Peter Muller and Thibault Dardinier

VIPER:
AN INFRASTRUCTURE FOR AUTOMATED

VERIFICATION IN SEPARATION LOGIC

ETH:zurich

Vyper OpenCL Pancake Kotlin OCaml| Prototypes

Rust Python Go Java
(Prusti) (Nagini) (Gobra) (VerCors)

Viper language

Symbolic Verification condition Gradual
execution generation verification

SMT solver

viper.ethz.ch
Try online: http://viper.ethz.ch/tutorial
Install as VS Code extension

Tutorial:
https://sites.google.com/view/viper
tutorialpopl2025/home

Outline

= Separation logic proofs in Viper
- Hoare-style verification
- Permission-based reasoning

- Abstraction
- Advanced separation logic

* Viper as target language

= Conclusion

Basics of the Viper language

= Viper Is an imperative,

method indexOf(s: Seq[Int], e: Int) returns (res: Int) Statlca”y_typed’ Sequentlal
requires 0 < |s| language
ensures res < 0 ==> !(e in s)
ensures 0@ <= res ==> res < |s| && s[res] =

e

{ = Programs include a
if(s[@] == e) { res := 0 } sequence of method
else { declarations
if(|s| == 1) { res := -1}
else {
res := indexOf(s[1..], e) = Methods have specifications
if(res != -1) { res :=res + 1 }
} . .
} = Method bodies contain
} statements

- Structured and unstructured
control flow

Type system

= Viper has built-in primitive types with the usual operations

Bool, Int, ..

and built-in generic datatypes

Seq[T], Set[T], Multiset[T], Map[S,T]

= Programs may declare generic ADTs and uninterpreted sorts (as part of custom
theories)

adt List[T] { domain List[T] {
Nil() function length(1l: List[T]): Int
Cons(value: T, tail: List[T]) axiom nonneg {

} forall 1: List[T] :: @ <= length(1)

¥
}

Method specifications

method indexOf(s: Seq[Int], e: Int) returns (res: Int)
requires 0 < |s]|
ensures res < @ ==> !(e in s)

ensures @ <= res ==> res < |s| & s[res] == e
decreases s
» Method specifications may include = Viper verifies modularly that for all
- Preconditions method executions
- Postconditions - If the preconditions hold in the initial
_ A termination measure state then the execution will not abort

and if the method terminates, the
postconditions will hold in the final state

- That the execution terminates, if a
decreases clause is given

Loop annotations

method indexOf(s: Seq[Int], e: Int) returns (res: Int)
ensures res < 0 ==> !l(e in s)

ensures © <= res ==> res < |s| && s[res] == e -
decreases s = Verification of loops
{ requires invariants

var i: Int := @

while(i < [s| && s[i] != e) . ey -
AR B <o 4 <= |3 = Termination Is verlfle_d If
invariant forall j: Int :: 0 <= j < 1 ==> s[j] I=¢e a decreases-clause is
decreases |s| - i provided

{i:=1i+1}

res := (i == |s| ? -1 : i)

Outline

= Separation logic proofs in Viper
- Hoare-style verification
- Permission-based reasoning

- Abstraction
- Advanced separation logic

* Viper as target language

= Conclusion

11

Heap model: an object-based language

field val: Int

method foo() returns (res: Int)

{

var cell: Ref

cell

cell.

res

:= new(val)
val := 5

= cell.val

A heap maps object-field pairs to values

No classes: each object has all fields
declared in the entire program

- Type rules of a source language can be encoded

- Memory consumption is not a concern since
programs are not executed

Objects are accessed via references
- Field read and update operations
- No information hiding

No explicit de-allocation
- Conceptually, objects could remain allocated

12

Access permissions

» Associate each heap location with a
permission

* Permissions are held by method
executions or loop iterations

= Read or write access to a memory
location requires permission

= Permissions are created when the
heap location is allocated

= Permissions can be transferred, but
not duplicated or forged

Permission assertions

Separation logic

= Separation logic denotes
permissions by points-to predicates

p.f—

» Disjointness of permissions is
expressed by separating conjunction

p.f» *qg.f»_=p #£q

Viper
* Viper's logic uses access predicates

- Access predicates are not permitted
under negations, disjunctions, and on
the left of implications

acc(p.f)

* Viper’s && acts like separating
conjunction

acc(p.f) & acc(q.f) =>p # q

14

Verifying memory safety

» Memory safety is the absence of errors related to memory accesses, such as,
null-pointer dereferencing, access to un-allocated memory, dangling pointers, out-
of-bounds accesses, double free, etc.

» Using permissions, Viper verifies memory safety by default

var x: Ref method free(p: Ref) model de-allocation
x.f 1= 5 Q requires acc(p.f) via method call
var x: Ref free(x)

X := null x.f :=5

Xx.f :=5 0 0
free(x)
free(x) Q

15

Implicit dynamic frames

» Viper uses a variation of separation logic called implicit dynamic frames, which
specify permissions and value constraints separately

» Assertions may contain both permissions and value constraints

acc(p.f) && p.f > © dv :: p.f>v *v > 0

= Most assertions that occur in a program must be self-framing, that is, include all
permissions to evaluate the heap accesses in the assertion

requires p.f > © Q requires acc(p.f) && p.f > @O

16

Implicit dynamic frames: example

method swap(a: Ref, b: Ref) method swap(a: Ref, b: Ref)
requires a.f—»v * b.fHw requires acc(a.f) && acc(b.f)
ensures a.fHw * b.fov ensures acc(a.f) && acc(b.f)
{ ensures a.f == old(b.f) & b.f == old(a.f)
var tmp: Int {
tmp := a.f var tmp: Int
a.f :=b.f tmp := a.f
b.f := tmp a.f :=b.f
} b.f := tmp
}

= old-expressions are evaluated in the pre-state of a method
= Labeled old-expressions allow one to relate arbitrary states within a method

17

Exercise

Implement a method

method gauss(n: Int, res: Ref)

that sums up the first n natural numbers and stores the result in
the val-field of reference res.

Tasks:

= Verify memory safety.

= Specify and verify functional correctness.
= Verify termination.

Hints:

= See template Exercisel.vpr.

= Use a while loop.

= Store intermediate results directly in res.val, not in a local.

18

Outline

= Separation logic proofs in Viper
- Hoare-style verification
- Permission-based reasoning

- Abstraction
- Advanced separation logic

* Viper as target language

= Conclusion

19

Predicates

» User-defined predicates consist of a predicate name, a list of parameters, and a
self-framing assertion

predicate node(this: Ref) {
acc(this.elem) && acc(this.next)

}

= Recursive predicates may denote a statically-unbounded number of permissions

predicate list(this: Ref) {
acc(this.elem) && acc(this.next) &&
(this.next != null ==> list(this.next))

}

20

Static verification with recursive predicates

= A program verifier in general cannot know statically how far to unfold recursive
definitions

predicate list(this: Ref) {
acc(this.next) &&
(this.next != null ==> list(this.next))

}

method client(x: Ref, y: Ref)
requires list(x)

{

y.next := null // do we have permission?

¥

21

|so-recursive predicates

= An iso-recursive semantics distinguishes between a predicate instance and its
body

predicate list(this: Ref) { method client(x: Ref)
acc(this.elem) && acc(this.next) && requires list(x)
(this.next != null ==> list(this.next)) {

} x.next := null // no permission

} X
* [ntuition: permissions are held by method executions, loop iterations, either
directly or inside predicate instances

22

Folding and unfolding predicates

= Exchanging a predicate instance for its body, and vice versa, is done via fold and
unfold statements in the program

* An unfold statement exchanges a » Afold statement exchanges a
predicate instance for its body predicate body for a predicate instance

method client(x: Ref) method client(x: Ref)

requires list(x) requires list(x)
{ ensures list(x)

unfold list(x) {

X.next := null unfold list(x)
} X.next := null

fold 1list(x)
}

» unfolding-expressions allow one to temporarily unfold a predicate during the
evaluation of an expression

23

Data abstraction

* To write implementation-independent specifications, we map the concrete data
structure to mathematical concepts and specify the behavior in terms of those

' mathematical
mathematical [, 14, 3,1, 12] {1, 3,12, 14}
sequence
1 14 3 1 12 /\
14 12

] (3

24

Data abstraction via abstraction functions

= Viper provides heap-dependent functions function cont(this: Ref): Seq[Int]
- side-effect free requires list(this)

L {
- terminating unfolding list(this) in
- deterministic (this.next == null ?
Seq() :
Seq(this.elem) ++ cont(this.next)
= Function bodies and function calls ,)

are expressions
= Functions may be recursive

= Functions must have a precondition that frames the function body, that is,
provides all permissions to evaluate the body

25

ldiomatic abstraction in Viper

predicate list(this: Ref, cont: Seq[Int]) { predicate list(this: Ref) {

de,n :: this.elemm— e * this.next—n * acc(this.elem) && acc(this.next) &&
(n == null ==> @ == |cont]|) * (this.next != null ==> list(this.next))
(n !'= null ==> Jc :: }

cont == Seq(e) ++ c *

function cont(this: Ref): Seq[Int]
requires list(this)
{
unfolding list(this) in
(this.next == null ?
Seq() :
Seq(this.elem) ++ cont(this.next)
)
}

list(n, c))

= |[mplicit dynamic frames specify permissions and value constraints separately
and separate inputs (this) from outputs (cont)

- Facilitates incremental specification and verification

- Enables using deterministic, side-effect free code functions in specifications (e.g., equals) e

Exercise

Separation logic often uses predicates for list segments, for
Instance, to describe cyclic lists.

Tasks:

» Define a predicate 1seg for non-empty list segments.

= Define a function segcont that yields the sequence of
integers stored in a list segment.

= Implement and verify a method

method single(e: Int) returns (res: Ref)

that creates a cyclic list with one element, e.

Hint:
= See template Exercise2.vpr.

27

Outline

= Separation logic proofs in Viper
- Hoare-style verification
- Permission-based reasoning

- Abstraction
- Advanced separation logic

* Viper as target language

= Conclusion

28

Fractional permissions

» To distinguish read and write access, permissions can be split and re-combined

- A permission amount r is a rational number in [0;1] acc(x.f, m)

- Viper syntax allows fractions n/d, as well as write for 1,
none for 0, and wildcard for an arbitrary positive permission amount

- acc(E.f) is a shorthand for acc(E.f, write), and
P(E) foracc(P(E), write)

Fleld read requires some non-zero permission, field write requires full (write)
permission

Separating conjunction sums up permissions of the conjuncts

acc(x.f, 1/2) &% acc(x.f, 1/2) Isequivalentto acc(x.f, write)

29

Sharing In data structures

» Full permissions can describe tree-shaped data structures only

predicate person(this: Ref) {
acc(this.savings) &&
acc(this.savings.bal) }

» Fractional permissions allow sharing

predicate person(this: Ref) {
acc(this.savings) &&
acc(this.savings.bal, 1/2) }

* including unbounded (immutable) sharing

predicate person(this: Ref) {
acc(this.savings &&
acc(this.savings.bal, wildcard)

}

Person

Person

A\ 4

A\ 4

Account

Account

Person

Person

Account

Person Person Person

\

e

Account

30

Predicates and fractional permissions

predicate P(x: Ref)

= Predicates may contain fractions of permissions { acc(x.f, 1/2) }

» |tis also possible to own fractions of a predicate instance

acc(P(x), 1/2) && acc(P(x), 1/2) Isequivalentto acc(P(x), write)

= Unfold and fold multiply the fraction of the predicate with the fractions in the
predicate body

method client(x: Ref)
requires acc(P(x), 1/4)
ensures acc(x.f, 1/8)

{
unfold acc(P(x), 1/4)

| O

31

Limitations of recursive predicates

= Recursive predicates allow one to specify unbounded data structures
- Traversals happen in the order in which the predicate needs to be unfolded

= Predicates are not ideal for many other use cases

i) ~—

______ Y —> —>
— —

——————————————————————————

Ilterative traversals Other traversal orders

ST

Random-access data structures Arbitrary cyclic data structures

32

Quantified permissions

= To denote permission to an unbounded set of locations without prescribing a
traversal order, we allow permissions and predicates to occur under universal
guantifiers

forall x: T :: A

* Viper’'s forall quantifiers can be thought of as a possibly-infinite iterated
separating conjunction

forall x: T :: A = A[Xx,/x] & & A[Xx,/x] && ..

» Viper requires for each assertion acc(E.f) under a forall x:TthatE is
Injective, that Is:

X, # X, = E[x/x] # E[X,/X]

- The analogous rule applies to predicates (for parameter tuples)

33

Explicit footprints

= As alternative to predicates, we can specify —
permission to an unbounded set of locations by \
- Maintaining an explicit set of references as ghost state @q’?
(the explicit footprint)

- Quantifying over the set elements in specifications

= We represent a graph as a set of nodes, each node stores a (possibly empty) set

of successors
field next: Set[Ref]

predicate graph(nodes: Set[Ref]) {
forall n: Ref :: n in nodes ==> acc(n.next) && (n.next subset nodes)

¥

= This idiom supports arbitrary traversals, random accesses, and arbitrary sharing

34

Partial data structures

fi ft: Ref .

Fiold right: mef = To allow clients of getLeft to use the
predicate tree(x) later, getLeft needs

predicate tree(x: Ref) { to return permissions to the rest of the tree

acc(x.left) && acc(x.right)
&& (x.left != null ==> tree(x.left))
&& (x.right != null ==> tree(x.right))

}

method getLeft(x:Ref) returns (y:Ref)
requires tree(x)
ensures tree(y) && ...

—

{
y 1= X : : : :
while (y.left != null) = Not ideal: define a dedicated predicate
invariant tree(y) &% ... - Requires a way to identify the hole
{) :
unfold tree(y) Requires ghost code to plug the hole
y := y.left

}
} X .

Separating implication: magic wands

= A magic wand P — Q represents the difference between Q and P

A A

QP P-xQ

= This allows us to specify our getLeft method

method getLeft(x: Ref) returns (y: Ref)
requires tree(x)
ensures tree(y) & & (tree(y) --* tree(x))

* [ntuition: permissions are held by method executions, loop iterations, either
directly or inside predicate instances or magic wands

36

Reasoning with magic wands
= Applying a magic wand
- Viper has a designhated statement to apply modus ponens for magic wands

apply P --* Q P« (PxQ) = Q

= Creating a magic wand

- Viper needs to determine which permissions from the current state need to be moved into the
wand such that the wand, together with P, yields Q

split current state such that
package P --* Q

* P = Q

37

Example revisited

method getLeft(x: Ref) returns (y: Ref)
requires tree(x)
ensures tree(y) && (tree(y) --* tree(x))

y 1= X
package tree(x) --* tree(x)
while (unfolding tree(y) in y.left != null)

invariant tree(y) && (tree(y) --* tree(x)) y := getLeft(x)

{ y.update() // requires tree(y)
unfold tree(y) apply tree(y) --* tree(x)
var y_left: Ref := y.left x.update() // requires tree(x)
package tree(y left) --* tree(x)
{

fold tree(y)
apply tree(y) --* tree(x)

}
y :=y left
}

The Viper language

39

Outline

= Separation logic proofs in Viper

= Viper as target language
- Encoding source languages
- Encoding program logics

= Conclusion

41

Example: Go verification in Gobra

requires acc(x) && acc(y) field val: Int
ensures acc(x) & acc(y) method swap(x: Ref, y: Ref)
* —— *) c
ensures *X = Oig(*y) requires acc(x.val) && acc(y.val)
ensures 7y " old(:? ensures acc(x.val) && acc(y.val)
functswa?fx* int, y *int) { ensures Xx.val == old(y.val)
mp .= "X ensures Yy.val == old(x.val)
*y = tmp var yLocal: Ref // declare locals
} var xLocal: Ref
xLocal := X // copy parameters
= (GO supports pointers to integers yLocal :=y
= Parameters can be assigned to var tmpé Hos Y CEEERS Tl
. mp .=
= Locals get initialized by default tmp := xLocal.val /] tmp = *x
xLocal.val := ylocal.val // *x = *y
yLocal.val := tmp // *y = tmp

Arrays

» Viper does not have bulilt-in arrays

* |n contrast to sequences, arrays are
mutable heap data structures

* We model arrays by a set of disjoint
references that can be accessed via
an index

» loc(a, i).val models a[i]

* More-dimensional arrays can be
encoded analogously

field val: Int // for integer arrays

domain Array {

}

function loc(a: Array, i: Int): Ref

function len(a: Array): Int
function first(r: Ref): Array
function second(r: Ref): Int

axiom injectivity {
forall a: Array, i: Int

}

axiom length nonneg {
forall a: Array ::

}

first(loc(a, i)) == a &&
second(loc(a, 1)) == 1

len(a) >= ©

:: {loc(a, i)}

43

Accessing array locations

= Arrays are random-access data structures

= We can express permissions using quantified permissions

forall i: Int :: © <= i < len(a) ==> acc(loc(a, i).val)

- Similarly for sub-ranges of the array

= \We define macros for convenient access

define lookup(a, 1) define update(a, i, e) {
loc(a, i).val loc(a, i).val := e

}

- Bounds are checked implicitly via permissions

44

Outline

= Separation logic proofs in Viper

= Viper as target language
- Encoding source languages
- Encoding program logics

= Conclusion

45

Permission transfer

method set(p: Ref, v: Int)

{

requires
ensures

acc(p.f)
acc(p.f) && p.f == v

method client(x: Ref, y: Ref)
requires acc(x.f) && acc(y.f)
requires x.f == 2 && y.f == 7 {

set(x, 5) Framing!

assert x.f == 5 && y.f ==
h

46

Permission transfer for method calls

—f| acc(p.)|} method set(p,y—[acc(p.f) xp.f = v|}
{ acc(x.f) } set(x, 5)({ acc(x.f)xx.f=5}

\Hacc(x.f)H acc(y.f)xy.f = 7'» set(x, 5) \[Iaccix.fi *X.f =5 Hacc(y.f) xy.f= 7]
\ /'

» Calling a method transfers permissions from the caller to the callee (according to
the method precondition)

= Returning from a method transfers permissions from the callee to the caller
(according to the method postcondition)

= Residual permissions are framed around the call

a7

Permission transfer for loops and concurrency

jacc(x.f)l* x.f <10} x.f:=x.f ;171—-| acc(x.F)I}

{acc(x.f) } while(x.f < 10) { ... }({ acc(x.f)* —x.f < 10 }

acc(x.f)lHacc(y.f)«y.f =7} while(x.f < 10) { ... }\Iacc(x.f)l*ﬂx.f< 10 >1<|ac<:(y.1°)>1<y.f:TI}

48

Permission transfer: inhale and exhale operations

= inhale A means: inhale acc(x.f) & & x.f == 2
- obtain all permissions required by assertion A
- assume all logical constraints

= exhale A means: exhale acc(x.f) & x.f == 2

- assert all logical constraints
- check and remove all permissions required by assertion A
- havoc any locations to which all permission is lost

49

Encoding of method bodies and calls

method foo() returns (..) X := foo()
requires A
ensures B

{S}
* Encoding without heap and globals = Encoding with heap

assume A inhale A

- Body // encoding of S - Body // encoding of S
assert B exhale B
assert A[..] exhale A[...]
havoc x havoc x

- Cal assume BJ...] - Cal inhale B[...]

= inhale and exhale are permission-aware analogues of assume and assert

50

Encoding structured parallelism

» The proof rule employs the familiar permission transfer

{Ar} St {Bi} {Ax} S {By}
{ArxAzx} Si||S2 {B1*By}
{Al*AQ*C} Sl HSQ {Bl*BQ*C}

= We can encode this proof rule via exhale and inhale operations

method S,(..) returns (res;: T) exhale A,[..]
requires A, exhale A,[..]
ensures B, havoc res,, res,

{ // encoding of S, } inhale B,[..]

inhale B,[..]
Encode left and right branch

as methods with specifications Encode parallel composition
like two half method calls

Encoding locks

{R} x:=new Lock() { isLock(x,R) }

{ isLock(x,R) } acquire x { locked(x,R) *R}

{ locked(x,R) *x R } release x { isLock(x,R) }

Vx :: isLock(x,R) < isLock(x,R) x isLock(x,R)

Encode custom resources as
abstract predicates

predicate islLock(x: Ref, ..)

predicate locked(x: Ref, ..)

Encode duplicable resources
as arbitrary positive fractions

acc(islLock(x, ..), wildcard)

52

Encoding lock invariants

{R} x:=new Lock() { isLock(x,R) }

{ isLock(x,R) } acquire x { locked(x,R) «R }

{ locked(x,R) *x R } release x { isLock(x,R) }

Vx :: isLock(x,R) < isLock(x,R) * isLock(x, R)

= Specify invariant in a program
annotation

share x inv R

= Apply defunctionalization
- Assign unique constant c to each invariant
- Parameterize predicates

predicate isLock(x: Ref, inv: Int)

predicate locked(x: Ref, inv: Int)

- Declare macro or predicate for all invariants

define Inv(x, n) (
(n == ¢ ==> R) &&

53

Encoding lock operations

{R} x:=new Lock() { isLock(x,R) }

{ isLock(x,R) } acquire x { locked(x,R) «xR }

{ locked(x,R) xR } release x { isLock(x,R) }

Vx :: isLock(x,R) < isLock(x,R) x isLock(x,R)

exhale
inhale

exhale
inhale

exhale
inhale

Inv(x,c)
acc(isLock(x, c), wildcard)

acc(isLock(x, c), wildcard)
locked(x, c) && Inv(x,c)

locked(x, c) && Inv(x,c)
acc(isLock(x, c), wildcard)

54

Exercise

The following rules are adapted from Relaxed Separation Logic.

{true} [:= allocpna() {Uninit(l)}

{1+ Vv Uninit(D)} [[Jna := e {l = ¢}

(IS etr :=[na{z=exl+>e}
(I e * l&e’)@(e:e’*lk'ﬁ;,e)
Encode them in Viper and verify the client code on the right.

= Assume that | is an integer location.

= Recall that Viper does not support disjunction of impure
assertions.

Hints:
= See template Exercise3.vpr.
= Track initialization in the state.

method sum(p, q)

require
ensures
ensures

a = [p
b := [q

spév*qéw
pEv * qbu

result == v + w

]
]

return a + b

}

method cl
X := al
y := al
[x] :=
[yl :=

ient() {
loc()
loc()

s := sum(x, y)

assert

s == 5

55

Scope of existing Viper encodings

Language features

Imperative code
Object-oriented code
Nominal and structural typing
Closures

Multithreading with shared state
and message passing

Weak-memory concurrency

Properties

Memory safety

Absence of overflows
Termination

Functional correctness
Race freedom
Linearizability

Deadlock freedom

Secure information flow
Resource manipulation
Worst-case execution time

56

Outline

= Separation logic proofs in Viper
= Viper as target language

= Conclusion

57

Vyper

OpenCL

Rust
(Prusti)

Pancake Kotlin

Python Go
(Nagini) (Gobra)

Viper language

OCaml

Java
(VerCors)

Symbolic Verification condition
execution generation

SMT solver

Prototypes

58

Main limitations

59

Formal Foundations for Translational Separation Logic Verifiers

\\e
4
‘a,\/
S
A
[program front-end VL broaram back-end °
. translation Prog verifier
[specification | 0

| correct

i program satisfies

! P, WL valid
! Specn‘lcatlon W.I.1. ! ' WLt
v Y v
Front-end < VL < Back-end
semantics front-end semantics back-end semantics
soundness soundness

Talk on Wednesday at 5pm in Peek-A-Boo!

60

Verifiers developed at ETH

VIiPER

P*xrust—x1

Verification infrastructure for
permission-based reasoning

Basis for our other verifiers
viper.ethz.ch

Modular verification of Rust
programs

Leverages Rust type system
to simplify verification
prusti.ethz.ch

Modular verification of Go
programs

Used for large-scale
verification projects, e.g.,
verifiedSCION

gobra.ethz.ch

Modular verification of Python
programs

Correctness and security
properties

Variant for Ethereum smart
contracts in Vyper

www.pm.inf.ethz.ch/research/
nagini.html

61

https://www.pm.inf.ethz.ch/research/gobra.html

