Verifiers

\\e
4
‘a,\/
S
A
[ program front-end VL broaram back-end °
. translation Prog verifier
[ specification | 0

| correct

i program satisfies

! P, WL  valid
! Specn‘lcatlon W.I.1. ! ' WLt
v Y v
Front-end < VL < Back-end
semantics front-end semantics back-end semantics
soundness soundness

Talk on Wednesday at 5pm in Peek-A-Boo!
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Verifiers developed at ETH

VIiPER

P*xrust—x1

Verification infrastructure for
permission-based reasoning

Basis for our other verifiers
viper.ethz.ch

Modular verification of Rust
programs

Leverages Rust type system
to simplify verification
prusti.ethz.ch

Modular verification of Go
programs

Used for large-scale
verification projects, e.g.,
verifiedSCION

gobra.ethz.ch

Modular verification of Python
programs

Correctness and security
properties

Variant for Ethereum smart
contracts in Vyper

www.pm.inf.ethz.ch/research/
nagini.html
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https://www.pm.inf.ethz.ch/research/gobra.html

