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Abstract. Runtime monitors for rich specification languages are sophis-
ticated algorithms, especially when they are heavily optimized. To gain
trust in them and safely explore the space of possible optimizations, it
is important to verify the monitors themselves. We describe the devel-
opment and correctness proof in Isabelle/HOL of a monitor for metric
first-order dynamic logic. This monitor significantly extends previous
work on formally verified monitors by supporting aggregations, regular
expressions (the dynamic part), and optimizations including multi-way
joins adopted from databases and a new sliding window algorithm.

1 Introduction

As the complexity of IT systems increases, so does the complexity and impor-
tance of their verification. Research in runtime verification (RV) has developed
well-established formal techniques that can often be applied more easily than
traditional formal methods such as model checking. RV is based on dynamic
analysis, trading off completeness for efficiency. It is mechanized using monitors,
which are algorithms that search sequences of events, either offline from log files
or online, for patterns indicating faults.

Monitors must be trusted when they are used as verifiers. This trust can be
justified by checking the monitors themselves for correctness [16,17,31,36,41,
42,44,45,49]. Recently, a simplified version of the algorithm used in the Mon-
Poly tool [8,9] has been formalized and proved correct in Isabelle/HOL [45]
(Sect. 2). MonPoly and its formal counterpart, called VeriMon, are both mon-
itors for metric first-order temporal logic (MFOTL). However, VeriMon only
supports a restricted fragment of this logic and lacks many optimizations that
are necessary for an acceptable and competitive performance.

We present a formally verified monitor, VeriMon+, that substantially extends
and improves VeriMon. VeriMon+ closes all expressiveness gaps between Mon-
Poly and VeriMon. It supports aggregation operators like sum and average [7]
similar to those found in database query languages, arbitrary negations of closed
formulas, the unbounded � (Next) operator, and constraints involving terms
(e.g., P (x) ∧ y = x + 2). Due to space limitations, our focus (Sect. 3) will be
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primarily on aggregations, our largest addition. Moreover, VeriMon+ exceeds
MFOTL in expressiveness by featuring a significantly richer specification lan-
guage, metric first-order dynamic logic (MFODL). To our knowledge, it is the
first monitor for MFODL with past and bounded future operators (Sect. 4).
This logic combines MFOTL with regular expressions, similar to linear dynamic
logic [22] but enriched with metric constraints, aggregations, and first-order
quantification.

We have also implemented and proved correct several new optimizations.
First, to speed up the evaluation of conjunctions, we integrated an efficient algo-
rithm for multi-way joins [38,39], which we generalized to include anti-joins
(Sect. 5). Second, we developed a specialized sliding window algorithm to eval-
uate the Since and Until operators more efficiently (Sect. 6). VeriMon+ is exe-
cutable via the generation of OCaml code from Isabelle. To this end, we aug-
mented the code generation setup for IEEE floating point numbers in OCaml [50]
with a linear ordering, which is needed for efficient set and mapping data struc-
tures.

The result of our efforts is both a verified monitor and a tool for evaluating
unverified monitors. Since MFODL is extremely expressive, this gives us very
wide scope. For example, we discovered previously unknown bugs in MonPoly
via differential testing (Sect. 7), extending a previous case study [45]. As this
experience suggests, and we firmly believe, formal verification is the most reliable
way to obtain correct, optimized monitors.

In sum, our main contribution is a verified monitor for MFODL with aggre-
gations, a highly expressive specification language that combines regular expres-
sions and first-order temporal logic. Our monitor includes optimizations that
are novel in the context of first-order monitoring. Our formalization is publicly
available [20,21].

Related Work. We refer to a recent book [4] for an introduction to runtime
verification. The main families of specification languages in this domain are
extensions of LTL [13,26,46], automata [3], stream expressions [19], and rule
systems [23]. We combine two expressive temporal logics and their corresponding
monitoring algorithms. MFOTL, implemented in MonPoly [7–9], supports first-
order quantification over parametrized events, but it cannot express all regular
patterns. Metric dynamic logic (MDL), implemented in Aerial [12], supports
regular expressions, but it is not first-order. VeriMon+ is based on VeriMon [45],
which only supports a fragment of MFOTL and is inefficient (Sect. 7). We refer
to [45, Section 1] for an overview of related monitor formalizations. Relational
database systems have been formalized by Malecha et al. [33] and by Benzaken
et al. [15]. These works use binary joins only, which are not worst-case optimal.

Another efficient first-order monitor, DejaVu [25], supports past-only first-
order temporal logic. It uses binary decision diagrams (BDDs) and does not
restrict the use of negation, unlike MonPoly, which uses finite tables. DejaVu’s
performance is incomparable to MonPoly’s and it is unclear whether multi-way
joins can improve conjunctions of BDDs. Aerial and VeriMon+ evaluate regular
expressions using derivatives [2,18], which also have been used for timed regular
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Fig. 1. Syntax and semantics of MFOTL as presented in [45], with additions in gray

expressions [47]. Quantified regular expressions [1,34] extend regular expressions
with data and aggregations. They can be evaluated efficiently, but can neither
express metric constraints nor future modalities directly.

2 A Verified Monitor for Metric First-Order Temporal
Logic

VeriMon [45] is a formally verified monitor for a large fragment of MFOTL [8].
The monitor takes an MFOTL formula, which may be open, and incrementally
processes an infinite stream of time-stamped events. It outputs for every stream
position the set of variable assignments that satisfy the formula. Thus, the mon-
itor can be used to extract data from the stream. Typically, one is interested
in the violations of a property specified as an MFOTL formula, which can be
obtained by monitoring the negated formula.

We give an overview of MFOTL and VeriMon. We also cover some of the
smaller additions in our new monitor, VeriMon+, highlighted in gray. For read-
ability, we liberally use abbreviations and symbolic notation, departing mildly
from Isabelle’s syntax.

Figure 1 shows MFOTL’s syntax and semantics. Events have a name (string)
and a list of parameters of type data. In VeriMon+, data is a disjoint union
of integers, double-precision floats, and strings. Multiple events are grouped
together into a database (db) if they are considered to occur simultaneously.
We call an infinite stream of databases, augmented with their corresponding
time-stamps, an event stream or trace. Time-stamps (ts) are modeled as natural
numbers (nat). We write T σ i to denote the time-stamp of the ith database
Γ σ i of the event stream σ. The predicate trace expresses that the time-stamps



A Formally Verified, Optimized Monitor for MFODL 435

are monotone, i.e., T σ i ≤ T σ (i+1) for all i ≥ 0, and always eventually strictly
increasing, i.e., ∀t. ∃i. t < T σ i. Consecutive time-points i can have the same
time-stamp.

Terms and formulas are represented by the datatypes trm and frm, respec-
tively. Our formalization uses de Bruijn indices for free and bound variables
(constructor V). In examples, we prefer the standard named syntax (and omit
V). The type I models nonempty, possibly unbounded intervals over nat . We
write n ∈I I for n’s membership in I, and [a, b] for the unique interval satisfying
n ∈I [a, b] iff a ≤ n ≤ b. The right bound b is of type enat , i.e., either a natural
number or infinity ∞ for an unbounded interval.

The functions etrm and sat (Fig. 1) define MFOTL’s semantics. Both take a
variable assignment v, which is a list of type data list whose ith element v ! i
is the value assigned to the variable with index i. The function etrm evaluates
terms under a given assignment. The expression sat σ v i ϕ is true iff the formula
ϕ is satisfied by v at time-point i in the trace σ. VeriMon+ adds arithmetic
operators and type conversions to terms, as well as the predicates ≺ and 
.
Their semantics on data is lifted from the corresponding operations on integers,
floats, and strings, whenever they are meaningful. The ordering ≤ on data is
total: strings are compared lexicographically and Int i < Flt f < Str s.

VeriMon computes sets of satisfactions (i.e., satisfying assignments) by recur-
sion over the formula’s structure. It represents these sets as finite tables, to which
it applies standard relational operations such as the natural join (��) and union.
Tables are sets of tuples, which are lists of optional data values; missing values
are denoted by ⊥. This representation allows us to use tuples with the same
length across subformulas with different free variables. The predicate wf_tuple
defines the well-formed tuples for a given length n and a set of variables V . We
also refer to V as the columns of a tuple (or table).

definition wf_tuple :: nat ⇒ nat set ⇒ tuple ⇒ bool where
wf_tuple n V v = (length v = n ∧ (∀x < n. v ! x = ⊥ ←→ x /∈ V ))

The set of satisfactions may be infinite. VeriMon supports only a fragment of
MFOTL for which all computed tables are finite. The predicate safe (omitted)
defines the monitorable fragment [45]. It accepts only certain combinations of
operators and constrains the free variables of subformulas. Also, the intervals of
all U operators must be bounded.

VeriMon’s interface consists of two functions init :: frm ⇒ mstate and step ::
db × ts ⇒ mstate ⇒ (nat × table) list × mstate. The former initializes the
monitor’s state, and the latter updates it with a new time-stamped database
to report any new satisfactions. We require that satisfactions are reported for
every time-point and in order. Note that a formula containing a future operator
such as U cannot necessarily be evaluated at time-point i after observing the ith
database. Therefore, the output for several time-points may become available at
once, so step returns a list of pairs of time-points and tables.

We describe the evaluation of αS[a, b]β in more detail. This formula is equiva-
lent to the disjunction of αS[c, c] β for all c such that a ≤ c ≤ b. Suppose that the
most recent time-point is i with time-stamp τ . The monitor’s state for α S[a, b] β
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Fig. 2. Simplified state of a Since operator and its update

consists of a list of tables Tc with the satisfactions of α S[c, c] β at time-point i,
along with the corresponding time-stamps τ − c. VeriMon also stores the satis-
factions Tc (and time-stamps) for 0 ≤ c < a, which are not yet in the interval.
Figure 2 (left) depicts a state, where we assume for simplicity that we store a
table for every time-stamp between τ − b and τ . (In reality, time-stamps not in
the trace do not have a corresponding entry in this list.) The state is updated
for every new time-point with time-stamp τ ′, for which we already know the
satisfactions Rα and Rβ of the subformulas α and β. In Fig. 2, we distinguish
whether τ ′ equals τ (otherwise τ ′ > τ by monotonicity). The update consists
of three steps: (1) remove tables that fall out of the interval; (2) evaluate the
conjunction of each remaining table with Rα using a relational join; and (3) add
the new tuples from Rβ , either by inserting them into the most recent table T0

or by adding a new table, depending on whether τ ′ equals τ . Finally, we take
the union of all tables within the interval to obtain the satisfactions of αS[a,b] β.

We summarize VeriMon’s correctness, which we also prove for VeriMon+.
It relates the monitor’s implementation to its specification verdicts :: frm ⇒
(db× ts) list ⇒ (nat × tuple) set , which defines the expected output on a stream
prefix. The first result shows that verdicts characterizes an MFOTL monitor,
where prefix π σ means that π is a prefix of σ, and map the v converts v to an
assignment by mapping ⊥ to an unspecified value.

Lemma 1 ([45], Lemma 2). Suppose that safe ϕ is true. Then, verdicts ϕ is
sound and eventually complete, i.e., for all prefixes π of trace σ, time-points i,
and tuples v,

(a) (i, v) ∈ verdicts ϕ π −→ sat σ (map the v) i ϕ, and
(b) i < length π ∧ wf_tuple (nfv ϕ) (fv ϕ) v ∧ (∀σ′. prefix π σ′ −→ sat σ′ (map

the v) i ϕ) −→ (∃π′. prefix π′ σ ∧ (i, v) ∈ verdicts ϕ π′).

Above, nfv ϕ is the smallest number larger than all free variables of ϕ, written
fv ϕ. The next result establishes the implementation’s correctness using the state
invariant wf_mstate :: frm ⇒ (db × ts) list ⇒ mstate ⇒ bool (omitted). Let set
convert lists into sets, last_ts π be the last time-stamp in π, and π1 @ π2 be the
concatenation of π1 and π2.
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Theorem 1 ([45], Theorem 1). The initialization init establishes the invariant
and the update step preserves the invariant and its output can be described in
terms of verdicts:
(a) If safe ϕ, then wf_mstate ϕ [ ] (init ϕ).
(b) Let step (db, τ) mst = (A, mst ′). If wf_mstate ϕ π mst and last_ts π ≤ τ ,

then (
⋃
(i, V ) ∈ set A. {(i, v) | v ∈ V }) = verdicts ϕ (π @ [(db, τ)]) −

verdicts ϕ π and wf_mstate ϕ (π @ [(db, τ)]) mst ′.

3 Aggregations

Basin et al. [7] extended MFOTL with a generic aggregation operator. This oper-
ator was inspired by the group-by clause and aggregation functions of SQL. It
first partitions the satisfying assignments of its subformula into groups, and then
computes a summary value, such as count, sum, or average, for each group. We
formalized the aggregation operator’s semantics, added an evaluation algorithm
to VeriMon+, and proved its correctness.

Consider the formula s ← Sum x;x. P (g, x). The aggregation operator s ←
Sum x;x has four parameters: a result variable (s), the aggregation type (Sum),
an aggregation term (first x), and a list of variables that are bound by the
operator and thus excluded from grouping (second x). When evaluated, the
above formula yields a set of tuples (s, g). There is one such tuple for every
value of g with at least one P event that has g’s value as its first parameter. The
values of g partition the satisfactions of P (g, x) into groups. For every group,
the sum over the values of x in that group is assigned to the variable s.

We added the constructor nat ← agg_op trm;nat . frm to frm. Consider the
instance y ← Ω t; b. ϕ. The operator binds b variables simultaneously in the
formula ϕ and in the term t, over which we aggregate. In examples, we list the
bound variables explicitly instead of writing the number b. The remaining free
variables (possibly none) of ϕ are used for grouping. The variable y receives the
result of the aggregation operation Ω = (ω, d), where ω is one of Cnt (count),
Min, Max, Sum, Avg (average), or Med (median). The default value d, which
we usually omit, determines the result for empty groups (e.g., 0 for Cnt). The
formula’s free variables are those of ϕ excluding the b bound variables, plus y.

Figure 3 shows the semantics of the aggregation operator y ← Ω t; b. ϕ.
The assignment v determines both a group and a candidate value v ! y for the
aggregation’s result on that group. The sat function checks whether the value
is correct. First, it computes the set M , which encodes a multiset in the form
of pairs (x, c), where c is x’s multiplicity. This multiset contains the values of
the term t under all assignments z @ v that satisfy ϕ, where z is an assignment
to the bound variables. The expression card∞ Z stands for the cardinality of Z
when it is finite, and ∞ otherwise. Then, sat compares v ! y to the result of the
aggregation operation Ω on M , which is given by agg_op Ω M (omitted).

We extended the safe predicate with sufficient conditions that describe when
the aggregation formula y ← Ω t; b. ϕ has finitely many satisfactions. We require
that ϕ satisfies safe, that the variable y is not free in ϕ excluding the b bound
variables, and that all bound variables and the variables in t occur free in ϕ. We
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Fig. 3. Semantics and evaluation of the aggregation operator

adopted the convention [7] that an aggregation formula is not satisfied when M is
empty, unless all free variables of ϕ are bound by the operator. Otherwise, there
would be infinitely many groups (and hence, satisfactions) with the aggregate
value agg_op Ω {}, assuming that ϕ is safe.

Figure 3 also defines eval_agg, which evaluates the aggregation operator. It
takes a table R with ϕ’s satisfactions, and returns a table with the aggregation
operator’s satisfactions. The first argument n controls the length of the tuples
in the tables (Sect. 2). The argument g0 specifies whether all free variables of ϕ
are bound by the operator. The remaining arguments y, Ω, b, and t are those of
the operator. We write f ‘ X for the image of X under f .

In eval_agg, we first check whether g0 ∧ R = {} is true to handle the special
case mentioned above. (The expression singleton_table n y a is a table with a
single tuple of length n that assigns a to variable y.) Otherwise, we compute the
aggregate value separately for each group k. The set of groups is obtained by
discarding the first b values of each tuple in R. To every group k, we apply the
lambda-term to augment the tuple with the aggregate value. The set G contains
all tuples in the group. Note that these tuples extend k with assignments to the
b bound variables. Then, we compute the image of G under the term t, which
is evaluated by meval_trm :: trm ⇒ tuple ⇒ data (omitted). Finally, we obtain
the multiset M by counting how many tuples in G map to each value in the
image.

4 Regular Expressions

VeriMon+ extends VeriMon’s language by generalizing MFOTL’s temporal oper-
ators to regular expressions. The resulting metric first-order dynamic logic
(MFODL) can be seen [24, §3.16] as the “supremum” (in the sense of combin-
ing features) of metric dynamic logic (MDL) [12] and MFOTL [8]. Peycheva’s
master’s thesis [40] develops a monitor for past-only MFODL. We give the first
formal definition of MFODL with past and future operators. We also define a
fragment whose formulas can be evaluated using finite relations (Sect. 4.1). This
fragment guides our evaluation algorithm’s design (Sect. 4.2).

Figure 4 (left) defines the syntax and semantics of our variant of regular
expressions. The type re is parametrized by a type variable 'a, which is used
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Fig. 4. Syntax and semantics of MFODL (left) and conversion of MFOTL into MFODL
(right)

in the _? constructor. The semantics is given by match and assigns to each
expression a binary relation (⊗) on natural numbers. Intuitively, a pair (i, j) is
in the relation assigned to r when r matches the portion of a trace from i to
j. The trace notion is abstracted away in match via the argument test , which
indicates whether a parameter of type 'a may advance past a given point.

In more detail, the wildcard operator �k matches all pairs (i, j), where j =
i+ k; we write � for the useful special case �1. The test x? only matches pairs of
the form (i, i) that pass test i x. The semantics of alternation (+) as union (∪),
concatenation ( · ) as relation composition (•), and Kleene star (_∗) as reflexive-
transitive closure (_∗) is standard.

Figure 4 (left) also shows frm’s extension with two constructors that use
regular expressions. The regular expression’s parameter nests a recursive occur-
rence of frm, i.e., our regular expressions’ leaves are formulas, which in turn may
further nest regular expressions, and so on. MDL’s syntax is often presented as
a mutually recursive datatype [12]. Our nested formulation is beneficial because
it lets us formalize regular expressions independently, for use in different appli-
cations (e.g., monitors for MDL and MFODL).

In terms of their semantics, the two new operators naturally generalize the
SI and UI operators. The past match operator I r is satisfied at i if there
is an earlier time-point j subject to the same temporal constraint I as in the
satisfaction of SI and moreover the regular expression r matches from j to i. For
the future match operator I r, the situation is symmetric with the existentially
quantified j being a future time-point. In both cases, the test parameter of match
is recursively instantiated with the satisfaction predicate sat.

We can embed MFOTL into MFODL by expressing the temporal operators
using semantically equivalent formulas built from regular expressions (Fig. 4,
right). Thus, we could in principle remove the operators �, S, �, and U from
frm and use regular expressions instead. We prefer to keep these operators in
frm as this allows us to optimize their evaluation in a way that is not available
for the more general match operators (Sect. 6).
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Fig. 5. Safety conditions for MFODL

Fig. 6. Simplified state of a past match operator and its update

We conclude MFODL’s introduction with an example. Many systems for user
authentication follow a policy like: “A user should not be able to authenticate
after entering the wrong password three times in a row within the last 10 min-
utes.” We write ✗(u) for the event “User u entered the wrong password” and ✓(u)
for “User u has successfully authenticated.” Additionally, we abbreviate ϕ? · �
by ϕ. (This abbreviation is only used when ϕ appears in a regular expression
position, e.g., as an argument of ·). Then the formula

✓(u) ∧ [0,600]

(
✗(u) · (¬✓(u))∗ · ✗(u) · (¬✓(u))∗ · ✗(u) · (¬✓(u))∗

)

expresses this policy’s violations: its satisfying assignments are precisely the users
that successfully authenticate after entering wrong credentials for three times in
the last 600 seconds, without intermediate successful authentications. We can
express this property in MFOTL using three nested S operators, one for each of
the ✗(u) subformulas. Yet, it is unclear which intervals to put as arguments to S
beyond the fact that they should sum up to 600. The rather impractical solution
exploits that there are only finitely many ways to split the intervals due to their
bounds being natural numbers and constructs the disjunction of all possible
splits (180 901 in this case). MFODL remediates this infeasible construction.
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4.1 Finitely Evaluable Regular Expressions

Following MonPoly’s design [8], VeriMon+ represents all sets of satisfying assign-
ments with finite tables. The databases occurring in the trace are all finite, yet
their combination may not be. Therefore, MonPoly and VeriMon+ work with
syntactic restrictions that ensure that all sets that arise are finite. For example,
negation must occur under a conjunction α ∧ ¬β, where the free variables of β,
written fv β, are contained in those of α. We say that ¬β is guarded by α and
compute α∧¬β as the anti-join (�) of the corresponding tables. For disjunctions
α ∨ β, we must have fv α = fv β. Similar restrictions also apply to temporal
operators: to evaluate α SI β and α UI β we require fv α ⊆ fv β.

We derive a new sufficient criterion for match operators to have finitely many
satisfying assignments. To develop some intuition, we first consider several exam-
ples that result in infinite tables. The first example is any expression with a
Kleene star as the topmost operator. The formula ϕ = [0,b] (r∗) is satisfied at
all points i for all assignments v (regardless of r’s free variables) since 0 ∈I I
and any (i, i) matches r∗. Thus, when we evaluate ϕ at i, we can choose i as
the witness for the existential quantifier in the definition of sat. It follows that
Kleene stars must be guarded by a finite table.

The union of two finite tables is finite only if the tables have the same columns
(assuming an infinite domain data). This explains the requirement for the sub-
formulas of ∨ to have the same variables, but a similar requirement is needed
for the + of regular expressions. Perhaps more surprisingly, concatenation can
also hide a union: consider ϕ = [0,b] (r · s∗) and assume that s matches (j, i)
for some j < i. By the semantics of concatenation, we can split the satisfactions
of ϕ into those that use s∗’s matching pair (i, i) (i.e., the satisfying assignments
of I r at i) and those that do not. To combine these assignments it seems nec-
essary to take the union of the satisfaction of ϕ and I r, which in turn requires
these formulas to have the same free variables, or equivalently fv s ⊆ fv r (over-
loading notation to apply fv to regular expression). The future match operator
behaves symmetrically, requiring the side condition fv r ⊆ fv s for [0,b] (r∗ · s).

MonPoly also allows the left subformula of S and U to be negated: (¬α)
SI β and (¬α) UI β. Hence, we should support the MFODL vari-
ants I (β? · (� · (¬α)?)∗) and I (((¬α)? · �)∗ · β?), but also generalize these
patterns to flexibly support negated tests.

Our solution to these issues comprises the predicates shown in Fig. 5. The
safe predicate on regular expressions is parametrized by two flags: context distin-
guishing whether the expression occurs under a past or a future match operator
and mode determining whether the tests may be negated and other safety con-
ditions relaxed. The most interesting cases are those for concatenation. There,
in addition to the fv side conditions, only one argument is checked recursively in
the same mode as the overall expression. The other argument is checked using
the lax mode, in which side conditions are skipped, except for the requirement
that (possibly negated) formulas under the test operators are safe. The context
parameter dictates which argument keeps, and which changes, the mode.
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Fig. 7. The core evaluation functions for MFODL

4.2 Evaluation Algorithm

The evaluation algorithm’s structure for the past match operator I r (Fig. 6)
closely resembles the evaluation of α SI β (Fig. 2). What is different is the data
that is stored for each time-stamp and the way we update it. For S, each stored
table Tc corresponds to the satisfactions of α S[c, c] β. For I r, each Tc is a
mapping from a regular expression s to the table denoting the satisfactions
of [c, c] s. (We represent mappings here by plain functions for readability.)
Clearly, this mapping’s domain must be finite. We restrict it to the finite set
Δ(r) of right partial derivatives [2,12] of the overall regular expression r, which
correspond to the states of a non-deterministic automaton that matches r from
right to left.

Partial derivatives allow us to extend satisfactions of [c, c] s for s ∈ Δ(r)
at time-point i to satisfactions of [c+(τi+1−τi), c+(τi+1−τi)] s for s ∈ Δ(r) at
time-point i + 1. The Since operator’s counterpart of this extension is the join
with Rα, the new satisfactions of α, which is performed for all Tcs for every
update. Here, the extension function δR inputs a function R assigning the new
satisfactions for all tests occurring in r (possibly with a negation stripped) and
updates the mapping Tc. It is defined as δR T = (λs. δ id R T s) where δ is
defined recursively on the structure of regular expressions as shown in Fig. 7.
The first parameter of δ uses continuation passing style. It builds up a regular
expression context that we use when evaluating the leaves. It is thus guaranteed
that if we apply δ to any regular expression s ∈ Δ(r), all calls to T will apply T
to some s′ ∈ Δ(r).

The function δ uses the recursive function εlax in its definition. This function
computes the assignments that give rise to matches of the form (i, i) under the
assumption that a guard (in form of the table X) is given. For δ, the recursive
call acts as εlax’s guard.

The function εstrict is used to update the state with satisfying assignments at
the newly added time-point (Fig. 6). It is only specified for expressions satisfying
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Fig. 8. Multi-way join algorithm

safe past strict and uses εlax for subexpressions that only satisfy safe past lax.
The recursive structure of εstrict and εlax follows the one of safe past. We write
εn
R = (λr. εstrict n R r) and use ∪ to denote the pointwise union of mappings

in Fig. 6. The Since operator’s counterpart of this update is the addition of the
satisfactions for the subformula β (Fig. 2).

The above description just sketches our evaluation algorithm and our formal-
ization provides full details. Our proofs establish the monitor’s overall correct-
ness, which amounts to the same statement as Theorem 1 but now covers the
syntax and semantics extended with the match operators (and aggregations). In
particular, the formalization also includes the future match operators for which
the evaluation uses similar ideas (partial derivatives), but in a symmetric fashion
following the definition of safe future.

5 Multi-way Join

The natural join �� is a central operation in first-order monitors. Not only is
it used to evaluate conjunctions; temporal operators also crucially rely on it.
Despite this operation’s importance, both MonPoly and VeriMon naively com-
pute A �� B as nested unions:

⋃
v ∈ A.

⋃
w ∈ B. �join1 (v, w)�, where join1

joins two tuples v and w if possible, and �_� converts the optional result into a
set. In this section, we describe a recent development from database theory that
we formalize and extend to optimize the computation of joins.

Ngo et al. [37] and Veldhuizen [48] have developed worst-case optimal multi-
way join algorithms that compute the natural join of multiple tables. Here,
optimality means that the algorithm never constructs an intermediate result
that is larger than the maximum size of all input tables and the overall output.
This strictly improves over any evaluation plan using binary joins: There are
tables A, B, and C such that the size of A �� B �� C is linear in |A| = |B| = |C|,
but any plan constructs a quadratic intermediate result from the binary join it
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evaluates first [39, Fig. 2]. The key idea of the multi-way join is to build the
result table column-wise, adding one or more columns at a time, while taking all
tables that refer to the currently added columns into account. All intermediate
results are restrictions of the overall result to the processed columns, and thus
not larger than the overall result.

Figure 8 shows our formalization of the multi-way join algorithm following
Ngo et al.’s unified presentation [39] but generalizing it to support anti-joins �;
these additions are highlighted in gray. A query is a set of atables, i.e., tables
annotated with the columns (represented by nat) they have. The main function,
generic_join, takes as input a set of columns V and two queries Qpos and Qneg .
It computes the multi-way join of Qpos while subtracting the tuples of tables in
Qneg . For example, generic_join {a, b, c, d} {({a, b}, A), ({b, c}, B), ({c, d}, C)}
{({d}, D), ({a, c}, E)} computes A �� B �� C � D � E.

The algorithm proceeds by recursion on V . The base case in which V is empty
or a singleton set is evaluated directly using intersections and unions. We first
describe the recursive structure of the original algorithm [39], obtained by ignor-
ing the highlighted anti-join additions in Fig. 8. The algorithm is parametrized by
the getIJ function, which partitions V into two nonempty sets I and J that each
determine the number of columns and the order in which they are added. Ngo
et al. [39] show how different multi-way join algorithms [37,48] can be obtained
by using specific instances of getIJ. We use a heuristic to pick first the column i
that maximizes the number of tuples in Qpos it affects (by setting I = {i}). The
partitioning only affects performance, not correctness.

Once I and J are fixed, the algorithm constructs a reduced query QI
pos by

focusing on tables that have a column in I. Furthermore, it restricts their columns
to I via the overloaded notation _ ↓ I, which denotes the restriction of tuples
(by setting the optional data values for columns outside I to ⊥ [45]), annotated
tables, and queries (Fig. 8).

Next, QI
pos is evaluated recursively, yielding table AI with columns I. We

now consider tables that have a column in J . This yields a second reduced query
QJ

pos , which is, however, not restricted to J . Keeping the columns I in QJ
pos

allows us to focus on tuples in QJ
pos that match some t ∈ AI , i.e., coincide with t

for all values in columns I. The function extend performs this matching. For each
tuple t ∈ AI , it creates the query extend J QJ

pos (I, t) consisting of tables from
QJ

pos restricted to t-matching tuples (in database terminology this is a semi-join)
further restricted to columns J . These queries are again solved recursively, each
resulting in a table At with columns J . The final step consists of merging the
tuples t with At. Since t and A have disjoint columns I and J , the function call
join1 (v, t) will return some result (which we extract via the) for all v ∈ A.

We extend the algorithm to support anti-joins by introducing a second query
Qneg , which we think of as being negated. It is not possible to split Qneg ’s tables
column-wise. Instead, our generalization processes tables with columns U from
Qneg once the positive query has accumulated a superset of U as its columns.
This is an improvement over the naive strategy of computing Qpos first and only
then removing tuples from it.
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The correctness of generic_join relies on several side conditions, e.g., no input
table may have zero columns and V must be the union of the columns in the
positive query. A wrapper function mwjoin takes care of these corner cases, e.g.,
by computing V from Qpos and Qneg . We omit mwjoin’s straightforward defini-
tion, but show its correctness property (which only differs from generic_join’s
correctness by having fewer assumptions):

Qpos �= {} ∧ (∀(V, A) ∈ Qpos ∪ Qneg . (∀v ∈ A. wf_tuple n V v) ∧ (∀x ∈ V. x < n)) −→
z ∈ mwjoin Qpos Qneg ←→ wf_tuple n (

⋃
(V, _) ∈ Qpos . V ) z ∧

(∀(V, A) ∈ Qpos . z ↓ V ∈ A) ∧ (∀(U, B) ∈ Qneg . z ↓ U /∈ B)

In words: whenever Qpos is nonempty and all tables in Qpos and Qneg fit their
declared columns, a tuple z belongs to the output of mwjoin iff it has the correct
columns and matches all positive tables from Qpos and does not match any
negative ones from Qneg .

The multi-way join algorithm is integrated in VeriMon+ by adding a new
constructor Ands :: frm list ⇒ frm to the formula datatype. At least one of the
subformulas of Ands must be non-negated, and the columns of the negative sub-
formulas must be a subset of the positive ones. Since MonPoly’s parser, which
we reuse in VeriMon+, generates formulas with binary conjunctions, we have
defined a semantics-preserving preprocessing function convert_multiway (omit-
ted), which rewrites nested binary conjunctions into Ands.

6 Sliding Window Algorithm

To evaluate the temporal operators S and U, VeriMon computes the union of
tables that are associated with time-stamps within the operator’s interval. These
sets of time-stamps often overlap between consecutive monitor steps. The sliding
window algorithm (SWA) [10] is an efficient algorithm for combining the elements
of overlapping sequences with an associative operator. It improves over the naive
approach that recomputes the combination (here, the union) from scratch for
every sequence. MonPoly uses SWA for the special cases �Iβ = TT SI β and
♦Iβ = TTUI β, where TT = ∃x. x ≈ x. However, SWA was not designed for the
evaluation of arbitrary S and U operators. For these, the tables in the sequence
must be joined with the left subformula’s results in every monitor step. In a
separate work [27,28], we formally verified SWA’s functional correctness (but
not its optimality) and extended it with a join operation to support arbitrary S
and U operators.

SWA is overly general: it supports any associative operator, not just the
union of tables. We conjecture that the generic SWA algorithm is not optimal
in the special case needed for S and U. To optimize the evaluation of the S and
U operators in VeriMon+, we abstracted the individual steps of their evaluation
in one locale for each of them (Sect. 6.1). We then instantiated the locales with
specialized sliding window algorithms (Sect. 6.2). Due to space limitations, we
only describe the optimization for the Since operator here.
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Fig. 9. The locale for evaluating the Since operator (assumptions omitted)

6.1 Integration into the Monitor

Recall the evaluation of Since in VeriMon (Sect. 2). First, VeriMon updates the
operator’s state with a new time-stamp τ ′ and the satisfactions Rα and Rβ for
the subformulas α and β. Second, it evaluates the state to obtain the satisfactions
for α SI β.

Let mslist denote the type of the S operator’s state in VeriMon. In Veri-
Mon+, we define a locale msaux that abstracts the update and evaluation of an
optimized state 'msaux and relates the optimized state to VeriMon’s original
mslist state (Fig. 9). We provide additional constant arguments for evaluating
the S operator in a record args. It consists of the S operator’s interval, the argu-
ments to wf_tuple characterizing the satisfactions of the two subformulas, and a
Boolean value denoting whether the left subformula occurs negated. The pred-
icate valid_msaux relates an optimized state to VeriMon’s state with respect
to the given args and a current time-stamp. The function init_msaux returns
an initial optimized state. The next three functions add_new_ts, join_msaux,
and add_new_table correspond to the three steps in which VeriMon’s state is
updated (Sect. 2), except that now they act on the optimized state. Finally,
result_msaux evaluates the optimized state to obtain the satisfactions of the S
operator at the current time-point. The omitted locale assumptions state that
all operations preserve valid_msaux and that result_msaux returns the union
computed on any VeriMon state related by valid_msaux.

6.2 The Specialized Algorithm

VeriMon’s state for the S operator consists of a list of tables Tc with the satisfac-
tions of formulas α S[c, c] β, along with the corresponding time-stamps. VeriMon
stores the satisfactions Tc (and time-stamps) for all c that do not exceed the
interval’s upper bound.

In our optimized state, we partition the list of tables Tc into a list data_prev
for time-stamps that are not yet in the interval and a list data_in for time-stamps
that are already in the interval. The state also contains a mapping tuple_in that
assigns to each tuple occurring in some table Tc in the interval the latest time-
stamp in the interval for which this tuple occurs in the respective table. Finally,
the state contains a mapping tuple_since that assigns to each tuple occurring
in some table Tc in the entire state the earliest time-stamp for which this tuple
occurs in the respective table. (For efficiency, we delete tuples from tuple_since
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ts db step data_prev data_in tuple_in tuple_since
init_msaux [ ] [ ] {} {}

1 {Q(a),Q(b),
Q(c)}

add_new_table [(1,{a,b,c})] [ ] {} {a �→ 1,b �→ 1,
c �→ 1}

2 {P(b),P(c)} join_msaux [(1,{a,b,c})] [ ] {} {b �→ 1,c �→ 1}
add_new_table [(1,{a,b,c}),

(2,{})]
[ ] {} {b �→ 1,c �→ 1}

3 {P(b),P(c),
Q(a),Q(b)}

add_new_ts [(2,{})] [(1,{a,b,c})] {b �→ 1,
c �→ 1}

{b �→ 1,c �→ 1}

add_new_table [(2,{}),
(3,{a,b})]

[(1,{a,b,c})] {b �→ 1,
c �→ 1}

{a �→ 3,b �→ 1,
c �→ 1}

7 {P(a)} add_new_ts [ ] [(3,{a,b})] {a �→ 3,
b �→ 3}

{a �→ 3,b �→ 1,
c �→ 1}

join_msaux [ ] [(3,{a,b})] {a �→ 3} {a �→ 3}
add_new_table [(7,{})] [(3,{a,b})] {a �→ 3} {a �→ 3}

Fig. 10. An example of updating the optimized state for the formula P (x) S[2,4] Q(x)

lazily, i.e., only at defined garbage collection points, such that the mapping may
even contain tuples from some Tc that already has fallen out of the interval.)

The state is initialized via init_msaux to consist of empty lists and empty
mappings. The function add_new_ts drops tables from data_in that fall out of
the interval based on a newly received time-stamp. It also removes those tuples
from tuple_in whose latest occurrence (which is stored in this mapping) has
fallen out of the interval. Then it moves tables that newly enter the interval
from data_prev to data_in, and updates the tuples from these moved tables
in tuple_in to the most recent time-stamp τ for which they now occur in the
interval, but only if tuple_since maps the tuple to a time-stamp that is at most
τ .

The function join_msaux only modifies the mappings tuple_since and
tuple_in by removing tuples that are not matched by any tuple in the given
table Rα. The function add_new_table appends the new table Rβ to data_prev
(or directly data_in, if 0 ∈I I), adds the tuples from Rβ that were not in
tuple_since to that mapping, and, if 0 ∈I I, updates the tuples from Rβ in the
mapping tuple_in to the current time-stamp. Finally, result_msaux returns the
keys of the mapping tuple_in, in particular without computing any unions. In
other words, tuple_in contains precisely the tuples that are in the interval and
have not been removed by joins. Crucially, and unlike in VeriMon’s state, the join
operation does not change the tables Tc in our optimized state. This function-
ality is implemented more efficiently by filtering the two mappings tuple_since
and tuple_in.

Example. Figure 10 shows how the optimized state for the formula P (x) S[2,4]

Q(x) is updated. In total, four time-points are processed. The first two columns
show the time-stamp and database for each time-point. The other columns show
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the state after applying the step named in the third column. Each step cor-
responds to a function in the msaux locale. The satisfactions {}, {}, {b, c}, {a}
returned by result_msaux can be read off from the mapping tuple_in after each
time-point’s last step. We omit steps that do not change the state.

The first row shows the initial state. For the first time-point, the steps
add_new_ts with time-stamp 1 and join_msaux with the table {} (as there are
no P events) do not change the initial state. Then, add_new_table appends the
table {a, b, c} with the parameters of the Q events to data_prev (as 0 �∈I [2, 4])
and adds its elements to tuple_since.

For the second time-point, VeriMon+ applies add_new_ts with time-stamp
2. Again this step has no effect: data_prev’s first entry is not moved to data_in
as the difference 2−1 to the current time-stamp is not in [2, 4]. Next, join_msaux
with the table {b, c} (from the P events) removes a from tuple_since, but not
from data_prev. Finally, add_new_table appends the table {} (as there are no
Q events) to data_prev.

For the third time-point, add_new_ts moves data_prev’s first entry to
data_in because the time-stamp difference 3−1 is in [2, 4]. The values b, c of that
entry are added to tuple_in because tuple_since maps them to a time-stamp ≤ 1.
Note that a is not added, as it is not contained in tuple_since. The join_msaux
step with the table {b, c} does not change the state. The add_new_table step
appends {a, b} to data_prev. Now, a is added to tuple_since, whereas b is already
contained in tuple_since and its value is not updated.

When the fourth time-point is processed, the first two observed time-stamps
fall out of the interval and add_new_ts discards their entries from data_prev
and data_in, and their values from tuple_in but not from tuple_since. As before,
the last table {a, b} in data_prev is moved to data_in and its elements are
added to tuple_in. As time has progressed by more than the upper bound of
the interval [2, 4], join_msaux triggers garbage collection, which removes the
key c from tuple_since. The join operation further removes b from tuple_in and
tuple_since. Finally, add_new_table appends {} to data_prev.

7 Evaluation

We perform two kinds of experiments. First, we carry out differential testing [35]
of VeriMon+ against three (unverified) state-of-the-art monitors: MonPoly [9],
Aerial [11], and Hydra [43]. Second, we compare VeriMon+’s performance to
these monitors on representative formulas. VeriMon+ reuses MonPoly’s log and
formulas parsers and user interface. The verified monitor’s code extracted from
Isabelle is integrated with these unverified components in about 170 lines of
unverified OCaml code. Our implementation and our experiments are avail-
able [5]. Of the above monitors, only VeriMon+ supports full MFODL. MonPoly
supports a monitorable fragment of MFOTL with bounded future operators and
aggregations. Aerial and Hydra support the propositional fragment of MFODL.

Differential Testing. To validate the results produced by unverified monitors,
we generate random stream prefixes and formulas, invoke the monitors, and
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compare their results to VeriMon+’s. For this purpose, we developed a random
stream and formula generator. It takes as parameters the formula size (in terms of
number of operators) and the number of free variables that occur in the formula.
The generator can be configured to generate formulas within the fragments of
MFODL supported by the different monitors we evaluate.

Our tests uncovered several classes of inputs where MonPoly’s output devi-
ated from VeriMon+’s. Here, we show one example and refer to our extended
report [6] for a comprehensive overview. Namely, formulas of the form m ←
Ω x;x. �Iα, where fv α = {x, y}, Ω ∈ {Min,Max}, and 0 /∈I I, were evalu-
ated in MonPoly using a specialized algorithm, which incorrectly updated the
satisfactions of α when they fell out of the interval I.

Aerial’s and Hydra’s output mostly coincided with VeriMon+’s. However,
we noticed that Hydra’s output is not as eager as it could be at the end of the
stream prefix. For example, [1,1] (� · (TT ∨ [1,1] �)?) is satisfied at time-point
0 of the prefix ({}, 0), ({}, 1) due to the existence of time-point 1, where TT can
be evaluated. The subformula [1,1] � cannot be evaluated at time-point 1. This
prevents Hydra from outputting this verdict at 0.

Performance Evaluation. To assess VeriMon+’s performance, we selected four
formulas, shown in Fig. 11, which exercise the optimizations (multi-way join and
sliding window) and the language features (aggregations and regular expressions)
we have introduced. The formula Star(N) is derived from the star conjunctive
query, commonly used as a benchmark for joins [14]. We use it to evaluate our
multi-way join (for N = 10) and sliding window (for N = 30) implementations.
The formula Top is a commonly used aggregation query, which computes the
most frequently occurring value of the event P ’s second parameter. Finally, Alt
checks if events P and Q alternate over the last 10 time units.

We generate random stream prefixes with a time span of 60 time units con-
taining events P , Q, and R, each with two integer parameters sampled uniformly
at random from the set {1, 2, . . . , 109}. Our stream generator is parametrized by
the event rate (i.e., by the number of events with the same time-stamp). Since
VeriMon+ reuses MonPoly’s formula and log parsing infrastructure, there is an
additional (conceptually unnecessary) overhead caused by converting the data
structures to match the appropriate interfaces. In cases where the monitoring
task is easy, this becomes the bottleneck and MonPoly performs better than
VeriMon+. To make the monitoring task difficult for Star(10), we sample the
value of the first parameter of each event (the common variable x) using the
Zipf distribution. Thus, some parameter values occur frequently. This results in
large intermediate tables, which are problematic for binary joins.

Figure 11 shows that VeriMon+ outperforms MonPoly on the Star(N) for-
mulas. The results confirm the feasibility of monitoring aggregations and regular
expressions with VeriMon+. Specialized algorithms remain more performant on
problems in their domain.
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Formula Star(10) Star(30) Top Alt
Monitor MonPoly VeriMon+ VeriMon MonPoly VeriMon+ VeriMon MonPoly VeriMon+ Aerial Hydra VeriMon+

Ev
en
tr
at
e

50 0.0/6.2 0.1/9.3 0.2/9.5 0.1/6.4 0.2/12.0 3.0/12.4 0.2/8.9 6.0/10.4 0.3/5.8 0.2/3.2 2.1/8.6
100 0.1/7.0 0.2/12.0 0.9/16.5 0.1/7.0 0.3/13.4 10.7/24.2 0.3/10.0 29.9/12.6 0.4/5.8 0.2/3.2 3.4/8.6
200 0.5/9.1 0.3/12.1 6.2/47.4 0.4/9.2 0.7/18.7 50.1/48.5 0.9/9.9 to 0.6/6.0 0.2/3.1 7.2/8.8
500 6.0/9.8 1.3/16.3 so 2.5/12.9 1.9/32.5 so 2.9/13.5 to 1.1/6.3 0.2/3.2 18.0/8.7
1000 38.0/12.8 2.5/22.2 so 11.6/17.9 5.2/58.0 so 10.9/22.4 to 1.7/6.4 0.3/3.1 34.1/8.8
2000 to 5.9/36.5 so to 11.9/106.7 so 22.0/34.2 to 3.1/6.3 0.4/3.2 to
4000 to 15.0/65.0 so to 22.8/206.0 so 50.8/62.1 to 5.0/6.5 0.6/3.3 to

Fig. 11. Time (s)/memory (MB) usage of the monitors (to = timeout of 60s, so =
stack overflow)

8 Conclusion

We have presented a verified monitor, competitive with the state-of-the-art, for
the expressive specification language metric first-order dynamic logic. Our for-
malization comprises roughly 15 000 lines of Isabelle code, distributed over the
four features we presented: regular expressions (2 000), terms and aggregations
(750), multi-way join (3 300), and the sliding window algorithm (3 000). Isabelle
extracts a 7 500 line OCaml program from our formalization. This code includes
efficient libraries representing sets and mappings via red–black trees introduced
transparently into the formalization via the Containers framework [32]. We also
use and extend a formalization of IEEE floating point numbers [50].

We have made additional contributions from the algorithmic perspective.
Our monitor is the first monitoring algorithm for MFODL with aggregations.
Moreover, our specialized sliding window algorithm improves over the existing
generic algorithm [10]. Our usage of multi-way joins in the context of first-order
monitoring is also novel, as is our extension of the multi-way join algorithm
to handle anti-joins. It would be interesting to investigate the optimality of
this extension and further consider a multi-way-like evaluation of an arbitrary
Boolean combination of finite tables.

Our focus was on extending the verified monitor’s specification language and
improving its algorithms. As next steps, we plan to further improve performance
by refining our algorithms to imperative data structures following Lammich’s
methodology [29,30].
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