
VIPER:

AN INFRASTRUCTURE FOR AUTOMATED

VERIFICATION IN SEPARATION LOGIC

Peter Müller and Thibault Dardinier

2

Intermediate

verification language

Backend verifier

SMT solver

Front-end

Prog. language,

spec. language and

methodology

Front-end

Prog. language,

spec. language and

methodology

Front-end

Prog. language,

spec. language and

methodology

3

Verification condition

generation

SMT solver

Viper language

Symbolic

execution

Front-endFront-end Front-end Front-end
Python

(Nagini)

Rust

(Prusti)

Go

(Gobra)

Java

(VerCors)

OpenCLVyper Pancake

Gradual

verification

Kotlin OCaml Prototypes

4

▪ viper.ethz.ch

▪ Try online: http://viper.ethz.ch/tutorial

▪ Install as VS Code extension

▪ Tutorial:

https://sites.google.com/view/viper

tutorialpopl2025/home

5

Intermediate

verification language

Backend verifier

SMT solver

Front-end

Prog. language,

spec. language and

methodology

Front-end

Prog. language,

spec. language and

methodology

Front-end

Prog. language,

spec. language and

methodology

6

Outline

▪ Separation logic proofs in Viper

- Hoare-style verification

- Permission-based reasoning

- Abstraction

- Advanced separation logic

▪ Viper as target language

▪ Conclusion

7

Basics of the Viper language

▪ Viper is an imperative,

statically-typed, sequential

language

▪ Programs include a

sequence of method

declarations

▪ Methods have specifications

▪ Method bodies contain

statements

- Structured and unstructured

control flow

method indexOf(s: Seq[Int], e: Int) returns (res: Int)
requires 0 < |s|
ensures res < 0 ==> !(e in s)
ensures 0 <= res ==> res < |s| && s[res] == e

{
if(s[0] == e) { res := 0 }
else {
if(|s| == 1) { res := -1 }
else {
res := indexOf(s[1..], e)
if(res != -1) { res := res + 1 }

}
}

}

8

Type system

▪ Viper has built-in primitive types with the usual operations

and built-in generic datatypes

▪ Programs may declare generic ADTs and uninterpreted sorts (as part of custom

theories)

Bool, Int, …

Seq[T], Set[T], Multiset[T], Map[S,T]

adt List[T] {
Nil()
Cons(value: T, tail: List[T])

}

domain List[T] {
function length(l: List[T]): Int

axiom nonneg {
forall l: List[T] :: 0 <= length(l)

}
}

9

Method specifications

▪ Method specifications may include

- Preconditions

- Postconditions

- A termination measure

method indexOf(s: Seq[Int], e: Int) returns (res: Int)
requires 0 < |s|
ensures res < 0 ==> !(e in s)
ensures 0 <= res ==> res < |s| && s[res] == e
decreases s

▪ Viper verifies modularly that for all

method executions

- If the preconditions hold in the initial

state then the execution will not abort

and if the method terminates, the

postconditions will hold in the final state

- That the execution terminates, if a

decreases clause is given

10

Loop annotations

method indexOf(s: Seq[Int], e: Int) returns (res: Int)
ensures res < 0 ==> !(e in s)
ensures 0 <= res ==> res < |s| && s[res] == e
decreases s

{
var i: Int := 0

while(i < |s| && s[i] != e)
invariant 0 <= i <= |s|
invariant forall j: Int :: 0 <= j < i ==> s[j] != e
decreases |s| - i

{ i := i + 1 }

res := (i == |s| ? -1 : i)
}

▪ Verification of loops

requires invariants

▪ Termination is verified if

a decreases-clause is

provided

11

Outline

▪ Separation logic proofs in Viper

- Hoare-style verification

- Permission-based reasoning

- Abstraction

- Advanced separation logic

▪ Viper as target language

▪ Conclusion

12

Heap model: an object-based language

▪ A heap maps object-field pairs to values

▪ No classes: each object has all fields

declared in the entire program

- Type rules of a source language can be encoded

- Memory consumption is not a concern since

programs are not executed

▪ Objects are accessed via references

- Field read and update operations

- No information hiding

▪ No explicit de-allocation

- Conceptually, objects could remain allocated

field val: Int

method foo() returns (res: Int)
{

var cell: Ref
cell := new(val)
cell.val := 5
res := cell.val

}

13

Access permissions

▪ Associate each heap location with a

permission

▪ Permissions are held by method

executions or loop iterations

▪ Read or write access to a memory

location requires permission

▪ Permissions are created when the

heap location is allocated

▪ Permissions can be transferred, but

not duplicated or forged

f

x f

y

g

zf

g

y.f := 5

x.f := y.f

x.f := 5

z.g := x.f

14

Permission assertions

Separation logic

▪ Separation logic denotes

permissions by points-to predicates

▪ Disjointness of permissions is

expressed by separating conjunction

Viper

▪ Viper’s logic uses access predicates

- Access predicates are not permitted

under negations, disjunctions, and on

the left of implications

p.f ↦ _ acc(p.f)

p.f ↦ _ * q.f ↦ _ ⇒ p ≠ q

▪ Viper’s && acts like separating

conjunction

acc(p.f) && acc(q.f) ⇒ p ≠ q

15

Verifying memory safety

▪ Memory safety is the absence of errors related to memory accesses, such as,

null-pointer dereferencing, access to un-allocated memory, dangling pointers, out-

of-bounds accesses, double free, etc.

▪ Using permissions, Viper verifies memory safety by default

var x: Ref
x.f := 5

var x: Ref
x := null
x.f := 5

method free(p: Ref)
requires acc(p.f)

free(x)
free(x)

free(x)
x.f := 5

model de-allocation

via method call

16

Implicit dynamic frames

▪ Viper uses a variation of separation logic called implicit dynamic frames, which

specify permissions and value constraints separately

▪ Assertions may contain both permissions and value constraints

▪ Most assertions that occur in a program must be self-framing, that is, include all

permissions to evaluate the heap accesses in the assertion

requires p.f > 0

acc(p.f) && p.f > 0 v :: p.f ↦ v * v > 0

requires acc(p.f) && p.f > 0

17

method swap(a: Ref, b: Ref)
requires a.f ↦ v * b.f ↦ w
ensures a.f ↦ w * b.f ↦ v

{
var tmp: Int
tmp := a.f
a.f := b.f
b.f := tmp

}

Implicit dynamic frames: example

▪ old-expressions are evaluated in the pre-state of a method

▪ Labeled old-expressions allow one to relate arbitrary states within a method

method swap(a: Ref, b: Ref)
requires acc(a.f) && acc(b.f)
ensures acc(a.f) && acc(b.f)

{
var tmp: Int
tmp := a.f
a.f := b.f
b.f := tmp

}

method swap(a: Ref, b: Ref)
requires acc(a.f) && acc(b.f)
ensures acc(a.f) && acc(b.f)
ensures a.f == old(b.f) && b.f == old(a.f)

{
var tmp: Int
tmp := a.f
a.f := b.f
b.f := tmp

}

18

Exercise

Implement a method

that sums up the first n natural numbers and stores the result in

the val-field of reference res.

Tasks:

▪ Verify memory safety.

▪ Specify and verify functional correctness.

▪ Verify termination.

Hints:

▪ See template Exercise1.vpr.

▪ Use a while loop.

▪ Store intermediate results directly in res.val, not in a local.

method gauss(n: Int, res: Ref)

19

Outline

▪ Separation logic proofs in Viper

- Hoare-style verification

- Permission-based reasoning

- Abstraction

- Advanced separation logic

▪ Viper as target language

▪ Conclusion

20

Predicates

▪ User-defined predicates consist of a predicate name, a list of parameters, and a

self-framing assertion

▪ Recursive predicates may denote a statically-unbounded number of permissions

predicate node(this: Ref) {
acc(this.elem) && acc(this.next)

}

predicate list(this: Ref) {
acc(this.elem) && acc(this.next) &&
(this.next != null ==> list(this.next))

}

21

Static verification with recursive predicates

▪ A program verifier in general cannot know statically how far to unfold recursive

definitions

method client(x: Ref, y: Ref)
requires list(x)

{
y.next := null // do we have permission?

}

predicate list(this: Ref) {
acc(this.next) &&
(this.next != null ==> list(this.next))

}

22

Iso-recursive predicates

▪ An iso-recursive semantics distinguishes between a predicate instance and its

body

▪ Intuition: permissions are held by method executions, loop iterations, either

directly or inside predicate instances

method client(x: Ref)
requires list(x)

{
x.next := null // no permission

}

predicate list(this: Ref) {
acc(this.elem) && acc(this.next) &&
(this.next != null ==> list(this.next))

}

23

▪ Exchanging a predicate instance for its body, and vice versa, is done via fold and

unfold statements in the program

▪ unfolding-expressions allow one to temporarily unfold a predicate during the

evaluation of an expression

▪ An unfold statement exchanges a

predicate instance for its body

Folding and unfolding predicates

▪ A fold statement exchanges a

predicate body for a predicate instance

method client(x: Ref)
requires list(x)
ensures list(x)

{
unfold list(x)
x.next := null

}

method client(x: Ref)
requires list(x)
ensures list(x)

{
unfold list(x)
x.next := null
fold list(x)

}

method client(x: Ref)
requires list(x)

{

x.next := null
}

method client(x: Ref)
requires list(x)

{
unfold list(x)
x.next := null

}

24

Data abstraction

▪ To write implementation-independent specifications, we map the concrete data

structure to mathematical concepts and specify the behavior in terms of those

31 14 1 12

31

14

1

12

[1, 14, 3, 1, 12]
mathematical

sequence
{1, 3, 12, 14}

mathematical

set

25

Data abstraction via abstraction functions

▪ Viper provides heap-dependent functions

- side-effect free

- terminating

- deterministic

▪ Function bodies and function calls

are expressions

▪ Functions may be recursive

▪ Functions must have a precondition that frames the function body, that is,

provides all permissions to evaluate the body

function cont(this: Ref): Seq[Int]
requires list(this)

{
unfolding list(this) in
(this.next == null ?
Seq() :
Seq(this.elem) ++ cont(this.next)

)
}

26

Idiomatic abstraction in Viper

predicate list(this: Ref) {
acc(this.elem) && acc(this.next) &&
(this.next != null ==> list(this.next))

}

predicate list(this: Ref) {
e,n :: this.elem ↦ e * this.next ↦ n *
(n != null ==> list(n))

}

predicate list(this: Ref, cont: Seq[Int]) {
e,n :: this.elem ↦ e * this.next ↦ n *
(n == null ==> 0 == |cont|) *
(n != null ==> c ::

cont == Seq(e) ++ c *
list(n, c))

}

▪ Implicit dynamic frames specify permissions and value constraints separately

and separate inputs (this) from outputs (cont)

- Facilitates incremental specification and verification

- Enables using deterministic, side-effect free code functions in specifications (e.g., equals)

predicate list(this: Ref) {
acc(this.elem) && acc(this.next) &&
(this.next != null ==> list(this.next))

}

function cont(this: Ref): Seq[Int]
requires list(this)

{
unfolding list(this) in
(this.next == null ?
Seq() :
Seq(this.elem) ++ cont(this.next)

)
}

27

Exercise

Separation logic often uses predicates for list segments, for

instance, to describe cyclic lists.

Tasks:

▪ Define a predicate lseg for non-empty list segments.

▪ Define a function segcont that yields the sequence of

integers stored in a list segment.

▪ Implement and verify a method

that creates a cyclic list with one element, e.

Hint:

▪ See template Exercise2.vpr.

method single(e: Int) returns (res: Ref)

28

Outline

▪ Separation logic proofs in Viper

- Hoare-style verification

- Permission-based reasoning

- Abstraction

- Advanced separation logic

▪ Viper as target language

▪ Conclusion

29

Fractional permissions

▪ To distinguish read and write access, permissions can be split and re-combined

- A permission amount  is a rational number in [0;1]

- Viper syntax allows fractions n/d, as well as write for 1,

none for 0, and wildcard for an arbitrary positive permission amount

- acc(E.f) is a shorthand for acc(E.f, write), and

P(E) for acc(P(E), write)

▪ Field read requires some non-zero permission, field write requires full (write)

permission

▪ Separating conjunction sums up permissions of the conjuncts

acc(x.f, )

acc(x.f, 1/2) && acc(x.f, 1/2) is equivalent to acc(x.f, write)

30

▪ Full permissions can describe tree-shaped data structures only

▪ Fractional permissions allow sharing

▪ including unbounded (immutable) sharing

Person Person

Account

Person

Account

Person

Account

predicate person(this: Ref) {
acc(this.savings) &&
acc(this.savings.bal) }

Sharing in data structures

predicate person(this: Ref) {
acc(this.savings) &&
acc(this.savings.bal, 1/2) }

predicate person(this: Ref) {
acc(this.savings &&
acc(this.savings.bal, wildcard) }

Person Person

Account

Person

31

Predicates and fractional permissions

▪ Predicates may contain fractions of permissions

▪ It is also possible to own fractions of a predicate instance

▪ Unfold and fold multiply the fraction of the predicate with the fractions in the

predicate body

method client(x: Ref)
requires acc(P(x), 1/4)
ensures acc(x.f, 1/8)

{
unfold acc(P(x), 1/4)

}

acc(P(x), 1/2) && acc(P(x), 1/2) is equivalent to acc(P(x), write)

predicate P(x: Ref)
{ acc(x.f, 1/2) }

32

Limitations of recursive predicates

▪ Recursive predicates allow one to specify unbounded data structures

- Traversals happen in the order in which the predicate needs to be unfolded

▪ Predicates are not ideal for many other use cases

Iterative traversals

Arbitrary cyclic data structuresRandom-access data structures

Other traversal orders

33

Quantified permissions

▪ To denote permission to an unbounded set of locations without prescribing a

traversal order, we allow permissions and predicates to occur under universal

quantifiers

▪ Viper’s forall quantifiers can be thought of as a possibly-infinite iterated

separating conjunction

▪ Viper requires for each assertion acc(E.f) under a forall x:T that E is

injective, that is:

- The analogous rule applies to predicates (for parameter tuples)

forall x: T :: A

forall x: T :: A  A[x1/x] && A[x2/x] && …

x1 ≠ x2  E[x1/x] ≠ E[x2/x]

34

Explicit footprints

▪ As alternative to predicates, we can specify

permission to an unbounded set of locations by

- Maintaining an explicit set of references as ghost state

(the explicit footprint)

- Quantifying over the set elements in specifications

▪ We represent a graph as a set of nodes, each node stores a (possibly empty) set

of successors

▪ This idiom supports arbitrary traversals, random accesses, and arbitrary sharing

field next: Set[Ref]

predicate graph(nodes: Set[Ref]) {
forall n: Ref :: n in nodes ==> acc(n.next) && (n.next subset nodes)

}

35

Partial data structures

▪ To allow clients of getLeft to use the

predicate tree(x) later, getLeft needs

to return permissions to the rest of the tree

▪ Not ideal: define a dedicated predicate

- Requires a way to identify the hole

- Requires ghost code to plug the hole

field left: Ref
field right: Ref

predicate tree(x: Ref) {
acc(x.left) && acc(x.right)
&& (x.left != null ==> tree(x.left))
&& (x.right != null ==> tree(x.right))

}

method getLeft(x:Ref) returns (y:Ref)
requires tree(x)
ensures tree(y) && ...

{
y := x
while (y.left != null)
invariant tree(y) && ...

{
unfold tree(y)
y := y.left

}
}

x y

36

Separating implication: magic wands

▪ A magic wand represents the difference between Q and P

▪ This allows us to specify our getLeft method

▪ Intuition: permissions are held by method executions, loop iterations, either

directly or inside predicate instances or magic wands

PQ

method getLeft(x: Ref) returns (y: Ref)
requires tree(x)
ensures tree(y) && (tree(y) --* tree(x))

37

Reasoning with magic wands

▪ Applying a magic wand

- Viper has a designated statement to apply modus ponens for magic wands

▪ Creating a magic wand

- Viper needs to determine which permissions from the current state need to be moved into the

wand such that the wand, together with P, yields Q

apply P --* Q

package P --* Q
split current state such that

38

Example revisited

method getLeft(x: Ref) returns (y: Ref)
requires tree(x)
ensures tree(y) && (tree(y) --* tree(x))

{
y := x
package tree(x) --* tree(x)
while (unfolding tree(y) in y.left != null)

invariant tree(y) && (tree(y) --* tree(x))
{

unfold tree(y)
var y_left: Ref := y.left
package tree(y_left) --* tree(x)
{

fold tree(y)
apply tree(y) --* tree(x)

}
y := y_left

}
}

y := getLeft(x)
y.update()​ // requires tree(y)
apply tree(y) --* tree(x)
x.update() // requires tree(x)

39

The Viper language

Program code

▪ Sequential, imperative language

▪ Standard control structures

▪ Basic type system

▪ Built-in heap

▪ Explicit permission manipulation

Assertion language

▪ Inductive predicates

▪ Abstraction functions

▪ Fractional permissions

▪ Iterated separating conjunction

▪ Magic wands

Verification

▪ Absence of run-time errors

▪ Memory safety

▪ User-provided assertions

▪ Termination

Mathematical theories

▪ Predefined datatypes

▪ User-defined datatypes

▪ Uninterpreted functions

▪ Axioms

40

Intermediate

verification language

Backend verifier

SMT solver

Front-end

Prog. language,

spec. language and

methodology

Front-end

Prog. language,

spec. language and

methodology

Front-end

Prog. language,

spec. language and

methodology

41

Outline

▪ Separation logic proofs in Viper

▪ Viper as target language

- Encoding source languages

- Encoding program logics

▪ Conclusion

42

Example: Go verification in Gobra

▪ Go supports pointers to integers

▪ Parameters can be assigned to

▪ Locals get initialized by default

requires acc(x) && acc(y)
ensures acc(x) && acc(y)
ensures *x == old(*y)
ensures *y == old(*x)
func swap(x *int, y *int) {

tmp := *x
*x = *y
*y = tmp

}

field val: Int

method swap(x: Ref, y: Ref)
requires acc(x.val) && acc(y.val)
ensures acc(x.val) && acc(y.val)
ensures x.val == old(y.val)
ensures y.val == old(x.val)

{
var yLocal: Ref // declare locals
var xLocal: Ref

xLocal := x // copy parameters
yLocal := y

var tmp: Int // declare tmp
tmp := 0

tmp := xLocal.val // tmp = *x
xLocal.val := yLocal.val // *x = *y
yLocal.val := tmp // *y = tmp

}

43

Arrays

▪ Viper does not have built-in arrays

▪ In contrast to sequences, arrays are

mutable heap data structures

▪ We model arrays by a set of disjoint

references that can be accessed via

an index

▪ loc(a, i).val models a[i]

▪ More-dimensional arrays can be

encoded analogously

field val: Int // for integer arrays

domain Array {
function loc(a: Array, i: Int): Ref
function len(a: Array): Int
function first(r: Ref): Array
function second(r: Ref): Int

axiom injectivity {
forall a: Array, i: Int :: {loc(a, i)}
first(loc(a, i)) == a &&
second(loc(a, i)) == i

}

axiom length_nonneg {
forall a: Array :: len(a) >= 0

}
}

44

Accessing array locations

▪ Arrays are random-access data structures

▪ We can express permissions using quantified permissions

- Similarly for sub-ranges of the array

▪ We define macros for convenient access

- Bounds are checked implicitly via permissions

forall i: Int :: 0 <= i < len(a) ==> acc(loc(a, i).val)

define update(a, i, e) {
loc(a, i).val := e

}

define lookup(a, i)
loc(a, i).val

45

Outline

▪ Separation logic proofs in Viper

▪ Viper as target language

- Encoding source languages

- Encoding program logics

▪ Conclusion

46

method set(p: Ref, v: Int)
requires acc(p.f)
ensures acc(p.f) && p.f == v

{

p.f := v

}

p

method client(x: Ref, y: Ref)
requires acc(x.f) && acc(y.f)
requires x.f == 2 && y.f == 7 {

set(x, 5)

assert x.f == 5 && y.f == 7
}

?

7

x

y
7

2

Permission transfer

p

?

7

x

y
7

5

Framing!

?

47

Permission transfer for method calls

▪ Calling a method transfers permissions from the caller to the callee (according to

the method precondition)

▪ Returning from a method transfers permissions from the callee to the caller

(according to the method postcondition)

▪ Residual permissions are framed around the call

48

Permission transfer for loops and concurrency

49

Permission transfer: inhale and exhale operations

▪ inhale A means:

- obtain all permissions required by assertion A

- assume all logical constraints

▪ exhale A means:

- assert all logical constraints

- check and remove all permissions required by assertion A

- havoc any locations to which all permission is lost

inhale acc(x.f) && x.f == 2

?

7

x

y
7

2

exhale acc(x.f) && x.f == 2

?

7

x

y
7

2

50

Encoding of method bodies and calls

▪ Encoding without heap and globals

- Body

- Call

method foo() returns (…)
requires A
ensures B

{ S }

assume A
// encoding of S
assert B

x := foo()

assert A[…]
havoc x
assume B[…]

▪ Encoding with heap

- Body

- Call

inhale A
// encoding of S
exhale B

exhale A[…]
havoc x
inhale B[…]

▪ inhale and exhale are permission-aware analogues of assume and assert

51

▪ The proof rule employs the familiar permission transfer

▪ We can encode this proof rule via exhale and inhale operations

Encoding structured parallelism

method S1(…) returns (res1: T)
requires A1
ensures B1

{ // encoding of S1 }

exhale A1[…]
exhale A2[…]
havoc res1, res2
inhale B1[…]
inhale B2[…]

Encode left and right branch

as methods with specifications Encode parallel composition

like two half method calls

52

Encoding locks

predicate isLock(x: Ref, …)

predicate locked(x: Ref, …)

Encode custom resources as

abstract predicates

acc(isLock(x, …), wildcard)

Encode duplicable resources

as arbitrary positive fractions

53

Encoding lock invariants

▪ Specify invariant in a program

annotation

▪ Apply defunctionalization

- Assign unique constant c to each invariant

- Parameterize predicates

- Declare macro or predicate for all invariants

share x inv R

predicate isLock(x: Ref, inv: Int)

predicate locked(x: Ref, inv: Int)

define Inv(x, n) (
(n == c ==> R) &&
…

)

54

Encoding lock operations

exhale Inv(x,c)
inhale acc(isLock(x, c), wildcard)

exhale acc(isLock(x, c), wildcard)
inhale locked(x, c) && Inv(x,c)

exhale locked(x, c) && Inv(x,c)
inhale acc(isLock(x, c), wildcard)

55

Exercise

The following rules are adapted from Relaxed Separation Logic.

Encode them in Viper and verify the client code on the right.

▪ Assume that l is an integer location.

▪ Recall that Viper does not support disjunction of impure

assertions.

Hints:

▪ See template Exercise3.vpr.

▪ Track initialization in the state.

method sum(p, q)
requires p ↦ v * q ↦ w
ensures p ↦ v * q ↦ w
ensures result == v + w

{
a := [p]
b := [q]
return a + b

}

method client() {
x := alloc()
y := alloc()
[x] := 2
[y] := 3
s := sum(x, y)
assert s == 5

}

½

½

½

½

56

Scope of existing Viper encodings

Language features

▪ Imperative code

▪ Object-oriented code

▪ Nominal and structural typing

▪ Closures

▪ Multithreading with shared state

and message passing

▪ Weak-memory concurrency

Properties

▪ Memory safety

▪ Absence of overflows

▪ Termination

▪ Functional correctness

▪ Race freedom

▪ Linearizability

▪ Deadlock freedom

▪ Secure information flow

▪ Resource manipulation

▪ Worst-case execution time

57

Outline

▪ Separation logic proofs in Viper

▪ Viper as target language

▪ Conclusion

58

Verification condition

generation

SMT solver

Viper language

Symbolic

execution

Front-endFront-end Front-end Front-end
Python

(Nagini)

Rust

(Prusti)

Go

(Gobra)

Java

(VerCors)

OpenCLVyper Pancake Kotlin OCaml Prototypes

59

Main limitations

Inherited from SMT solver

▪ First-order logic

▪ Undecidable theories may lead to

spurious errors

▪ Verification time for large methods

Annotation overhead

▪ Typically 2-5 lines of annotations per

line of code

Trust assumptions

▪ Correctness of SMT solver

▪ Correctness of Viper

▪ Correctness of front-end encoding

60

Formal Foundations for Translational Separation Logic Verifiers

Talk on Wednesday at 5pm in Peek-A-Boo!

61

Verifiers developed at ETH

▪ Modular verification of Python

programs

▪ Correctness and security

properties

▪ Variant for Ethereum smart

contracts in Vyper

▪ www.pm.inf.ethz.ch/research/

nagini.html

▪ Modular verification of Rust

programs

▪ Leverages Rust type system

to simplify verification

▪ prusti.ethz.ch

▪ Verification infrastructure for

permission-based reasoning

▪ Basis for our other verifiers

▪ viper.ethz.ch

▪ Modular verification of Go

programs

▪ Used for large-scale

verification projects, e.g.,

verifiedSCION

▪ gobra.ethz.ch

https://www.pm.inf.ethz.ch/research/gobra.html

