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ABSTRACT

Evolutionary algorithms, being problem-independent and random-

ized heuristics, are generally believed to be robust to dynamic

changes and noisy access to the problem instance. We propose a

new method to obtain rigorous runtime results for such settings. In

contrast to many previous works, our new approach mostly relies

on general parameters of the dynamics or the noise models, such as

the expected change of the dynamic optimum or the probability to

have a dynamic change in one iteration. Consequently, we obtain

bounds which are valid for large varieties of such models. Despite

this generality, for almost all particular models regarded in the past

our bounds are stronger than those given in previous works. As

one particular result, we prove that the (1 + λ) EA can optimize

the OneMax benchmark function efficiently despite a constant rate

of 1-bit flip noise. For this, a logarithmic size offspring population

suffices (the previous-best result required a super-linear value of λ).
Our results suggest that the typical way to find the optimum in

such adverse settings is not via a steady approach of the optimum,

but rather via an exceptionally fast approach after waiting for a

rare phase of low dynamic changes or noise.

CCS CONCEPTS

• Theory of computation → Theory of randomized search

heuristics; Optimization with randomized search heuristics;
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Dynamic optimization; noisy optimization; runtime analysis

1 INTRODUCTION

Evolutionary algorithms (EAs) are randomized optimization heuris-

tics. They are composed of generic building blocks inspired by

natural evolution, which are suitably combined into an algorithm
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for a particular problem. Both the randomized nature and the fact

that EAs contain many problem-unspecific ingredients suggest that

EAs could be particularly suitable to cope with stochastic distur-

bances of the problem such as dynamically changing problem data

or noisy objective functions. This belief has been verified in many

experimental works, see the surveys [1, 12].

In contrast to a huge body of experimental literature, much fewer

mathematical works analyze the performance of evolutionary al-

gorithms in dynamic or noisy settings. Apparently, one reason

are the complicated stochastic interactions between the algorithm

and the dynamics or the noise. As an example, we note that al-

ready the simple problem of how the basic (1 + 1) EA optimizes

an n-dimensional dynamic OneMax function in which the opti-

mum changes in each iteration by flipping each bit independently

with probability p′ = c ln(n)/n2, is not well understood (see the

discussion of previous works for more details).

In this work, we propose a new approach to conduct runtime

analyses for dynamic or noisy optimization problems. It builds on

the following simple observation, which was made, e.g., for the

dynamic OneMax problem, already in [13]. For many dynamic

or noisy optimization processes, there is an easy early part of the

process, in which the progress of the algorithm is not much hin-

dered by the dynamics or the noise. This part is usually easy to

analyze and does not contribute much to the total runtime. More

interesting is the later, harder part of the optimization process, in

which the average progress of the algorithm is less than the average

damage caused by the dynamics or the noise. That an evolutionary

algorithm can find the optimum in reasonable time at all despite the

presence of such adverse conditions is a strong point for evolution-

ary algorithms. From the perspective of runtime analysis, however,

this part is highly challenging since most of the classical methods

either aim at translating a positive expected progress into a good

runtime bound or a negative expected progress into a high lower

bound.

We overcome the technical difficulties of this second part of

the optimization process in a simple (but as we shall see, effective)

manner: we try to make progress from the equilibrium point (where

the algorithm progress and dynamics or noise damage cancel in

expectation) only in short periods without dynamic changes or

noise. More precisely, we argue that if for some t (i) with a certain

probability p1 no dynamic change or no noise occurs during t
iterations and (ii) the undisturbed algorithm finds the optimum
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starting from the equilibrium point in t iterations with probability

at leastp2, then (roughly)
t

p1p2 iterations suffice to find the optimum

in the dynamic or noisy setting.

Needless to say, this analysis method is wasteful in the sense

that we disregard all ways to the optimum that do have some

small disturbances on the way from the equilibrium point to the

optimum. Nevertheless, the fact that with our approach we shall

improvemost existing results (see the discussion of our results in the

separate sections on dynamic optimization and noisy optimization)

shows that our approach despite this theoretical wastefulness is

very strong.

The second big advantage of our new method is its universality.

As the sketch of the main idea above shows, our analyses are rela-

tively independent of the particular dynamics or the noise model.

To determine the equilibrium point, we only need to understand

the expected damage created by the dynamics or the noise. In the

second part of the analysis, it suffices to know the probability that

we have a dynamic change of the problem instance or a noisy fitness

evaluation in one iteration.

The fact that most of our results are significantly stronger than

the previous ones also suggests that our analysis approach of wait-

ing for a rare phase of low activity of the dynamics or the noise

and then exploiting this via an exceptionally fast approach of the

optimum is possibly a realistic view on such processes. We support

this with some preliminary experiments.

Organization of the paper: To ease the reading, we treat sepa-

rately the problems of analyzing evolutionary algorithms in the

presence of dynamically changing problem data and in the presence

of noise. While the main idea of our new method is identical is both

settings, sufficiently many details are different so that a unified

treatment would become overly technical. We note that all previous

runtime analyses as well discuss either dynamic optimization or

noisy optimization. Each of the following two long sections on

dynamic optimization and noisy optimization consists of a short

description of previous and our results followed by a technical part

containing precise statements and proof ideas.

2 DYNAMIC OPTIMIZATION

Many real-world optimization problems are inherently dynamic,

that is, their problem data is changing at least mildly during the

optimization process. Formally, this means that during the run of

the algorithm, the problem instance to be solved can be replaced

by a different problem instance. Usually it is assumed that the new

instance is similar to the previous one and that these dynamic

changes are governed by some simple randomized process.

2.1 Previous Work and Our Results

2.1.1 Previous Works. There is a long list of experimental works

showing how to use evolutionary algorithms in dynamic optimiza-

tion. For reasons of space, we refer to the surveys [2, 14]. There is by

now also a moderate amount of theoretical results [3, 4, 8, 9, 13, 16].

The first runtime analyses on dynamic problems were conducted in

the two groundbreaking papers by Droste [8, 9]. Both discuss how

the (1 + 1) EA optimizes a dynamic version of the OneMax func-

tion. The (generalized) OneMax function OneMaxz with optimum

z ∈ {0, 1}n is defined by OneMaxz (x ) = |{i ∈ [1..n] | xi = zi }|. The

dynamics regarded in both works of Droste is that after each itera-

tion of the evolutionary algorithmwith small probability the current

problem instance OneMaxz is changed to OneMaxz′ , where z
′
is

chosen randomly according to some given distribution. Since there

is an obvious one-to-one correspondence between the OneMaxz
functions and their optima z ∈ {0, 1}n , we may conveniently talk

of the dynamics changing the optimum (and this implies changing

the whole instance).

In [8], the 1-bit dynamics is regarded, which in each iteration

with probability p replaces the current optimum z by a random

Hamming neighbor z′. The main result of the paper is that if there

exists a constant c such that p ≤ c
ln(n)
n , then the runtime (also

called optimization time) T of the (1 + 1) EA, that is, the number

of fitness evaluations until the current optimum is evaluated for

the first time, satisfies E[T ] = O (nce+1+o (1) ln(n)), where e ≈ 2.72

is the Euler constant.

Since dynamics only moving to a Hamming neighbor are slightly

artificial, Droste [9] analyzes the same problem with the bitwise

dynamics. In this dynamics, in each iteration the current opti-

mum z is replaced by a string z′ obtained from z by flipping each

bit independently with probability p′. If for some constant c we

have p′ ≤ c
ln(n)
n2

, then the optimization time T satisfies E[T ] =

O (n4ce+1+o (1) ln(n)). Note that for identical values of c , both dy-

namics have the same average change of the optimum, but the

runtime guarantee for the bitwise dynamics is almost the 4-th

power of the one for the 1-bit dynamics.

There is no reason to believe that this larger bound on the run-

time should be the truth, since for equal values of c , both dynamics

are very similar: 1-bit flips appear with essentially the same rate

r1 = (1 + o(1))c ln(n)/n, higher-order bit flips do not exist in the

1-bit model, but appear in the bitwise model also only with rate

O (
log

2 n
n2

). So it seems that the significantly different runtime guar-

antees are caused by the methods used, namely an analysis of the

precise Markov chain. Such analyses can give very good results

(and in fact, the result of [8] is the one that we cannot improve), but

they are also known to be very sensitive to small changes of the

chain. Hence it is not surprising that different results are obtained

for two very similar dynamics.

In [13], the first progress on this problem after more than ten

years, the runtime guarantee for the bitwise dynamic is improved

to E[T ] ≤ 22nαec+2 ln(n), where α = 3
ln(2e2/3)

e ≈ 1.76. While this

bound is significantly better than the one of [9] when c is not too
small, it again remains above the one for the 1-bit dynamics and in

particular cannot give sub-quadratic runtime guarantees. We spec-

ulate that again the general analysis method via drift analysis used

in [13] is non-optimal. Drift analysis tries to translate information

about the expected progress in a randomized process (drift) into

a hitting time. Since in the hard part of the optimization process

(beyond the equilibrium point) the drift is pointing away from the

target, it appears contradictory to use drift analysis to derive upper

bounds on the hitting time of the optimum. To make this possible,

in [13] a clever rescaling of the fitness is invented which has the

property that the drift with respect to this rescaled fitness is indeed

directed towards the target. Nevertheless, it would not be surprising

if this counter-intuitive approach would not give the best results.

2
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2.1.2 Our Results. We propose a novel and possibly more natu-

ral approach to analyzing the runtime of evolutionary algorithms

in dynamic settings. For the difficult part, in which the drift is away

from the optimum, we exploit as only way to the optimum the

fact that we have intervals without dynamic changes and that in

these intervals the algorithm finds it easier to make progress. This

remains not totally trivial, since the intervals without dynamic

changes are relatively short, so we need to prove that the algorithm

in these short intervals finds the optimum with some sufficiently

significant probability. Since we are thus waiting for an exception-

ally fast progress of the algorithm, we cannot use the traditional

methods (e.g., drift analysis). Still, with this approach we only need

to analyze the performance of the undisturbed algorithm, which

appears to be feasible.

The big advantage of this method is that it mostly relies on the

probability that no dynamic change happens, whereas the particular

distribution of the dynamic change is less important. More precisely,

we shall assume the quite general model that in each iteration, the

dynamic change of the optimum is obtained from sampling a bit-

maskm ∈ {0, 1}n from some arbitrary distribution D (the same in

each iteration). Then z is replaced by z′ = z ⊕m, the exclusive-or

of z andm (in other words, we flip exactly those bits in z which

are one inm). For a random samplem from D, let ED := E[∥m∥1]
be the expected number of bits the dynamics flips in z and let

pD := Pr[m , (0, . . . , 0)] be the probability that a dynamic change

appears in one iteration (that is, that z , z′).
For this general model, our main technical result on dynamic

optimization is that for each t ∈ N, the expected optimization time

of the (1 + 1) EA on this dynamic OneMax function is

E[T ] ≤ en(ln(n) + 1) +
t + neED

(1 − pD )t
(
1 −

(
1 − 1

en

)t ) ⌈enED ⌉ .
Thus we obtain good runtime bounds for concrete dynamics by

minimizing this expression over t taking into account the concrete

values for ED and pD .
For both the 1-bit dynamics with p ≤ c ln(n)/n and the bitwise

dynamics with p′ ≤ c ln(n)/n2, we have pD ≤ c
ln(n)
n and ED ≤

c
ln(n)
n . Hence optimizing over t gives the same runtime guarantee

for both dynamics, namely

E[T ] ≤ (γ + o(1))nβec+1

with β = 2 ln(2) ≈ 1.39 and γ = 2e ln(2) ≈ 3.77.

The above described method is not restricted to OneMax (or sim-

ilar functions) and is also applicable to processes that do not have

any equilibrium point (due to the fact that the damage caused by the

dynamics outnumbers the progress of the algorithm in the whole

search space). Here is an example. The (generalized) LeadingOnes

function LeadingOnesz with optimum z ∈ {0, 1}n is defined by

LeadingOnesz (x ) = max{i ∈ [0..n] | ∀j ≤ i,x j = zj }. With the

same method as above, we easily prove that the 1-bit dynamics

with p ≤ c ln(n)/n2 and the bitwise dynamics with p′ ≤ c ln(n)/n3

both lead to an expected optimization time of the (1 + 1) EA of

E[T ] ≤ (δ + o(1))n2+δc , where δ = e−1
2
≈ 0.86. To the best of

our knowledge, no previous results exist on the optimization of

dynamic LeadingOnes functions.

2.2 Runtime Analysis for Dynamic OneMax

Functions

2.2.1 Precise Description of the Dynamic Model. In [8] and [9],

Droste proposes two different dynamic OneMax functions.We shall

regard the following significant extension. LetD be any distribution

on {0, 1}n .We take as initial cost function c0 someOneMax function

OneMaxz . Inductively, we define a sequence of cost functions (ci :
{0, 1}n → N)i ∈N. If at step i the cost function ci is OneMaxz , we

samplem in {0, 1}n fromD and set ci+1 = OneMaxz⊕m , where ⊕ is

the exclusive-or. This model loosely resembles the XOR benchmark

of Stanhope and Daida [17], with the difference that there a dynamic

changewas performed only eachд generations (for a non-randomд)
and that them always is a random bit string having exactly d ones

(for some non-random d).
Our model defines two characteristic parameters, namely the

probability pD that a (non-trivial) dynamic change appears and

the expected number ED of bits flipped by the dynamics. More

precisely, for a samplem from D, we have pD = Pr[m , (0, . . . , 0)]
and ED = E[∥m∥1]. Our new analysis method will be such that our

runtime guarantees only depend on these parameters. Note that

for a concrete dynamic model, these numbers usually are easy to

compute.

Our setting clearly includes the two dynamic models regarded

by Droste. For the 1-bit dynamics, we samplem by choosing with

probability p a random bit string with exactly one 1; otherwise

we have m = (0, . . . , 0). We have pD = ED = p. For the bitwise
dynamics, we generatem = (m1, . . . ,mn ) ∈ {0, 1}

n
randomly such

that, for each i ∈ [1..n] independently, we have Pr[mi = 1] = p′. In
that case, ED = np′ and pD = 1 − (1 − p′)n . Note that when p′ =
o( 1n ), and this will be the typical situation, then pD = (1+o(1))np′.

In [8], Droste proposed the following equivalent formulation

for the random process arising from running the (1 + 1) EA on

this dynamic OneMax model. Instead of modifying the optimum

of the OneMax fitness function, he rather applies this modifica-

tion to the current search point. If a and b are two bitstrings, let

us denote H (a,b) the Hamming distance between a and b. Since
H (x , z ⊕ m) = H (x ⊕ m, z), the effect on the fitness is the same,

and this holds not only for Droste’s dynamics, but for all dynam-

ics that fit into our setting. For this reason, we can assume in the

remainder that we always optimize the classic OneMax function

and after each iteration replace the current search point x by x ⊕m
withm ∼ D. For convenience in the analysis, as often when drift

arguments are employed, we shall regard the minimization ver-

sion of a OneMax function. Hence we consider the cost function

c (x ) = H (x , (1, . . . , 1)). To fix the notation, we formulate the result-

ing randomized process as Algorithm 1.

The stochastic aspect of the algorithm makes x = (xi )i ∈N a

Markov chain. We denote by x2i the state of the individual at

the beginning of iteration i and by x2i+1 the individual after the
iteration, but before the possible modification through the dy-

namics. We define T to be the hitting time of the process, i.e.

T = inf {i ≥ 0 | x2i = (1, ..., 1)}.
In what follows, we often have to consider probabilities or ex-

pectations conditioned on the initial search point.

Notation 1. Let y ∈ {0, 1}n , we denote Pry [ · ] = Pr[ · | x0 = y]
and Ey [ · ] = E[ · | x0 = y].

3
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Algorithm 1 Process equivalent to the (1 + 1) EA minimizing a

dynamically changing cost function (ci )i ∈N

1: Choose x0 ∈ {0, 1}
n
uniformly at random

2: for i = 0 to∞ do

3: Sample yi from x2i by flipping each bit with probability
1

n .

4: if c (yi ) ≤ c (x2i ) then
5: x2i+1 := yi
6: else x2i+1 := x2i
7: Samplemi from D
8: x2i+2 := x2i+1 ⊕mi

2.2.2 Easy Process up to the Equilibrium Point. In this subsection,
we use multiplicative drift analysis to show that the optimization

process of the dynamic OneMax function quickly reaches the equi-

librium point k∗ := ⌈neED ⌉, which is (essentially) the smallest cost

value k at which we still have a positive drift E[c (x2i ) − c (x2i+2) |
c (x2i ) = k].

While it appears very natural that multiplicative drift is the right

tool for a dynamic OneMax process up to the equilibrium point,

transforming this intuition into a formal proof is not totally trivial.

For the particular dynamic OneMax process with bitwise changes

of the optimum, Theorem 8 in [13] analyzes this “easy” part of the

optimization process via moment-generating functions.

We succeed with multiplicative drift, but we need some addi-

tional arguments to cope with the facts (i) that we use a general

dynamic model described only by the parameters pD and ED , and
(ii) that the target k∗ of the process is not the minimum of the state

space as required by the multiplicative drift theorem [7]. Still, the

approach via multiplicative drift gives a reasonably easy proof and a

very natural result—the time to reach the equilibrium point from an

initial search point that is d cost levels away from the equilibrium

is (apart from lower order terms) exactly the time needed to gain

the last d fitness level in a static optimization of OneMax.

We identify two components of the drift with opposite effects.

With mutation rate
1

n , the typical progress of the (1 + 1) EA is

made when exactly a 0 is flipped into a 1. It leads to a pessimistic,

but reasonable, evaluation of the expectancy of progress to
k
en . On

the other hand, the cost of the search point increases when the

dynamic effects flip 1s of the search point into 0s. The average

number of such flips is not greater than ED . Therefore, we obtain a

lower bound of the negative component of the drift of −ED . The
formalization of this argument yields the following result.

Theorem 1. Let k∗ = ⌈neED ⌉ and τ0 = inf {i ∈ N | c (x2i ) ≤ k∗}.
For all x0 ∈ {0, 1}

n
such that c (x0) > k∗,

Ex0 [τ0] ≤ en(ln(c (x0) − k
∗) + 1) ≤ en(ln(n) + 1).

2.2.3 Exceptionally Fast Progress from the Equilibrium Point to
the Optimum in Periods Without Dynamic Changes. The second

building block of our analysis method is an estimate of the prob-

ability that the algorithm starting at k∗ finds the optimum in a

relatively short period of time without dynamic changes. During

these periods, the dynamic process is equivalent to the process of

the (1 + 1) EA optimizing a static OneMax function. In the typical

applications of our method, the length of this period without dy-

namic changes is much smaller than the expected time the (1+1) EA

needs to go from the cost level k∗ to the optimum. For this reason,

we have to study the extreme lower tail of the distribution of static

hitting time TS .
To ease this analysis, we introduce below a modified process,

which is easier to analyze and which, in the sense of stochastic dom-

ination (cf. [6]), is a pessimistic approximation of the dynamics-free

optimization process on OneMax. The new process starts with the

same search point as the original optimization process. The two

processes are equal except that the new process as mutation opera-

tor never flips a 1 and flips each 0 independently with probability

1

en .

By induction, we show that the new process dominates the orig-

inal process in terms of the cost: If Zi is the search point of the

new process at time i and x2i is the search point of the original

process, then c (Zi ) ⪰ c (x2i ). Consequently, denoting by TN the

hitting time of the optimum of the new process, we have TN ⪰ TS .
This hitting time of the new process is easy to analyze, which gives

the following result.

Theorem 2. For all x ∈ {0, 1}n and t ∈ N, we have

Prx [TS ≤ t] ≥ Prx [TN ≤ t] = (1 − (1 − 1

en )
t )c (x ) .

With this estimate of the distribution of the hitting time of the

static process, we obtain a lower bound of the probability of success

without dynamics in a short period of length t . We define the

stopping time τ1 as the length of the first short period without

dynamics. The probability Prx [T ≤ τ1] to reach the optimum in

this short period can be intuitively lower bounded by the product of

the probability to have no dynamics in t steps, and the probability

that the static process reaches the optimum in time less than t .

Definition 3. For t ∈ N, we denote

τ1 = min{t , inf {i ≥ 1 | x2i−1 , x2i }}.

Theorem 4. Let t ∈ N, x ∈ {0, 1}n such that c (x ) ≤ k∗. We have

Prx [T ≤ τ1] ≥ (1 − pD )
t ·

(
1 −

(
1 − 1

en

)t )k∗
.

2.2.4 Upper Bound on the Expected Hitting Time. In Theorem 5,

we combine the different arguments to obtain an upper bound on

the expected hitting time. The first term en(ln(n) + 1) corresponds
to the expected time to reach the equilibrium point k∗, according to
Theorem 1. The second term corresponds to the progress from k∗.
To obtain it, the core argument of the proof is to consider successive

periods without dynamics, and to estimate how much of these are

necessary, in average, to have a success. Similarly to geometrical

distributions, the obtained expected hitting time is inversely pro-

portional to the probability of reaching the optimum in one of these

periods. Formally, this probability is defined as Pr[T ≤ τ1], and we

lower bounded it in the previous subsection. In the numerator, the

factor t is the maximum number of steps without dynamics that we

consider. The additional neED term corresponds to a pessimistic

estimate of the expected time to reach again the equilibrium point

k∗ after suffering from the first dynamic change.

Theorem 5. For all x0 ∈ {0, 1}
n
and t ∈ N,

Ex0 [T ] ≤ en(ln(n) + 1) +
t + neED

(1 − pD )t ·
(
1 −

(
1 − 1

en

)t ) ⌈neED ⌉ .
4
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2.2.5 Sufficient Condition for a Polynomial Expected Hitting
Time. We now give sufficient conditions on pD and ED for the

runtime to be polynomial. In both the one bit-flip model [8] and

the bitwise model [9], those two parameters have the same order

of magnitude. In this case, taking t proportional to n gives the best

runtime estimate. This corresponds to the first case of Theorem 6.

One can as well imagine a model where pD = o(ED ). Notice that
the fact that pD is always smaller than ED allows us to suppose

without losing generality that pD = o
(
ln(n)
n

)
. This corresponds to

the second case of the following theorem.

Theorem 6. Suppose that one of the following conditions holds.

(i) pD = O
(
ln(n)
n

)
, and ED = O

(
ln(n)
n

)
.

(ii) pD = o
(
ln(n)
n

)
, and ED = O

(
ln(n)
n n

1

nepD

)
.

Then the expected hitting time is polynomial.

2.2.6 Tight Bounds on the Expected Hitting Time. The most nat-

ural situation, as also in Droste [8, 9], is that pD and ED have the

same order of magnitude. For this case, we now derive more explicit

upper bounds on the expected hitting time.

Theorem 7. Let β = 2 ln(2) ≈ 1.39, γ = eβ ≈ 3.77, and δ =
e + γ ≈ 6.49. Then the following assertions hold.

(i) If pD ≤
(
1

γ +O
(
ln(n)
n

))
ln(ln(n))

n and ED ≤
1

γ
ln(ln(n))

n , then

E[T ] ≤ (δ + o(1))n ln(n).

(ii) If pD ≤
(
c +O

(
ln(n)
n

))
ln(n)
n and ED ≤ c

ln(n)
n , then

E[T ] ≤ (γ + o(1))n1+βec .

The following Corollary 8 analyzes the specific case of 1-bit

dynamics. It is an immediate consequence of Theorem 7, since in

that case we have ED = pD = p.

Corollary 8. Let β = 2 ln(2) ≈ 1.39 and γ = eβ ≈ 3.77. In the

specific model of 1-bit dynamics with probability p, described in [8],

if c > 0 is a constant such that p ≤ c
ln(n)
n , then

E[T ] ≤ (γ + o(1))n1+βec .

In [8] the bound E[T ] = O (n1+ec+o (1) ln(n)) was obtained, which
is better than ours. Contrary to this proof, our method does not use

the specificity of the model. Consequently, we immediately obtain

a similar bound for the bitwise dynamics.

Corollary 9. Let β = 2 ln(2) ≈ 1.39 and γ = eβ ≈ 3.77. In the

specific model of bitwise dynamics with probability p′ of flipping each

bit, described in [9], if c > 0 is a constant such that p′ ≤ c
ln(n)
n2

, then

E[T ] ≤ (γ + o(1))n1+βec .

This bound is significantly stronger than the two bounds shown

in the past by Droste in [9] and Kötzing et al. in [13].

2.2.7 Experiments. In the theoretical analysis, we argued based

on the assumption that there is an equilibrium point k∗ which is

easy to reach but difficult to leave towards the optimum. The fact

that with this view on the process we could show very good runtime

bounds indicates that our model of the optimization process is not
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Figure 1: Evolution of the cost of the search point for n = 100

too far from the truth. Since it is interesting also beyond our runtime

guarantees to understand how evolutionary algorithms cope with

dynamic changes or noise, we now conduct some very preliminary

experiments.

In Figure 1, we show exemplarily three runs of the (1 + 1) EA
optimizing the dynamic OneMax function in the presence of 1-bit

dynamic changes of the optimum appearing with rate p. Depicted is
the cost of the search point over time for n = 100 and p = ln(n)/n,
0.5 ln(n)/n, and 1/n. The theoretical k∗ in these cases is roughly

13, 7 and 3 respectively. For the two larger dynamic rates, indeed

we observe in the plots that the cost oscillates around a point close

to this theoretical k∗ for a longer period of time. For the small

dynamic rate of 1/n, again in line with our theoretical predictions,

the time spent around the k∗ is small (theory would predict O (n))
and not distinguishable from the generally slow progress close to

the optimum.

Our second (pessimistic) assumption in the runtime analyses is

that from the equilibrium point we only make progress in short

phases without any dynamic changes. This is clearly too strong to

be absolutely true. To understand the characteristics of the final

approach of the optimum, we depict in Figure 2(a) from which

cost level on in the final approach to the optimum the optimization

process was not subject to a dynamic change. To be able to conduct a

reasonable number of experiments (namelym = 10000), we used the

parameters n = 100 and p = 0.25 ln(n)/n. In this setting, we have

k∗ = 4. The results shown in Figure 2(a) are not fully conclusive,

but with the median of the experimental results being 3 and very

few values below 2, we at least mildly confirm the hypothesis that

there are exceptionally few dynamic changes in the last part of

the optimization process. A more conclusive study would need to

take a much larger computational effort to both have k∗ larger (so
that the length of the final approach covers more fitness levels)

and n larger (so that the asymptotics are more dominant – note

that in our experiment, we observe a number of runs that finish

with a dynamic change, that is, the dynamic move of the optimum

transforms a non-optimal search point into an optimal one).

In Figure 2(b), we show the length of the optimization process

starting from the last dynamic change of the optimum. Note that

the expected time for the undisturbed algorithm to gain the last

fitness level is already (1+o(1))en ≈ 272, so the fact that the average

time from the moment of the last dynamic change (as depicted in

Figure 2(a)) is even smaller indicated that this final approach to the

optimum is indeed exceptionally fast.

5

1471



GECCO ’18, July 15–19, 2018, Kyoto, Japan R. Dang-Nhu, Th. Dardinier, B. Doerr, G. Izacard, and D. Nogneng

0 1 2 3 4 5 6 7 8 9
Cost after the last dynamic move

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
eq

ue
nc

y

(a) Cost after the last dynamic

move

0 100 200 300 400 500 600 700 800
Time

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc
y

(b) Cumulative histogram of

the time to reach the optimum
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Figure 2: The final approach to the optimum for n = 100

and p = 0.25
ln(n)
n ≈ 0.012. With these parameters, the neg-

ative drift caused by the dynamics is roughly three times

stronger than the positive drift produced by the algorithm

at the penultimate fitness level.

3 NOISY OPTIMIZATION

In the context of optimization, noise means that our access to the

true problem instance is obscured by small random perturbations.

Since evolutionary algorithms as black-box optimizers access the

problem instance only via the fitness function, evolutionary com-

putation is mostly concerned with noisy objective functions, which

instead of revealing the true fitness of a search point only return a

disturbed value.

3.1 Previous Work and Our Results

3.1.1 Previous Work. While there is ample experimental expe-

rience on optimizing noisy objective functions via evolutionary

algorithms, see, e.g., the surveys [1, 12], the theoretical understand-

ing of noisy evolutionary optimization is still limited. The first

runtime analysis for a noisy fitness function is also due to Droste.

In [10], he considers the optimization of the OneMax benchmark

function under 1-bit prior noise. In this noise model, with probabil-

ity q the algorithm does not learn the true fitness of a search point

x ∈ {0, 1}n , but instead receives the fitness of a randomly chosen

Hamming neighbor of x . Droste shows that for q = O (lnn/n), the
expected runtime of the (1 + 1) EA on the OneMax function is

polynomial. Unlike in his works on dynamic optimization [8, 9],

the exponent of this polynomial is not made explicit. By redoing

his calculations with more precision, it seems to us that his result

shows that if q ≤ c ln(n)/n for some constant c , then the optimiza-

tion time (number of fitness evaluations until the true optimum is

evaluated) T satisfies E[T ] = O (n16ec/3+1 ln(n)). Once again note

that Droste uses the constant c such that q ≤ c log
2
(n)/n.

In [11], a general noise model is analyzed which, besides partial

evaluation noise and two posterior noise models, includes the 1-bit

prior noise model and its natural counter-part, the bitwise prior

noise model. In the bitwise prior noise model, the noisy fitness of

a search point x is the true fitness of a search point x̃ obtained by

flipping each bit of x independently with probability q. The general,
technical result of [11] yields that the expected runtime in the

bitwise noise model is Θ(n logn) if q = O (1/n2), it is polynomial if

q = O (ln(n)/n2), and it is superpolynomial if q = ω (ln(n)/n2).

In [15], an extension of the bitwise noise model is presented

and analyzed for some parameter combinations. In the (pnoise ,q)-
model, there is noise with probability pnoise , and in this case the

disturbance is a bitwise noise with probability q. If q = 1/n, the
tight range of pnoise allowing a polynomial runtime is O (ln(n)/n).
The optimization of the LeadingOnes function by the (1 + 1) EA
is also studied in this setting. It has been proven in [15] that the

runtime is polynomial if q = 1/n and pnoise = O (lnn/n2).
All these works are mainly focused on identifying regions where

for some parameters the expected runtime is polynomial without

giving any explicit bounds over the runtime, although for practi-

cal applications we might be interested in having a more precise

description of the polynomial bound.

3.1.2 Our Results. In this part we show that the same approach

as in the dynamic setting can be adapted to analyze evolutionary

optimization in a noisy environment. The plan is similar: the drift

brings the search point to an equilibrium point from where the

probability of a quick success without disturbance is not too small.

The disturbance is modeled by a noisy cost function c̃ . In each

optimization step, the evaluations of the costs of the search point

and the offspring are replaced by the values given by the noisy cost

function (see Algorithm 2 for a formal description). The algorithm

makes the wrong decision when the true cost comparison between

the parent and the offspring is inverted by the noisy cost function.

Therefore, the maximal probability that the order between two

bitstrings is inverted by the noisy cost function - denoted pinv -

is a natural parameter for the noise. We provide a general upper

bound of the expected optimization time of the (1 + 1) EA on the

OneMax function, as a function of pinv

E[T ] ≤ e
1−pinv n(1 + ln(n)) + (γ + o(1))nenβpinv+O (np

2

inv+pinv ) ,

where β = (2e − 1) ln
(
2 − e−1

)
+ (1 − e ) ln

(
1 − e−1

)
and

γ = (2e − 1)
(
ln

(
2e−1
e−1

)
+ 1

)
. As a corollary, we identify three

main regimes for E[T ], depending on the range of pinv




O (n ln(n)) if pinv ≤
c ln(ln(n))

n with c ≤ 1/β ;

O (n lncβ (n)) if pinv ≤
c ln(ln(n))

n with c > 1/β ;

O (n1+βc ) if pinv ≤
c ln(n)

n .

The use of a general parameter as pinv makes our approach very

flexible. The previous upper bounds apply to a wide variety of

settings. In particular, it allows us to refine the results obtained

in [11] for both prior and posterior noise, by extending the range

of the O (n lnn) regime and by identifying another intermediate

regime. In addition, we extend the range of values for which the

runtime is polynomial in the (pnoise ,q)-model. In all cases, despite

the generality of our method, we are able to obtain competitive

explicit bounds over the expected optimization time.

As with the dynamic setting, our method can be extended to the

analysis of the expected optimization time of the LeadingOnes

cost function, depending on the same parameter pinv . We show

that if the constant c is such that pinv ≤ c lnn/n2 for all n, then the

expected optimization time of the (1 + 1) EA satisfies

E[T ] = (δ + o(1))n2+c (e−1) (1−e
−1 )/2.

6
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where δ = (e − 1)/2. This result has several applications. For in-
stance, it allows to extend the range of parameters in the (pnoise ,q)-
model for which the expected runtime is polynomial.

Finally, our method provides new insight into the robustness

against noise of evolutionary optimization with populations. As

one particular result, we prove that the (1 + λ) EA can optimize

the OneMax benchmark function efficiently despite a constant

rate of 1-bit flip noise. More precisely, if the probability of 1-bit

flip is smaller than a fixed constant (≈ 0.21), then λ = Θ(ln(np))
essentially suffices to optimize OneMax with the typical expected

runtime of O (n ln(n)).

3.1.3 Noise Model. The optimization of the OneMax function

has been studied under different noise models. Explicit noise models

such as the 1-bit noise and a generalization of the bitwise noise

have been analyzed in [10] and [15] respectively. A more general

approach applying to a variety of models is presented in [11].

Here we consider the search space {0, 1}n of bitstrings of lengthn.
For each x ∈ {0, 1}n we denote by c (x ) = H (x , (1, . . . , 1)) the cost
of x , thus making the problem a minimization problem. The distur-

bance is modeled by a noisy cost function. In comparison with the

standard (1+ 1) EA, its noisy version differs by the fact that at each

step, both the cost of the search point and the cost of the offspring

are replaced by the noisy cost, where for all x ∈ {0, 1}n the noisy

cost is a random variable denoted c̃ (x ). We simply assume that for

all x ∈ {0, 1}n , c̃ (x ) depends only on x . Note that the explicit mod-

els studied in [10, 15] are included in this model. This randomized

process can be represented by Algorithm 2.

Algorithm 2 (1 + 1) EA minimizing a cost function c in a noisy

setting

1: Choose x0 ∈ {0, 1}n uniformly at random

2: for i = 0 to∞ do

3: Sample x ′i from xi by flipping each bit with probability
1

n
4: if c̃ (x ′i ) ≤ c̃ (xi ) then
5: xi+1 ← x ′i
6: else xi+1 ← xi

Formally the parameter pinv sketched above can be defined as:

pinv = max

x,y∈{0,1}n
Pr[c̃ (x ) ≤ c̃ (y) | c (x ) > c (y)].

We also assume there exists a constant ε > 0 such that pinv ≤ 1 − ε .
The stochastic aspect of the algorithm makes (xi )i ∈N and (x ′i )i ∈N
two Markov chains, where x ′i is the offspring of xi obtained by

flipping independently each bit of xi with probability 1/n. The
aim of the following sections is to give an upper bound on the

expectancy of the hitting time of the process, defined asT = inf {i ≥
0 | xi = (1, ..., 1)}.

3.2 Optimization of Noisy OneMax Functions

3.2.1 Easy Process up to the Equilibrium Point. As in the study

of the (1 + 1) EA in a dynamic setting, we use multiplicative drift

analysis to show that the optimization process quickly reaches the

equilibrium point k∗ =
⌈ enpinv
1−pinv

⌉
, which is intuitively the threshold

cost value from which the drift becomes negative.

We identify two components of the drift, with opposite effects on

the optimization process. As in the dynamic case, we pessimistically

only consider steps of progress in which exactly a 0 is flipped

into a 1. Besides, in the noisy setting, progress is made only when

the algorithm is able to recognize a good offspring of the search

point. Therefore, when the cost of the current search point equals k ,

(1 − pinv )
k
en is a lower bound on the positive component of the

drift. In the case where an inversion of cost values happens, and

an offspring is selected wrongly, the typical move backwards is the

expectancy of the number of bits flipped between the search point

and its offspring. Since the mutation rate is
1

n , it gives an estimation

of the second drift component of −pinv . The formalization of this

reasoning with multiplicative drift analysis yields the following.

Theorem 10. Let k∗ =
⌈ enpinv
1−pinv

⌉
and

τ0 = inf {i ∈ N | c (xi ) ≤ k∗}. For all x ∈ {0, 1}n ,

Ex [τ0] ≤
e

1−pinv n(1 + ln(n)).

The previous theorem gives an upper bound on the time needed

to reach a search point with a cost lower than k∗.

3.2.2 Exceptionally Fast Progress from the Equilibrium Point to
the Optimum in Periods Without Effects of the Noise. Similarly to

what we have done for the dynamic setting, we estimate the prob-

ability that the algorithm starting at k∗ finds the optimum in a

relatively short period of time without effects of the noise.

For all τ , let us denote byNτ the event that the noisy comparison

between xτ and x ′τ is identical to the true comparison, or that the

true cost of xτ and x ′τ are equal. The noisy process conditioned by

the event

⋂
1≤τ ≤t

Nτ is equivalent to the process of the (1 + 1) EA

optimizing a static OneMax function. Indeed, either the noisy and

the true comparison give the same result, and the algorithm is able

to recognize the best bitstring, or c (xτ ) and c (x
′
τ ) are equal, and

we can indifferently select the search point or the offspring.

As a result, we can reuse our study of the distribution of the

static hitting time TS (see Theorem 2). Besides, the definition of

pinv results in the following lower bound

Prx0



⋂
1≤τ ≤t

Nτ


≥

(
pinv

(
1 − 1

n

)n
+ (1 − pinv )

)t
.

Combining the two bounds, we obtain

Prx0 [T ≤ t] ≥ (1 − pinv (1 − (1 − 1

n )
n ))t (1 − (1 − 1

en )
t )k

∗

3.2.3 Upper Bound on the Expected Hitting Time. In Theorem 11,

we combine the different arguments to obtain an upper bound on

the expected hitting time, following an approach that is similar to

Theorem 5. The first term
en (1+ln(n))
1−pinv corresponds to the expected

time to obtain a search point x with a cost c (x ) ≤ k∗. The second
term corresponds to the progress from the equilibrium point k∗. We

consider small successive periods of time t without any effects of

the noise. This yields the following result, where the term
ne

1−pinv
acts as a penalty, which corresponds to the expected time to reach

again the cost threshold k∗ after a backward move of the search

point due to noise.
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Theorem 11. For all x0 ∈ {0, 1}
n
and t ∈ N,

Ex0 [T ] ≤
en (ln(n)+1)
1−pinv +

t+ne/(1−pinv )(
1−pinv

(
1−

(
1−

1

n

)n ))t (
1−

(
1−

1

en

)t )k∗ .
Furthermore assume that there exists λ > 0 such that

t = ⌊λn⌋ and that lim

n→∞
pinv = 0. Then for λ = e ln

(
2−e−1
1−e−1

)
with β = (2e − 1) ln

(
2 − e−1

)
+ (1 − e ) ln

(
1 − e−1

)
≈ 2.96 and

γ = (2e − 1) ln
(
2e−1
1−e−1

)
≈ 8.64 the following inequality holds

E[T ] ≤ e
1−pinv n(1 + ln(n)) + (γ + o(1))neβpinv+O (np

2

inv+pinv ) .

The previous theorem has the following consequences.

Theorem 12. The (1 + 1) EA optimizes OneMax in an expected

number of iterations of




O (n ln(n)) if pinv ≤
c ln lnn

n with c ≤ 1/β,

O (n lnβc (n)) if pinv >
c ln lnn

n with c ≥ 1/β ,

O (n1+βc ) if pinv ≤
c lnn
n .

Therefore analyzing the runtime of the (1 + 1) EA on OneMax

problems can be reduced to the analysis of pinv . In the following

subsections we analyze some explicit noise models with the same

strategy. First an upper bound on pinv is obtained in the context of

the given model, then we replace this expression in Theorem 11.

3.2.4 Prior Noise Model. Prior noise refers to a model where

the noise comes from not evaluating the true search point. Hence

for x ∈ {0, 1}n , c̃ (x ) can be rewritten as c (x̃ ), where x̃ is a disturbed

version of x . In order to stay within the framework of our model, it

is sufficient that the distribution of x̃ depends only on x .
First we consider the (pnoise ,q)-model. In this model x is dis-

turbed with probability pnoise , and in this case, x̃ is obtained by

flipping each bit of x independently with probability q. In this set-

ting we can show that pnoise (1 − (1 − q)n+1) is an upper bound on

pinv . Then Theorem 11 yields the following corollary.

Corollary 13. Let β ≈ 2.96 as in Theorem 11. Let T be the

runtime of the (1 + 1) EA on the noisy OneMax function in the

(pnoise ,q) model.

(i) Let q = o(1/n). If pnoiseq ≤ c ln(n)/n2 for some constant c ,

then E[T ] = O (n1+βc ). If pnoiseq ≤ c ln ln(n)/n2 for some

constant c , then

E[T ] =

{
O (n ln(n)) if c ≤ 1/β ,

O (n lnβc (n)) otherwise.

(ii) Let q ≤ cq/n for some constant cq > 0. If pnoise ≤ cp ln(n)/n

for some constant cp > 0, then E[T ] = O (n1+βcp (1−e
−cq ) ). If

pnoise ≤ cp ln ln(n)/n for some constant cp > 0, then

E[T ] =

{
O (n ln(n)) if cp (1 − e

−cq ) ≤ 1/β ,

O (n lnβc (n)) otherwise.

In the 1-bit noisemodel exactly one uniformly chosen bit changes

with probability q, while no bit is changed with probability 1−q. By
considering the different possible cases of inversion in this model,

we show that pinv ≤ q +O (
q
n + q

2). Then Theorem 11 gives the

following corollary.

Corollary 14. Let β ≈ 2.96 as in Theorem 11. Let T be the

runtime of the (1 + 1) EA on the noisy OneMax function in the 1-bit

noise model.

(i) If q ≤ c ln(n)/n for some constant c , then E[T ] = O (n1+βc ).
(ii) If q ≤ c ln(ln(n))/n for some constant c , then

E[T ] =

{
O (n ln(n)) if c ≤ 1/β ;

O (n lnβc (n)) otherwise.

3.2.5 Additive Posterior Noise. In the posterior noise model the

value of the true fitness of the search point is disturbed while the

noise is directly applied to the search point before evaluation in the

prior noise model. Here we only consider additive posterior noise

as described in [11]. Let D be some distribution with variance σ 2
.

Then for all x ∈ {0, 1}n , c̃ (x ) is a random variable which follows the

same law as c (x )+D. By reading carefully the proof of Corollary 10
in [11], we obtain that pinv ≤ 2σ 2

. Hence the following corollary.

Corollary 15. Let β ≈ 2.96 as in Theorem 11. Let T be the

runtime of the (1 + 1) EA on the noisy OneMax function in this

additive posterior noise model.

(i) If σ 2 ≤ c ln(n)/n for some constant c , then E[T ] = O (n1+2βc ).
(ii) If σ 2 ≤ c ln(lnn)/n for some constant c , then

E[T ] =

{
O (n ln(n)) if c ≤ 1/2β ;

O (n ln2βc (n)) otherwise.
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