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Hyperproperties relate multiple executions of a program and are useful to express common correctness
properties (such as determinism) and security properties (such as non-interference). While there are a number
of powerful program logics for the deductive verification of hyperproperties, their automation falls behind.
Most existing deductive verification tools are limited to safety properties, but cannot reason about the
existence of executions, for instance, to prove the violation of a safety property. Others support more flexible
hyperproperties such as generalized non-interference, but have limitations in terms of the programs and proof
structures they support.

In this paper, we present the first deductive verification technique for arbitrary hyperproperties over
multiple executions of the same program. Our technique automates the generation of verification conditions
for Hyper Hoare Logic. Our key insight is that arbitrary hyperproperties and the corresponding proof rules
can be encoded into a standard intermediate verification language by representing sets of states of the input
program explicitly in the states of the intermediate program. Verification is then automated using an existing
SMT-based verifier for the intermediate language. We implement our technique in a tool called Hypra and
demonstrate that it can reliably verify complex hyperproperties.
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1 Introduction
Hyperproperties [Clarkson and Schneider 2008] relate multiple executions of a program. They
can be used to express correctness properties such as determinism (two executions of a program
with the same input will result in the same output) or monotonicity (executing the program with a
larger input will result in a larger output). Hyperproperties are also used to express security and
information-flow properties, such as non-interference.
There are numerous program logics that enable the formal verification of different kinds of

hyperproperties. Relational Hoare Logic (RHL) [Benton 2004] is able to to reason about 2-safety
hyperproperties, that is, properties that should hold for all pairs of executions of the same program
(such as determinism). Since these properties relate all possible “first” executions to all possible
“second” executions, we call them ∀∀-properties. RHL has then been extended to support 𝑘-safety
hyperproperties [Sousa and Dillig 2016], i.e., properties that should hold for all combinations of 𝑘
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316:2 Thibault Dardinier, Anqi Li, and Peter Müller

executions of the same program (∀𝑘 -properties), such as transitivity (𝑘 = 3) or associativity (𝑘 = 4).
We call program logics for safety hyperproperties (i.e., ∀∗-properties) overapproximate, because
they work by overapproximating the set of possible executions.
Many important hyperproperties fall outside the class of 𝑘-safety hyperproperties, because

they require proving the existence of executions. For the special case of one execution, Reverse
Hoare Logic [de Vries and Koutavas 2011] and Incorrectness Logic [O’Hearn 2019] allow one to
prove the existence of an execution, for instance, the reachability of a bug. We call such properties
∃-properties; the corresponding logics underapproximate the set of possible executions.
More complex hyperproperties, of the form ∀∗∃∗ or ∃∗∀∗, require program logics that can

perform both overapproximation and underapproximation reasoning. An important example is
Generalized Non-Interference (GNI) [McCullough 1987; McLean 1996], a ∀∀∃-hyperproperty. GNI
requires, for any two executions 𝜏1 and 𝜏2 with the same low-sensitivity inputs, the existence of
a third execution with the same high inputs as 𝜏1 and the same low output as 𝜏2. Examples of
∃∗∀∗-hyperproperties include the violation of GNI (∃∃∀) and the existence of an execution with
minimal values (∃∀). Several recent program logics support these more-complex hyperproperties.
RHLE [Dickerson et al. 2022] supports ∀∗∃∗-hyperproperties, BiKAT [Antonopoulos et al. 2023]
supports ∀∃-hyperproperties and (in principle) ∃∀-hyperproperties, and Hyper Hoare Logic [Dard-
inier and Müller 2024] supports hyperproperties with arbitrary quantifier alternations, including
both ∀∗∃∗ and ∃∗∀∗-hyperproperties.

Automation. Verification in program logics for safety properties of single executions (such as
Hoare Logic) can be automated using deductive program verifiers (verifiers for short), such as
Boogie [Leino 2008], Dafny [Leino 2010], Viper [Müller et al. 2016], or Why3 [Filliâtre and
Paskevich 2013]. Given a program, a specification, and hints from the user (such as loop invariants),
these tools attempt to prove that the program satisfies the specification by computing proof
obligations and solving them using an SMT solver.

Deductive verifiers for hyperproperties are mostly limited to 𝑘-safety hyperproperties, which can
be reduced to safety properties for a product program [Barthe et al. 2011; Eilers et al. 2019] and then
verified using an off-the-shelf verifier. Alternatively, there are dedicated verifiers for hyperproperties,
such as WhyRel [Nagasamudram et al. 2023], SecC (based on SecCSL [Ernst and Murray 2019]), and
HyperViper (based on CommCSL [Eilers et al. 2023]) for 2-safety hyperproperties, and Descartes
(based on Cartesian Hoare Logic [Sousa and Dillig 2016]) for 𝑘-safety hyperproperties.

ORHLE (based on RHLE [Dickerson et al. 2022]) is the only deductive verifier that goes beyond
𝑘-safety hyperproperties by supporting ∀∗∃∗-hyperproperties. However, it is limited to a fixed
quantification scheme; users have to first fix the numbers of ∀-quantifiers and ∃-quantifiers and
then write preconditions, postconditions, and loop invariants in this fixed scheme. It is, thus, not
possible to compose proofs with different quantification schemes, e.g., to use a ∀-property in
the proof of a ∀∀-property. Moreover, ORHLE supports relational loop invariants only when the
different executions perform the same number of loop iterations, which limits the programs and
hyperproperties that can be verified in practice.

To the best of our knowledge, no existing verifier supports properties beyond∀∗∃∗-hyperproperties,
such as ∃∗∀∗-hyperproperties.

This work. We present the first deductive verifier for hyperproperties with arbitrary quantifier
alternations. Our tool, Hypra, is based on Hyper Hoare Logic (HHL) [Dardinier and Müller 2024].
Unlike CHL and RHLE, which have dedicated verifiers, HHL had lacked a verifier until Hypra
was developed. Like HHL, Hypra allows assertions to quantify explicitly over states, giving users
the flexibility to express and combine different types of hyperproperties in the same proof. Going
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beyond HHL, Hypra supports reasoning about runtime errors (e.g., to prove the existence or
absence of bugs).
Our key insight is that arbitrary hyperproperties and the corresponding proof rules can be

encoded into a standard intermediate verification language by representing sets of states of the input
program explicitly in the states of the intermediate program. Verification is then automated using an
existing SMT-based verifier for the intermediate language. To ensure that SMT solvers can handle
the resulting verification conditions, our encoding carefully manages quantifier instantiations by
tracking simultaneously a lower bound and an upper bound of the sets of states. Note that, in
contrast to product constructions, our encoding does not duplicate the statements of the input
program and can handle arbitrary hyperproperties (beyond 𝑘-safety).
Like HHL, we focus on hyperproperties that relate multiple executions of the same program;

relating executions of different programs (e.g., to prove their equivalence) poses additional challenges
(such as finding an alignment), which are orthogonal to the problems addressed here. Both WhyRel
and ORHLE support such relational proofs.

Contributions. In summary, our work makes the following contributions:

(1) We extend Hyper Hoare Logic [Dardinier and Müller 2024] with the ability to reason about
runtime errors. This allows us to prove correctness (the absence of bugs), incorrectness (the
existence of bugs) and more complex hyperproperties (e.g., proving that the occurrence of a
runtime error does not leak any secret information).

(2) We present the first approach to generate verification conditions for hyperproperties with
arbitrary quantifier alternations for loop-free statements. The resulting verification conditions
are amenable to SMT solvers.

(3) HHL provides multiple loop rules for different kinds of programs and properties. We present
our approach to automatically select which loop rule to apply, such that users are not exposed
to the details of the underlying logic. This automatic selection is important when dealing with
∃∗∀∗ loop invariants, which require the application of several different loop rules. Moreover,
we present and prove sound a new loop rule for ∀∗∃∗-hyperproperties, which is easier to
automate than the corresponding rule in HHL.

(4) We implement our approach in a tool called Hypra, based on the Viper intermediate lan-
guage [Müller et al. 2016]. Our evaluation on a set of benchmarks from the literature shows
that Hypra can prove a large class of hyperproperties for a large class of programs, in a
reasonable amount of time and with a reasonable amount of proof annotations.

Outline. The rest of the paper is organized as follows: Sect. 2 highlights the capabilities of our
verifier through several examples, and presents our extension of Hyper Hoare Logic to reason
about runtime errors. Sect. 3 presents our approach to generate verification conditions for loop-free
statements, while Sect. 4 handles loops. We discuss the implementation and evaluation of Hypra
in Sect. 5, related work in Sect. 6, and limitations and future work in Sect. 7.

2 A Tour of the Verifier
In this section, we illustrate the key capabilities of our verifier on several examples. Sect. 2.1 shows
how Hypra can perform both over- and underapproximation, and how combining both allows us
to prove complex hyperproperties (such as ∃∗∀∗-hyperproperties). Sect. 2.2 illustrates how Hypra
reasons about runtime errors, in particular how it can prove the absence of errors, the existence of
errors, and more complex (hyper)properties (such as the fact that the occurrence of a runtime error
does not leak secret information). We also explain how we extend Hyper Hoare Logic, which does
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C F skip | assume b | assert b | C;C (sequential composition)

| x := nonDet() (non-deterministic assignment)

| x := e (assignment)

| if (b) {C} else {C} (conditional)

| while (b) {C} (loop)

| y1, y2, ..., yk := m(x1, x2, ..., xn) (method call)

Fig. 1. Input language of Hypra, where 𝐶 ranges over program commands, 𝑥, 𝑥𝑖 and 𝑦𝑖 range over program

variables, 𝑒 ranges over arithmetic expressions, 𝑏 ranges over boolean expressions, and𝑚 represents a method

with 𝑛 parameters and 𝑘 return variables.

method randNat() returns (y: Int)
requires ∃ ⟨𝜎 ⟩ . ⊤
ensures ∀⟨𝜎 ⟩ . 1 ≤ 𝜎 (𝑦 ) ≤ 2
ensures ∃ ⟨𝜎 ⟩ . 𝜎 (𝑦 ) = 1
ensures ∃ ⟨𝜎 ⟩ . 𝜎 (𝑦 ) = 2

{
var x: Int
x := nonDet() // {hint}
// use hint(0,1)
if (x > 0) {

y := 1
}
else {

y := 2
}

}

method secure(h: Int, l: Int) returns (o: Int)
requires ∀⟨𝜎1 ⟩ , ⟨𝜎2 ⟩ . 𝜎1 ( 𝑙 ) = 𝜎2 ( 𝑙 )
ensures ∀⟨𝜎1 ⟩ , ⟨𝜎2 ⟩ . 𝜎1 (𝑜 ) = 𝜎2 (𝑜 )

{
if (h > 0) { o := 2 * l }
else { o := l }
if (h <= 0) { o := o + l }

}

method leaky(h: Int) returns (o: Int)
requires ∃ ⟨𝜎1 ⟩ , ⟨𝜎2 ⟩ . 𝜎1 (ℎ ) < 𝜎2 (ℎ )
ensures ∃ ⟨𝜎1 ⟩ , ⟨𝜎2 ⟩ . ∀⟨𝜎 ⟩ . 𝜎 (𝑜 )=𝜎1 (𝑜 )

⇒𝜎 (ℎ )≠𝜎2 (ℎ )
{

var y: Int
y := nonDet() // {hint}
assume 0 <= y <= 10
// use hint(10)
o := h + y

}

Fig. 2. Examples of overapproximation, underapproximation, and hyperproperties. The example on the left

illustrates ∀-properties and ∃-properties of individual program executions. The examples on the right illustrate

hyperproperties. Method secure satisfies non-interference, a ∀∀-hyperproperty. Method leaky (which is

adapted fromDardinier andMüller [2024]) violates generalized non-interference. The negation of this property

is expressed as an ∃∃∀-hyperproperty. All examples are successfully verified by Hypra, using the provided

hints to construct witnesses for existential quantifiers.

not support errors, to do so. Finally, Sect. 2.3 shows how Hypra handles while loops. All examples
shown in this section are successfully and automatically verified by our tool.

2.1 Overapproximation, Underapproximation, and Hyperproperties
Hypra establishes hyper-triples of the form [𝑃] 𝐶 [𝑄], where 𝐶 is a program statement, and 𝑃

(the precondition) and 𝑄 (the postcondition) are hyper-assertions, i.e., predicates over sets of states
(which we formally define in Sect. 2.2). Intuitively, the triple [𝑃] 𝐶 [𝑄] means that for any set
𝑆 of initial states that satisfies the precondition 𝑃 , the set 𝑆 ′ of all states (including error states)
reachable by executing 𝐶 from any state in 𝑆 satisfies the postcondition 𝑄 .
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Input language. Hypra supports the input language shown in Fig. 1. In addition to the syntax
shown in the figure, non-deterministic assignments can be annotated with hint declarations to
guide the automatic verification (as we explain in the next subsection). To use a declared hint,
users can write annotations with the use keyword. In its current version, Hypra supports integer
program variables and the usual arithmetic operations.

Over- and underapproximation. As an example, consider the method randNat in Fig. 2 (left). This
method non-deterministically chooses a value for 𝑥 (which can for example represent a random
choice or some user input), and assigns 1 to 𝑦 if 𝑥 > 0, and 2 otherwise. In other words, this
method non-deterministically returns 1 or 2. The keyword requires specifies the precondition
of the method, while the keyword ensures specifies the postcondition. Multiple preconditions or
postconditions are simply conjoined. Thus, this example corresponds to the hyper-triple

[∃⟨𝜎⟩.⊤] 𝐶𝑟 [(∀⟨𝜎⟩. 1 ≤ 𝜎 (𝑦) ≤ 2) ∧ (∃⟨𝜎⟩. 𝜎 (𝑦) = 1) ∧ (∃⟨𝜎⟩. 𝜎 (𝑦) = 2)]
where 𝐶𝑟 refers to the body of method randNat. Let 𝑆 ′ be the set of reachable states at the end
of the method. The postcondition ∀⟨𝜎⟩. 1 ≤ 𝜎 (𝑦) ≤ 2, which is equivalent to ∀𝜎 ∈ 𝑆 ′ . 1 ≤
𝜎 (𝑦) ≤ 2, overapproximates the set 𝑆 ′; It means that, in any final state (from 𝑆 ′), 𝑦 will either be
1 or 2, corresponding to the standard Hoare triple {⊤} 𝐶𝑟 {1 ≤ 𝑦 ≤ 2}. On the other hand, the
postconditions ∃⟨𝜎⟩. 𝜎 (𝑦) = 1 and ∃⟨𝜎⟩. 𝜎 (𝑦) = 2, equivalent to ∃𝜎 ∈ 𝑆 ′ . 𝜎 (𝑦) = 1 and ∃𝜎 ∈
𝑆 ′ . 𝜎 (𝑦) = 2, respectively, underapproximate the set 𝑆 ′: They express the existence of two reachable
final states with𝑦 = 1 and𝑦 = 2. Conjoined, these three postconditions express that this method has
only two possible outcomes for 𝑦, 1 and 2, and that both outcomes are reachable. The precondition
∃⟨𝜎⟩.⊤ expresses that the set of initial states is non-empty. This precondition is required for the
hyper-triple to hold, otherwise the postconditions ∃⟨𝜎⟩. 𝜎 (𝑦) = 1 and ∃⟨𝜎⟩. 𝜎 (𝑦) = 2 would not
hold (because no states are reachable from an empty set of initial states).
While the first postcondition verifies automatically, proving the existentially-quantified post-

conditions requires a user-provided hint. Hints are annotations for non-deterministic assignments
that give examples of values that might be assigned. Hypra uses this information to construct
witness states for ∃-properties. In our example, the {hint} annotation after the non-deterministic
assignment introduces an identifier for this assignment, and the annotation use hint(0,1) tells
the verifier that 0 and 1 are relevant choices for this non-deterministic assignment (technically,
hints are used to provide triggers for the quantifier instantiation in the SMT solver).1 The two
values ensure that both branches of the subsequent conditional statement are considered, which is
necessary to prove both existentially-quantified postconditions. The specific values are irrelevant
in this example; any pair of a non-negative and a positive integer would work.

Hyperproperties. Overapproximation allows us to formally verify safety hyperproperties such as
non-interference, as illustrated by method secure in Fig. 2 (top right). The specification expresses
that the output 𝑜 depends only on the low-sensitive input 𝑙 and, thus, does not leak any information
about the secret input ℎ. Hypra verifies this example without further annotations.
By enabling both overapproximation and underapproximation reasoning, our approach can

verify more complex hyperproperties, such as ∀∗∃∗-hyperproperties or ∃∗∀∗-hyperproperties,
as illustrated by the method leaky in Fig. 2 (bottom right). The statements y := nonDet() and
assume 0 <= y <= 10 model a non-deterministic choice between 0 and 10. This method leaks
information about its secret input ℎ via its output 𝑜 : ℎ is between 𝑜 − 10 and 𝑜 . To prove this
claim, we formally verify that the method violates generalized non-interference [McCullough 1987;
1Note that, in general, hints can depend on the variables of one or more states. For example, use ∀⟨𝜎⟩. hint(𝜎 (𝑛)) tells
the SMT solver to consider the value of variable 𝑛 in all relevant states 𝜎 . Hints can also depend on multiple quantified
states, as in use ∀⟨𝜎1⟩, ⟨𝜎2⟩. hint(𝜎1 (𝑎) + 𝜎2 (𝑏)).
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method buggy() returns (x: Int)
requires ∃ ⟨𝜎 ⟩ . ⊤
ensures ∃ ⟨𝜎 ⟩er . 𝜎 (𝑥 ) = 1
ensures ∃ ⟨𝜎 ⟩er . 𝜎 (𝑥 ) = 2

{
x := randNat()
var y: Int := x + x
assert y % 2 == 1

}

method almostCorrect(x:Int) returns (o:Int)
requires ∀⟨𝜎 ⟩ . 𝜎 (𝑥 ) ≥ 0
ensures ∀⟨𝜎 ⟩er . 𝜎 (𝑥 ) = 0 ∧ 𝜎 (𝑜 ) = 0

{
o := nonDet()
assume o >= 0
var y: Int := x + o
assert y > 0

}

method lowError(h: Int, l: Int, t: Int)
requires ∃ ⟨𝜎1 ⟩ , ⟨𝜎2 ⟩ . 𝜎1 ( 𝑡 ) = 1 ∧ 𝜎2 ( 𝑡 ) = 2
requires ∀⟨𝜎1 ⟩ , ⟨𝜎2 ⟩ . 𝜎1 ( 𝑙 ) = 𝜎2 ( 𝑙 )
ensures ( ∃ ⟨𝜎1 ⟩er . 𝜎1 ( 𝑡 ) = 1 ) ⇔ (∃ ⟨𝜎2 ⟩er . 𝜎2 ( 𝑡 ) = 2 )

{
if (h > 0) {

assert l >= 0
}
if (l < 0) {

assert false
}

}

Fig. 3. Reasoning about runtime errors. In the top left example, the postconditions specify two possible

executions that lead to a runtime error (an assertion violation). The postcondition on the top right expresses

that the method fails only if both x and o are 0. The example on the bottom illustrates reasoning about

runtime errors in the context of hyperproperties. The specification expresses that the occurrence of a runtime

error does not depend on the secret input h. All examples are successfully verified by Hypra without any

hints.

Volpano et al. 1996]. That is, we prove the existence of two executions with distinct secret values for
ℎ that can be distinguished. The postcondition expresses that observing the output 𝜎1 (𝑜) rules out
the possibility that the secret value of ℎ was 𝜎2 (ℎ), thus leaking information about the initial value
of ℎ. Verifying this existentially-quantified postcondition requires a hint; choosing the provided
value 10 for 𝜎2 (𝑦) yields the required witnesses.

2.2 Reasoning about Runtime Errors
Our examples so far reason about properties of normal states, that is, states that are reached
when the program executes successfully. In addition, our technique can also reason about a set
of error states, which are reached when a runtime error occurs. This feature allows us to prove
both the absence and presence of runtime errors, as well as advanced hyperproperties such as
failure-sensitive non-interference.

Method buggy in Fig. 3 (top left) calls method randNat (see Fig. 2), doubles the result, and asserts
that the resulting value is odd. The postconditions express the existence of two failing executions,
à la Incorrectness Logic [O’Hearn 2019]: There exist error states 𝜎 where the result of randNat is 1
and 2, respectively.
The ability to quantify over error states allows us to express more complex properties. For

example, the specification of method almostCorrect in Fig. 3 (top right) expresses that a runtime
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error occurs only if the non-deterministic value assigned to 𝑜 is 0 and the input 𝑥 is 0. This almost-
correctness is captured by the universal quantification in the postcondition which expresses that all
error states satisfy 𝑥 = 0 ∧ 𝑜 = 0, that is, no other execution fails.

The absence of errors can be specified via the postcondition ∀⟨𝜎⟩er .⊥, which expresses that the
set of error states is empty.

In the context of hyperproperties, reasoning about error states is, for instance, useful to express
failure-sensitive non-interference, that is, the fact that observing a runtime error does not leak
secret information. The specification of method lowError in Fig. 3 (bottom) expresses this property.
For two different executions with the same value for the low-sensitive input 𝑙 (but potentially
different values for the secret input ℎ), one execution fails if and only if the other execution fails.
In particular, this proves that the occurrence of a runtime error does not depend on ℎ, such that
observing an error does not leak secret information. In this specification, the parameter 𝑡 is used
to tag executions, which allows us to identify the pre- and post-state of a given execution. Tags
are expressed as logical variables in Hyper Hoare Logic, but represented by (immutable) program
variables in Hypra.

Extending Hyper Hoare Logic to support runtime errors. We have extended Hyper Hoare Logic,
which does not provide any support for reasoning about errors, as follows:

Definition 1. Hyper-triples with errors.
Given a program statement 𝐶 and two program states 𝜎 and 𝜎 ′, we write ⟨𝐶, 𝜎⟩ → 𝜎 ′ to express
that executing 𝐶 in the initial state 𝜎 may lead to the final normal state 𝜎 ′. Executions that lead
to runtime errors (because of violated assertions) are denoted as ⟨𝐶, 𝜎⟩er → 𝜎 ′, where 𝜎 ′ is the
last state reached before the error occurred. We refer to such states as error states, in contrast to
normal states. The set of normal states reachable by executing 𝐶 in any state from 𝑆 is denoted as
sem(𝐶, 𝑆) ≜ {𝜎 ′ | ∃𝜎 ∈ 𝑆. ⟨𝐶, 𝜎⟩ → 𝜎 ′}, while the set of error states reachable by executing 𝐶 in
any state from 𝑆 is denoted as err (𝐶, 𝑆) ≜ {𝜎 ′ | ∃𝜎 ∈ 𝑆. ⟨𝐶, 𝜎⟩er → 𝜎 ′}.

Hyper-assertions are predicates over pairs of sets of states, where the first set corresponds to normal
states, and the second set corresponds to error states. Given two hyper-assertions 𝑃 and 𝑄 , we write
|= [𝑃] 𝐶 [𝑄] to express that the triple [𝑃] 𝐶 [𝑄] is valid, which is defined as follows:

|= [𝑃] 𝐶 [𝑄] iff ∀𝑆. 𝑃 (𝑆,∅) ⇒ 𝑄 (sem(𝐶, 𝑆), err (𝐶, 𝑆))

Note that we start with an empty set of error states (second argument of 𝑃 ) to distinguish clearly
between the errors caused by a statement𝐶 and those caused by statements executed prior to𝐶 . In
particular, for a sequential composition 𝐶1; 𝐶2, the set of error states that come from 𝐶2 depends
on sem(𝐶1, 𝑆) only, but not on err (𝐶1, 𝑆); formally, err (𝐶1; 𝐶2, 𝑆) = err (𝐶1, 𝑆) ∪ err (𝐶2, sem(𝐶1, 𝑆)).
Consequently, prescribing a specific set of error states in 𝐶2’s precondition is not useful.

Specification language. Hypra supports the following syntax for hyper-assertions 𝑃 where 𝐸
ranges over integer expressions, 𝐵 over Boolean expressions, and 𝑃 over hyper-assertions:

𝐸 F 𝜎 (𝑦) | 𝑥 | 𝑛 | 𝐸 + 𝐸 | 𝐸 − 𝐸 | 𝐸 ∗ 𝐸 | 𝐸 / 𝐸 | 𝐸 % 𝐸 | . . .
𝐵 F ⊤ | ⊥ | 𝐸 = 𝐸 | 𝐸 > 𝐸 | 𝐸 ≥ 𝐸 | ¬𝐵 | . . .
𝑃 F ∀⟨𝜎⟩. 𝑃 | ∃⟨𝜎⟩. 𝑃 | ∀⟨𝜎⟩er . 𝑃 | ∃⟨𝜎⟩er . 𝑃 | ∀𝑥 . 𝑃 | ∃𝑥 . 𝑃 | 𝑃 ∧ 𝑃 | 𝑃 ∨ 𝑃 | 𝑃 ⇒ 𝑃 | 𝐵

Hyper-assertions interact with the set of normal states through the quantifiers ∀⟨𝜎⟩ and ∃⟨𝜎⟩,
and with the set of error states via the quantifiers ∀⟨𝜎⟩er and ∃⟨𝜎⟩er. The quantifiers ∀⟨𝜎⟩er and
∃⟨𝜎⟩er are not allowed in preconditions (since we always start with an empty set of error states).
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method minimum(n: Int) returns (x: Int, y: Int)
requires ∃ ⟨𝜎 ⟩ . ⊤
requires ∀⟨𝜎1 ⟩ , ⟨𝜎2 ⟩ . 𝜎1 (𝑛 ) = 𝜎2 (𝑛 )
ensures ∃ ⟨𝜎 ⟩ . ∀⟨𝜎 ′ ⟩ . 𝜎 (𝑥 ) ≤ 𝜎 ′ (𝑥 ) ∧ 𝜎 (𝑦 ) ≤ 𝜎 ′ (𝑦 )

{
var i, r: Int
i, x, y := 0
while (i < n)

invariant ∀⟨𝜎1 ⟩ , ⟨𝜎2 ⟩ . 𝜎1 (𝑛 ) = 𝜎2 (𝑛 ) ∧ 𝜎1 ( 𝑖 ) = 𝜎2 ( 𝑖 )
invariant ∃ ⟨𝜎 ⟩ . ∀⟨𝜎 ′ ⟩ . 𝜎 (𝑥 ) ≤ 𝜎 ′ (𝑥 ) ∧ 𝜎 (𝑦 ) ≤ 𝜎 ′ (𝑦 )
decreases n - i

{
r := nonDet() // {hint}
assume r >= 5
// use hint(5)
x := x + y + 2 * i + 3 * r
y := x + 3 * i + 2 * r
if (x >= n) { y := y + r }
i := i + 1

}
}

Fig. 4. Reasoning about loops. Given a loop invariant and an optional variant, Hypra automatically selects

the appropriate loop rule. Like all other assertions, loop invariants may express arbitrary hyperproperties,

here, the existence of an execution with minimal values for x and y. The example is successfully verified by

Hypra.

2.3 Reasoning about Loops
Hyper Hoare Logic provides four different loop rules that can prove different flavors of hyper-
properties. These rules are applicable in different contexts; for example, some rules are applicable
only if all loop executions perform the same number of iterations, and others only if the loop is
proved to terminate. Based on a user-provided loop invariant and an optional loop variant, Hypra
determines automatically which rule to apply. This allows users to reason about loops in a familiar
way without being exposed to the complexity of the underlying logic, as we illustrate on method
minimum in Fig. 4.
This method starts with 𝑥 = 𝑦 = 0 and performs 𝑛 loop iterations, during which it modifies

the values of 𝑥 and 𝑦 in a non-deterministic way. We want to prove that, given a fixed value for
the input 𝑛 (enforced by the precondition ∀⟨𝜎1⟩, ⟨𝜎2⟩. 𝜎1 (𝑛) = 𝜎2 (𝑛)), there exists an execution
where both 𝑥 and 𝑦 have minimal values at the end of the method (without specifying their values,
which depend on 𝑛 non-deterministic choices). The proof is based on a user-provided relational
loop invariant, which must hold before the loop, and after every iteration. The first part of the
loop invariant, ∀⟨𝜎1⟩, ⟨𝜎2⟩. 𝜎1 (𝑛) = 𝜎2 (𝑛) ∧ 𝜎1 (𝑖) = 𝜎2 (𝑖), ensures that all states have the same
values for 𝑖 and 𝑛, and thus that all executions will exit the loop simultaneously. Our verifier
automatically detects this pattern, and uses a specialized loop encoding to handle it, as we will
explain in Sect. 4. Moreover, knowing that all executions have the same value for 𝑖 is necessary to
prove the existence of an execution with minimal values. The second part of the loop invariant,
∃⟨𝜎⟩.∀⟨𝜎 ′⟩. 𝜎 (𝑥) ≤ 𝜎 ′ (𝑥) ∧𝜎 (𝑦) ≤ 𝜎 ′ (𝑦), ensures that, after any number of iterations, there exists
an execution with minimal values for 𝑥 and 𝑦, which corresponds to our postcondition. Finally, we
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need to prove that the loop terminates, otherwise our postcondition would not hold: If the loop
did not terminate, then no final state would exist. We prove termination using a standard loop
variant (following the decreases keyword). The verifier checks, for all states, that this loop variant
is well-founded (non-negative), and that it strictly decreases during each iteration, thus ensuring
termination.

This section illustrated the capabilities of our verification approach from a user’s perspective. In
the next two sections, we will explain how we compute verification conditions by encoding the
input program into an intermediate verification language, for which an automated verifier exists.

3 Verification Conditions for Loop-Free Statements
Given a loop-free program statement 𝐶 (potentially containing hints), a precondition 𝑃 and a
postcondition 𝑄 , our verifier generates a Viper [Müller et al. 2016] program, such that validity of
the Viper program implies validity of the hyper-triple |= [𝑃] 𝐶 [𝑄]. Our key insight is to represent
sets of states of the input program 𝐶 as single states in the Viper program. More precisely, the
Viper program contains set-valued variables, whose contents represent the set of states. Intuitively,
the generated Viper program starts with a set-valued variable 𝑆 (containing an arbitrary value),
assumes that 𝑆 satisfies the precondition 𝑃 (via an assume-statement in the Viper program), tracks
the sets of normal states and error states that can be reached by executing𝐶 in any state from 𝑆 (by
updating the set-valued variable 𝑆 accordingly), and checks whether they satisfy the postcondition
𝑄 (via an assert-statement in the Viper program). To avoid clutter, we often ignore the set of error
states in the rest of this paper, and focus only on the set of normal states (which we also call the set
of reachable states), but the same principles apply to both.
As we will explain in Sect. 3.2.1, verification conditions that quantify both universally and

existentially over the set of states 𝑆 pose major difficulties for SMT solvers. To avoid this problem,
our encoding tracks separately an upper bound and a lower bound of the set of reachable states. The
lower bound is sufficient to verify safety hyperproperties (∀∗-hyperproperties), while the upper
bound is sufficient to verify ∃∗-hyperproperties. Reasoning about hyperproperties with arbitrary
quantifier alternations, such as ∀∗∃∗ or ∃∗∀∗-hyperproperties, requires combining both encodings.
However, naively combining the two encodings does not work, as it can lead to matching loops
where the SMT solver gets stuck in an infinite instantiation of quantifiers.

In Sect. 3.1, we present our approach to track an upper bound and a lower bound of the set of
reachable states. We then explain, in Sect. 3.2, why naively combining both can lead to matching
loops, and present our solution, which allows us to reason about hyperproperties with arbitrary
quantifier alternations, while avoiding matching loops.

The Viper verification infrastructure. Viper [Müller et al. 2016] is an intermediate verification
language (similar to Boogie [Leino 2008]) accompanied by two back-end verifiers, based on symbolic
execution and on verification condition generation, respectively, and both back-ends use the
underlying SMT solver Z3 [de Moura and Bjørner 2008]. A Viper back-end verifier takes as input
a Viper program annotated with method pre- and post-conditions, and verifies each method
modularly. It reports a verification success if all methods have been successfully verified, or one or
more error messages otherwise. Hypra works with both back-end verifiers. The Viper language
provides the standard features of a guarded-command language (assert and assume, together with
the usual control structures). Moreover, Viper provides an assertion language based on first-order
predicate logic (including quantifiers), and the possibility to extend this language with user-defined
background theories, which our technique uses to model (potentially infinite) sets. While Viper has
been specifically designed to automate separation logic [Reynolds 2002], Hypra does not use any
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separation logic specific features, so the same encoding would work with similar SMT-based tools,
such as Boogie.2

3.1 Upper and Lower Bounding the Set of Reachable States
Starting from a set of states 𝑆 satisfying the user-provided precondition, the high-level goal of our
Viper encoding is to construct the set of reachable states sem(𝐶, 𝑆) (introduced in Def. 1), to check
whether the user-provided postcondition holds for the latter. To do so, we construct a lower bound
𝑆∀ and an upper bound 𝑆∃ for sem(𝐶, 𝑆), by leveraging the following properties, as we will show
below:

∀𝜎 ′ . 𝜎 ′ ∈ 𝑆∀ ⇒ ∃𝜎. 𝜎 ∈ 𝑆 ∧ ⟨𝐶, 𝜎⟩ → 𝜎 ′ (1)
∀𝜎, 𝜎 ′ . 𝜎 ∈ 𝑆 ∧ ⟨𝐶, 𝜎⟩ → 𝜎 ′ ⇒ 𝜎 ′ ∈ 𝑆∃ (2)

Property (1) says that every state 𝜎 ′ ∈ 𝑆∀ results from executing 𝐶 in some state 𝜎 ∈ 𝑆 , while
property (2) says that any final state 𝜎 ′ that results from executing 𝐶 in a state 𝜎 ∈ 𝑆 belongs to 𝑆∃ .
Therefore, properties (1) and (2) imply that 𝑆∀ ⊆ sem(𝐶, 𝑆) ⊆ 𝑆∃ .

Encoding the postcondition using 𝑆∀ and 𝑆∃ . Intuitively, (1) is useful when we have 𝜎 ′ ∈ 𝑆∀ as an
assumption, since we can then derive the existence of a state 𝜎 such that 𝜎 ∈ 𝑆 and ⟨𝐶, 𝜎⟩ → 𝜎 ′.
Conversely, (2) is useful when our goal is to prove 𝜎 ′ ∈ 𝑆∃ , since we can prove this goal by simply
proving 𝜎 ∈ 𝑆 and ⟨𝐶, 𝜎⟩ → 𝜎 ′ for some state 𝜎 . Therefore, given a postcondition 𝑄 , we derive
the postcondition 𝑄 ′ (which we use in our encoding) by translating universally-quantified states
(i.e., ∀⟨𝜎⟩) as universal quantifiers with range 𝑆∀ (i.e., ∀𝜎 ∈ 𝑆∀), and existentially-quantified states
(i.e., ∃⟨𝜎⟩) as existential quantifiers with range 𝑆∃ (i.e., ∃𝜎 ∈ 𝑆∃).

We follow the same approach for the set of error states (denoted as 𝑆⊥), which we (upper- and
lower-) bound with 𝑆⊥∃ and 𝑆⊥∀ . Thus, for the triple |= [𝑃] 𝐶 [𝑄], the Viper encoding generated by
our approach has the following shape:

assume P (S,∅); 𝑆∀ := 𝑆 ; 𝑆∃ := 𝑆 ; 𝑆⊥∀ := ∅; 𝑆⊥∃ := ∅; ⟦𝐶⟧; assert Q′ (S∀, S∃, S⊥∀ , S
⊥
∃ )

where ⟦𝐶⟧ constructs 𝑆∀ and 𝑆∃ such that 𝑆∀ ⊆ sem(𝐶, 𝑆) ⊆ 𝑆∃ (and similarly for 𝑆⊥∀ and 𝑆⊥∃ ) as
we explain below, and 𝑄 ′ is the postcondition obtained from 𝑄 as described above.

Soundness. After executing ⟦𝐶⟧ in the above encoding, the sets 𝑆∀ and 𝑆∃ (and similarly for
𝑆⊥∀ and 𝑆⊥∃ ) are underspecified; ⟦𝐶⟧ ensures only that 𝑆∀ ⊆ sem(𝐶, 𝑆) ⊆ 𝑆∃ . If the generated
Viper program is successfully verified, then it is correct for all possible values of 𝑆∀ and 𝑆∃ after
⟦𝐶⟧, provided that we started with a set 𝑆 such that 𝑃 (𝑆,∅) holds. In particular, it is correct
for 𝑆∀ = sem(𝐶, 𝑆) = 𝑆∃ (and similarly for 𝑆⊥∀ = err (𝐶, 𝑆) = 𝑆⊥∃ ). Thus, successful verifica-
tion of the generated Viper program implies that, for all 𝑆 such that 𝑃 (𝑆,∅) holds, the formula
𝑄 ′ (sem(𝐶, 𝑆), sem(𝐶, 𝑆), err (𝐶, 𝑆), err (𝐶, 𝑆)) = 𝑄 (sem(𝐶, 𝑆), err (𝐶, 𝑆)) holds, which corresponds
exactly to the validity of the hyper-triple |= [𝑃] 𝐶 [𝑄] (Def. 1).

Constructing the lower and upper bounds 𝑆∀ and 𝑆∃ . Leveraging properties (1) and (2), our encoding
⟦𝐶⟧ tracks two set-valued variables 𝑆∀ and 𝑆∃ that respectively lower and upper bound the set
of reachable states. We generate Viper encodings of the following form, where ⟨𝐶, 𝜎⟩→𝜎 ′ is
specialized for each atomic statement𝐶 (e.g., assignment, assert-statements, assume-statements) of

2In principle, Hypra could also directly generate an SMT encoding. Using an SMT-based tool like Viper provides a more
convenient notation and better support for debugging without adding substantial overhead. This makes Viper an ideal
candidate for encoding verification conditions.
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// y := nonDet()
assume ∀𝜎1 ∈𝑆 1∀ . ∃𝜎0 , 𝑣 . 𝜎0 ∈𝑆

0
∀ ∧ 𝜎1=𝜎0 [𝑦 :=𝑣 ]

// assume 0 <= y <= 10
assume ∀𝜎2 ∈𝑆 2∀ . 𝜎2 ∈𝑆

1
∀ ∧ 0≤𝜎2 (𝑦 ) ≤10

// o := h + y
assume ∀𝜎3 ∈𝑆 3∀ . ∃𝜎2 ∈𝑆

2
∀ . 𝜎3=𝜎2 [𝑜 :=𝜎2 (ℎ ) +𝜎2 (𝑦 ) ]

// y := nonDet()
assume ∀𝜎0 , 𝑣 . 𝜎0 ∈𝑆 0∃ ⇒ 𝜎0 [𝑦 :=𝑣 ] ∈𝑆 1∃
// assume 0 <= y <= 10
assume ∀𝜎1 ∈𝑆 1∃ . 0≤𝜎1 (𝑦 ) ≤10 ⇒ 𝜎1 ∈𝑆 2∃
// o := h + y
assume ∀𝜎2 ∈𝑆 2∃ . 𝜎2 [𝑜 :=𝜎2 (ℎ ) +𝜎2 (𝑦 ) ] ∈𝑆

3
∃

Fig. 5. Viper encodings to compute the lower bound (on the left) and upper bound (on the right) of the set

of reachable states, for the body of method leaky from Fig. 2. 𝑆0∀ , 𝑆
1
∀ , 𝑆

2
∀ , 𝑆

3
∀ , 𝑆

0
∃ , 𝑆

1
∃ , 𝑆

2
∃ , and 𝑆3∃ are fresh

variables. Additionally, 𝑆0∀ and 𝑆0∃ are assumed to satisfy together the precondition of the method (as we

explain in Sect. 3.2), and 𝑆3∀ and 𝑆3∃ are the sets used to check whether the postcondition holds. 𝜎 [𝑥 :=𝑣]
denotes the state 𝜎 updated with 𝑥 set to 𝑣 .

the language, to update the current lower bound 𝑆𝑛∀ to the next lower bound 𝑆𝑛+1∀ , and the current
upper bound 𝑆𝑛∃ to the next upper bound 𝑆𝑛+1∃ , for a program statement 𝐶:3

assume ∀𝜎𝑛+1 . 𝜎𝑛+1 ∈𝑆𝑛+1∀ ⇒ ∃𝜎𝑛 . 𝜎𝑛 ∈𝑆𝑛∀ ∧ ⟨𝐶 , 𝜎𝑛 ⟩→𝜎𝑛+1 // update lower bound

assume ∀𝜎𝑛 , 𝜎𝑛+1 . 𝜎𝑛 ∈𝑆𝑛∃ ∧ ⟨𝐶 , 𝜎𝑛 ⟩→𝜎𝑛+1 ⇒ 𝜎𝑛+1 ∈𝑆𝑛+1∃ // update upper bound

Starting with 𝑆𝑛∀ ⊆ 𝑆 ⊆ 𝑆𝑛∃ , this encoding computes new values for 𝑆𝑛+1∀ and 𝑆𝑛+1∃ such that
𝑆𝑛+1∀ ⊆ sem(𝐶, 𝑆) ⊆ 𝑆𝑛+1∃ , maintaining the invariant 𝑆𝑛∀ ⊆ sem(𝐶, 𝑆) ⊆ 𝑆𝑛∃ for all 𝑛. Note that the
lower bound 𝑆∀ is sufficient to verify ∀∗-hyperproperties (safety hyperproperties), while the upper
bound 𝑆∃ is sufficient to verify ∃∗-hyperproperties. Our tool uses this observation to optimize the
encoding when only one kind of reasoning is needed, emitting only the encoding corresponding
to 𝑆∀ (for ∀∗-hyperproperties) or 𝑆∃ (for ∃∗-hyperproperties). Both types of encoding are emitted
when verifying both types of hyperproperties or hyperproperties with quantifier alternations.

Fig. 5 shows the concrete encodings generated for the method leaky from Fig. 2. The lower-bound
encoding, on the left, can be read bottom-up. For any state 𝜎3 in 𝑆3∀ at the end of the method, we
learn that there exists a state 𝜎2 ∈ 𝑆2∀ such that 𝜎3 = 𝜎2 [ℎ := 𝜎2 (ℎ) + 𝜎2 (𝑦)]. We then learn that this
state 𝜎2 also belongs to 𝑆1∀ , and satisfies 0 ≤ 𝜎2 (𝑦) ≤ 10. Finally, we learn that there exists a state
𝜎0 ∈ 𝑆0∀ and a value 𝑣 such that 𝜎2 = 𝜎0 [𝑦 := 𝑣].

In contrast, the upper-bound encoding, on the right, should be read top-down. Starting with any
state 𝜎0 in 𝑆0∃ and any value (typically provided via a hint), we obtain that 𝜎0 [𝑦 := 𝑣] belongs to
𝑆1∃ . If we can prove that 0 ≤ 𝑣 ≤ 10, we then obtain that 𝜎1 belongs to 𝑆2∃ . Finally, we obtain that
𝜎2 [𝑜 := 𝜎2 (ℎ) + 𝜎2 (𝑦)] belongs to 𝑆3∃ , which can be used as a witness to prove the postcondition of
the method.

Encoding conditional statements. For conditional statements, we leverage the fact that

𝑠𝑒𝑚(if (𝑏) {𝐶1} else {𝐶2}, 𝑆) = 𝑠𝑒𝑚(assume b; 𝐶1, 𝑆) ∪ 𝑠𝑒𝑚(assume ¬b; 𝐶2, 𝑆)
Thus, to construct the lower bound encoding for a conditional statement, we split the current set
of program states 𝑆∀ into 𝑆∀1 and 𝑆∀2 : 𝑆∀1 is the set of states where 𝑏 holds, and 𝑆∀2 is the set of
states where 𝑏 does not hold. 𝑆∀1 and 𝑆∀2 are then updated based on the semantics of 𝐶1 and 𝐶2,
respectively. We finally compute the union of 𝑆∀1 and 𝑆∀2 to obtain the set of reachable states after
the statement. The upper bound encoding for a conditional statement is constructed similarly.
3In practice, we have four variables: 𝑆∀ and 𝑆∃ , which represent the current bounds, and 𝑆 ′∀ and 𝑆 ′∃ , which represent the
next bounds, and our encoding is of the form havoc S'; assume ...; S := S'. We use the superscripts 𝑛 and 𝑛 + 1 to
denote the values of these variables at different points in the encoding, to simplify the explanations.
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E-matching and the encoding of hints. SMT solvers (such as Z3) used by Viper and other verifiers
typically instantiate quantifiers via E-matching [Detlefs et al. 2005]. In this approach, every universal
quantifier is associated with one or more syntactic matching patterns (also called triggers), ground
terms that contain the bound variables of the quantifier. The quantifier gets instantiated only when
the SMT solver’s proof search encounters a term that matches its trigger (taking into account
equalities). For instance, given the quantifier ∀𝑥 .𝑓 (𝑥) > 0 with trigger 𝑓 (𝑥), encountering the term
𝑓 (5) in the proof search will instantiate the quantifier with value 5 for the bound variable 𝑥 .
Triggers need to be chosen carefully. Overly restrictive triggers may prevent necessary quantifier

instantiations, which may cause spurious verification errors. Conversely, overly permissive patterns
may, in the worst case, introduce matching loops, where each quantifier instantiation produces a
term that triggers the next instantiation, causing the SMT solver to diverge.
To avoid matching loops, our encoding uses rather restrictive triggers, as we discuss in more

detail in the next subsection. When our chosen triggers are too restrictive, users can initiate
additional quantifier instantiations by annotating the input program with hints. These are encoded
as applications of a vacuously-true function, which is used as a trigger. Consequently, a hint such
as hint(0,1) in Fig. 2 causes a quantifier instantiation with the values 0 and 1. Hints are sometimes
needed to instantiate the quantifier in the encoding of non-deterministic assignments; all other
quantifiers are instantiated automatically.

Tracking the set of error states. As explained above, on top of tracking (a lower bound and an
upper bound of) the set of reachable states, our encoding also tracks a lower bound 𝑆⊥∀ and an
upper bound 𝑆⊥∃ for the set of error states err (𝐶, 𝑆) (defined in Def. 1). At the start of every method,
the set of error states is initially empty (preconditions, unlike postconditions, are not allowed to
quantify over error states). We then grow this set of error states monotonically, because the set
of error states for a sequential composition 𝐶1;𝐶2, written err (𝐶1;𝐶2, 𝑆), is the union of err (𝐶1, 𝑆)
and err (𝐶2, sem(𝐶1, 𝑆)). Similarly, for conditionals, we compute the set of errors for both branches,
and take their union. Error states can be generated only by assert statements: the encoding of
assert b adds all reachable states that violate 𝑏 to the set of error states. Finally, the error states
arising from loops are handled via loop invariants. For example, to prove that there are no error
states after a loop, the invariant must assert the absence of error states after every iteration.

3.2 Combining Lower-Bound and Upper-Bound Encodings
To reason about ∀∗∃∗ and ∃∗∀∗-hyperproperties, we need to combine the two types of encodings, to
compute both a lower bound (for universally-quantified states) and an upper bound (for existentially-
quantified states) of the set of reachable states. However, naively combining the two encodings can
easily lead to matching loops (see Sect. 3.1). In the next two subsubsections, we explain two kinds
of potential matching loops and how our encoding avoids them.

3.2.1 Naively Combining the Two Encodings. The most straightforward way to combine the two
encodings would be to assume that 𝑆𝑛∀ = 𝑆𝑛∃ at every point of the encoding (i.e., for every 𝑛), which
is equivalent to tracking a single set of states 𝑆𝑛 in each program state rather than a lower and
an upper bound. However, this naive combination leads to matching loops, as illustrated by the
following encoding for a non-deterministic assignment y := nonDet(), where 𝑆0 = 𝑆0∀ = 𝑆0∃ and
𝑆1 = 𝑆1∀ = 𝑆1∃ .

assume ∀𝜎1 ∈ 𝑆 1 . ∃𝜎0 , 𝑣 . 𝜎0 ∈ 𝑆 0 ∧ 𝜎1 = 𝜎0 [𝑦 := 𝑣 ] // (lower bound)
assume ∀𝜎0 , 𝑣 . 𝜎0 ∈ 𝑆 0 ⇒ 𝜎0 [𝑦 := 𝑣 ] ∈ 𝑆 1 // (upper bound)

At the level of the SMT solver, for any state 𝜎1 ∈ 𝑆1, the lower-bound encoding introduces a
new state 𝜎1 [𝑦 := 𝑣0] ∈ 𝑆0 (for some value 𝑣0). This subsequently triggers the universal quantifiers
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method simple(x,y:Int) returns (z:Int)
requires ∀⟨𝜎1 ⟩ . ∃ ⟨𝜎2 ⟩ . 𝜎2 (𝑥 )>𝜎1 (𝑥 )
requires ∀⟨𝜎1 ⟩ , ⟨𝜎2 ⟩ . 𝜎1 (𝑦 ) = 𝜎2 (𝑦 )
ensures ∀⟨𝜎1 ⟩ . ∃ ⟨𝜎2 ⟩ . 𝜎2 (𝑧 )>𝜎1 (𝑧 )

{
z := x + y

}

...
// next line is required to verify the program
assume 𝑆 0∀ = 𝑆 0∃
assume ∀𝜎1 . 𝜎1 ∈𝑆 0∀ ⇒ ∃𝜎2 . 𝜎2 ∈𝑆 0∃ ∧ 𝜎2 (𝑥 )>𝜎1 (𝑥 )
assume ∀𝜎1 , 𝜎2 . 𝜎1 ∈𝑆 0∀ ∧ 𝜎2 ∈𝑆 0∀ ⇒ 𝜎1 (𝑦 ) = 𝜎2 (𝑦 )
⟦z := x + y⟧
assert ∀𝜎1 . 𝜎1 ∈𝑆 1∀ ⇒ ∃𝜎2 . 𝜎2 ∈𝑆 1∃ ∧ 𝜎2 (𝑧 )>𝜎1 (𝑧 )

Fig. 6. A simple example that requires both overapproximation and underapproximation reasoning on the

left, and its encoding on the right.

in the second assume statement, which proves (using 𝑣 = 𝑣0) that 𝜎1 [𝑦 := 𝑣0] ∈ 𝑆1. This, in
turn, triggers the universal quantifier in the first assume statement, which introduces a new state
𝜎1 [𝑦 := 𝑣0] [𝑦 := 𝑣1] ∈ 𝑆0 (for some value 𝑣1), which is then proven to be in 𝑆1 by the upper-bound
encoding, and so on, which results in an infinite cycle of quantifier instantiation.
Preventing this kind of matching loop is the main motivation for our encoding based on upper

and lower bounds, that is, we keep 𝑆𝑛∀ and 𝑆𝑛∃ as two different sets and do generally not equate
them (for 𝑛 > 0), which breaks the cycle in the matching loop.
However, equating the lower and upper bound, that is, assuming (via an assume-statement in

the Viper program) that 𝑆0 = 𝑆0∀ = 𝑆0∃ , at the beginning of each method is important for practical
examples, as we illustrate with method simple in Fig. 6, with its encoding shown on the right. The
precondition tells us that for any state 𝜎1, there exists a state 𝜎2 such that 𝜎2 (𝑥) > 𝜎1 (𝑥), and that
all states agree on the value of y. Thus, for any state 𝜎1, there should exist a state 𝜎2 such that
𝜎2 (𝑧) > 𝜎1 (𝑧) after the assignment. However, without the assumption that 𝑆0∀ = 𝑆0∃ at the beginning
of the method, this program would not be verified, as 𝜎2 belongs to 𝑆0∃ , but not necessarily to 𝑆0∀ ,
and thus one cannot prove that 𝜎1 (𝑦) = 𝜎2 (𝑦). We explain next how we can equate the upper and
lower bound for 𝑆0 without re-introducing the matching loop illustrated above.

3.2.2 Restricting Quantifier Instantiations for ∀∗∃∗-preconditions. Assuming 𝑆0∀ = 𝑆0∃ at the be-
ginning of a method may lead to matching loops if the method precondition contains a ∀∗∃∗-
hyperproperty. One example is the first precondition of the method in Fig. 6, which is interpreted as
∀𝜎1 ∈ 𝑆0∀ . ∃𝜎2 ∈ 𝑆0∃ . 𝜎2 (𝑥) > 𝜎1 (𝑥). The ∀-quantifier in the assertion introduces a new state 𝜎2 ∈ 𝑆0∃
via the nested ∃-quantifier. Since we assume 𝑆0∀ = 𝑆0∃ , the new state 𝜎2 can trigger the instantiation
of the same ∀-quantifier, which in turn can introduce a new state 𝜎 ′

2 ∈ 𝑆0∃ , and so on, leading to a
matching loop.
Our solution is to use limited and unlimited functions [Leino and Monahan 2009] to control

quantifier instantiations, to allow as many existentially-quantified states as possible to instantiate
universal quantifiers, while avoiding matching loops. Concretely, when our tool translates a hyper-
assertion with a universal state-quantifier such as ∀⟨𝜎⟩. 𝑃 into Viper, it checks whether 𝑃 contains
an existential state-quantifier: If so, the ∀-quantifier is encoded with the most restrictive trigger, so
that it can be instantiated only with those existentially-quantified states that do not occur under a
universal quantifier. Otherwise, the ∀-quantifier is encoded with a more permissive trigger, allowing
it to be instantiated by all existentially-quantified states.
The effect of our solution is represented visually on Fig. 7. Each node (∃+, ∃+∀+, ∀+∃+, ∀+)

represents the shape of a possible part of the precondition (the figure omits shapes with more than
two quantifiers for simplicity). The blue arrows show the instantiations enabled by our tool, while
the red dashed arrow shows the instantiation prevented by our tool via a restrictive trigger, since
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∀+ ∃+∃+ ∀+

∃+

∀+

Fig. 7. Representation of the quantifier instantiations allowed by the chosen triggers. Each node represents

the shape of a possible part of the precondition; for simplicity, we omit shapes with more than two quantifiers

here. The blue arrows show the existentially-quantified states that can be used to instantiate universal

quantifiers, and the red arrow shows the instantiations our chosen triggers prevent. The grey arrow shows

how instantiating the ∀+-quantifiers in a ∀+∃+-hyperproperty produces existentially-quantified states, which

can subsequently be used to instantiate universal quantifiers. The acyclicity of the graph ensures the absence

of matching loops among the involved quantifiers.

those instantiations can lead to matching loops. For example, states introduced by ∃+-quantifiers
can be used to instantiate the ∀+-quantifiers of a ∀+∃+-hyperproperty, which can in turn be used
to instantiate the ∀+-quantifiers of a ∀+-hyperproperty. As a more concrete example, to verify
the method simple from Fig. 6, the state 𝜎2 coming from the existential quantifier of the first
precondition ∀⟨𝜎1⟩. ∃⟨𝜎2⟩. 𝜎2 (𝑥) > 𝜎1 (𝑥) can be used to instantiate a ∀-quantifier of the second
precondition ∀⟨𝜎1⟩, ⟨𝜎2⟩. 𝜎1 (𝑦) = 𝜎2 (𝑦), since there is a blue arrow from the right of the node ∀+∃+

to the node ∀+.
Crucially, states introduced by existential quantifiers that are nested under universal quantifiers

cannot be used to instantiate the universal quantifiers in ∀+∃+-hyperproperties (as represented by
the red dotted arrow), since this would create a cycle and thus lead to a matching loop, as illustrated
above with the first precondition of the method simple. As can be seen in Fig. 7, preventing this
instantiation makes the graph acyclic, which ensures the absence of matching loops.

4 Verification Conditions for Loops
In the previous section, we described the verification conditions generated by our verifier for
loop-free statements. In this section, we describe how to generate verification conditions for while
loops. We first describe, in Sect. 4.1, the different rules offered by Hyper Hoare Logic to reason
about while loops, how we can derive verification conditions from them, and how our verifier
automatically selects the right rule(s) to apply, based on the context. In Sect. 4.2, we discuss one
such particular rule, the While-∀∗∃∗ rule, and show that it cannot be used directly for our purpose;
a naive encoding based on this rule would be unsound. We then present and prove sound (in
Isabelle/HOL [Nipkow et al. 2002]) a novel loop rule, suitable for automated deductive verification,
which can be used in the same context. Finally, in Sect. 4.3, we present a technique to automatically
frame information around the loop, which overcomes a limitation of these loop rules, and leads to
more succinct loop invariants.

4.1 Automatically Generating Verification Conditions
Reasoning about loops in a relational setting is notoriously hard. In the context of deductive
verification, our goal is to automatically reason about while loops, while keeping the amount of
proof annotations needed from the user to a minimum. As illustrated in Fig. 4, this means that the
user should only provide a loop invariant, and optionally a loop variant (decreases clause).
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𝐼 |= low (𝑏 ) |= [𝐼 ∧ □𝑏 ] 𝐶 [𝐼 ]
(WhileSync)

|= [𝐼 ] while (𝑏 ) {𝐶 } [ (𝐼 ∨ □⊥) ∧ □(¬𝑏 ) ]

𝐼 |= low (𝑏 ) |=⇓ [𝐼 ∧ □(𝑏 ∧ 𝑒 = 𝑡 ) ] 𝐶 [𝐼 ∧ □(𝑒 ≺ 𝑡 ) ] ≺ well-founded 𝑡 ∉ fv (𝐼 ) ∪mod (𝐶 )
(WhileSyncTerm)

|=⇓ [𝐼 ] while (𝑏 ) {𝐶 } [𝐼 ∧ □(¬𝑏 ) ]

|= [𝐼 ] if (𝑏 ) {𝐶 } [𝐼 ] |= [𝐼 ] assume ¬b [𝑄 ] no ∀⟨_⟩ after any ∃ in𝑄
(While−∀∗∃∗ )

|= [𝐼 ] while (𝑏 ) {𝐶 } [𝑄 ]

∀𝑣. |= [∃⟨𝜎 ⟩. 𝑃𝜎 ∧ 𝑏 (𝜎 ) ∧ 𝑣 = 𝑒 (𝜎 ) ] if (𝑏 ) {𝐶 } [∃⟨𝜎 ⟩. 𝑃𝜎 ∧ 𝑒 (𝜎 ) ≺ 𝑣 ] ∀𝜎. |= [𝑃𝜎 ] while (𝑏 ) {𝐶 } [𝑃𝜎 ] ≺ wf
(While−∃)

|= [∃⟨𝜎 ⟩. 𝑃𝜎 ] while (𝑏 ) {𝐶 } [ (∃⟨𝜎 ⟩. 𝑃𝜎 ) ∧ □(¬𝑏 ) ]

Fig. 8. Rules from Hyper Hoare Logic [Dardinier and Müller 2024] to reason about while loops. In the rules

WhileSyncTerm and While-∃, the order ≺ must be well-founded (wf). Moreover, low(𝑏) ≜ (∀⟨𝜎⟩, ⟨𝜎′⟩. 𝑏 (𝜎) =
𝑏 (𝜎′)) and □(𝑏) ≜ (∀⟨𝜎⟩. 𝑏 (𝜎)). Finally, |=⇓ [𝑃] 𝐶 [𝑄] corresponds to a terminating hyper-triple. Terminating

hyper-triples are stronger than normal hyper-triples, in that they additionally require the existence of a

terminating execution from any initial state.

assert 𝐼 (𝑆 , ∅ )
𝑆𝑝 := 𝑆

𝑆 ⊥
0 := 𝑆 ⊥

havoc 𝑆 , 𝑆 ⊥

assume 𝐼 (𝑆 , 𝑆 ⊥ )

assert low (𝑏 )
assume □𝑏
⟦C⟧

assert 𝐼 (𝑆 , 𝑆 ⊥ )
havoc 𝑆 , 𝑆 ⊥

assume 𝐹 (𝑆𝑝 , 𝑆 )
assume 𝐼 (𝑆 , 𝑆 ⊥ ) ∨ □⊥
𝑆 ⊥ := 𝑆 ⊥

0
⋃

𝑆 ⊥

assume □ ( ¬𝑏 )

(a)

assert 𝐼 (𝑆 , ∅ )
𝑆𝑝 := 𝑆

𝑆 ⊥
0 := 𝑆 ⊥

havoc 𝑆 , 𝑆 ⊥

assume 𝐼 (𝑆 , 𝑆 ⊥ )

assert low (𝑏 )
assume □ (𝑏 ∧ 𝑒 = 𝑡 )
⟦C⟧

assert □ ( 0 ≤ 𝑒 < 𝑡 )
assert 𝐼 (𝑆 , 𝑆 ⊥ )
havoc 𝑆 , 𝑆 ⊥

assume 𝐹 (𝑆𝑝 , 𝑆 )
assume 𝐼 (𝑆 , 𝑆 ⊥ )
𝑆 ⊥ := 𝑆 ⊥

0
⋃

𝑆 ⊥

assume □ ( ¬𝑏 )

(b)

assert 𝐼 (𝑆 , ∅ )
𝑆𝑝 := 𝑆

𝑆 ⊥
0 := 𝑆 ⊥

havoc 𝑆 , 𝑆 ⊥

assume 𝐼 (𝑆 , 𝑆 ⊥ )

⟦if (b) {C}⟧

assert 𝐼 (𝑆 , 𝑆 ⊥ )
havoc 𝑆 , 𝑆 ⊥

assume 𝐹 (𝑆𝑝 , 𝑆 )
assume Θ¬𝑏 ( 𝐼 )
𝑆 ⊥ := 𝑆 ⊥

0
⋃

𝑆 ⊥

⟦assume ¬𝑏⟧

(c)

assert ∃𝜎 . 𝑃𝜎 (𝑆 , ∅ )
𝑆𝑝 := 𝑆

𝑆 ⊥
0 := 𝑆 ⊥

havoc 𝑆 , 𝑆 ⊥

assume ∃𝜎 . 𝑃𝜎 (𝑆 , 𝑆 ⊥ ) ∧
𝑏 (𝜎 ) ∧ 𝑣 = 𝑒 (𝜎 )

⟦if (b) {C}⟧
assert ∃𝜎 . 𝑃𝜎 (𝑆 , 𝑆 ⊥ ) ∧

0 ≤ 𝑒 (𝜎 ) < 𝑣

havoc 𝑆 , 𝑆 ⊥

var 𝜎 0: State

assume 𝑃𝜎0 (𝑆 , 𝑆 ⊥ )
⟦while (b) {C}⟧
assert 𝑃𝜎0 (𝑆 , 𝑆 ⊥ )
havoc 𝑆 , 𝑆 ⊥

assume 𝐹 (𝑆𝑝 , 𝑆 )
assume ∃𝜎 . 𝑃𝜎 (𝑆 , 𝑆 ⊥ )
𝑆 ⊥ := 𝑆 ⊥

0
⋃

𝑆 ⊥

assume □ ( ¬𝑏 )

(d)

Fig. 9. Viper encodings of loops based on (a) theWhileSync rule, (b) theWhileSyncTerm rule, (c) the novel rule

for∀∗∃∗-hyperproperties and (d) the weakenedWhile-∃ rule. To avoid clutter, we use 𝑆 to represent both 𝑆∀ and

𝑆∃ , and 𝑆⊥ to represent both 𝑆⊥∀ and 𝑆⊥∃ . We also use the notation ⟦C⟧ to refer to the encoding of the command

𝐶 . In the loop encodings, 𝑏 is the loop guard, 𝐶 is the loop body, 𝑣 and 𝑡 are fresh variables, 𝑆𝑝 is an auxiliary

variable recording the value of the set of states before the loop (see Sect. 4.3), 𝑒 is the loop variant, 𝐼 and 𝑃𝜎 are

loop invariants encoded as a predicate dependent on 𝑆 and 𝑆⊥. Moreover, low(𝑏) ≜ (∀⟨𝜎⟩, ⟨𝜎′⟩. 𝑏 (𝜎) = 𝑏 (𝜎′)),
□(𝑏) ≜ (∀⟨𝜎⟩. 𝑏 (𝜎)), and 𝐹 (𝑆𝑝 , 𝑆) corresponds to automatic framing as described in Sect. 4.3.

Fig. 8 shows the four main rules offered by Hyper Hoare Logic to reason about while loops,
where low(𝑏) means that the expression 𝑏 has the same value in all states (formally low(𝑏) ≜
(∀⟨𝜎⟩, ⟨𝜎 ′⟩. 𝑏 (𝜎) = 𝑏 (𝜎 ′))), □𝑏 means that the expression 𝑏 holds in all states (formally □𝑏 ≜
(∀⟨𝜎⟩. 𝑏 (𝜎))), and |=⇓ [𝑃] 𝐶 [𝑄] corresponds to a terminating hyper-triple. Terminating hyper-
triples are stronger than normal hyper-triples, in that they additionally require the existence of a
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terminating execution from any initial state. In our tool, we ensure this requirement by proving
that all loops in𝐶 terminate, through the use of well-founded loop variants.4 As shown by Fig. 8, all
four rules use a loop invariant: 𝐼 in the first three loop rules, and ∃⟨𝜎⟩. 𝑃𝜎 in the last rule. Moreover,
those rules are non-obvious, which makes it hard for users to know which rule to apply in which
context.

In the following, we explain the role of the different rules, how we derive verification conditions
from them, and how our verifier automatically chooses the relevant rule(s), based on the user-
provided loop invariant and optional loop variant. The Viper encodings of loops based on these
rules are shown in Fig. 9.

Synchronized loop rules. The two first rules, WhileSync and WhileSyncTerm, apply when all
executions exit the loop simultaneously. The key difference between the two rules can be seen in
the postconditions of their conclusions: On top of the fact that all states satisfy the negation of
the loop guard (□(¬𝑏)), the ruleWhileSyncTerm allows us to assume that the relational invariant
𝐼 holds after the loop, whereas the rule WhileSync allows us to assume only that 𝐼 ∨ □⊥ holds
after the loop, which is weaker than 𝐼 . The □⊥ disjunct, which corresponds to the case where
the loop does not terminate, is problematic when we want to prove postconditions with top-level
existentially-quantified states. In this case, we need to use the rule WhileSyncTerm, which requires
us to prove that the loop terminates. The latter can be achieved by proving that a well-founded
variant 𝑒 strictly decreases after every iteration.

Verification conditions can be easily derived from these two rules. First, for both rules, we check
that the user-provided loop invariant 𝐼 entails low(𝑏). Then, for the rule WhileSync, we separately
check the triple |= [𝐼 ∧ □𝑏] 𝐶 [𝐼 ∨ □⊥], as described in Sect. 3. For the rule WhileSyncTerm,
we instantiate 𝑒 with the user-provided loop variant (required to be an integer expression), and
separately check the triple |=⇓ [𝐼 ∧ □(𝑏 ∧ 𝑒 = 𝑡)] 𝐶 [𝐼 ∧ □(0 ≤ 𝑒 < 𝑡)], where 𝑡 is a fresh variable.
The check 0 ≤ 𝑒 ensures that the user-provided variant is well-founded. To ensure that this triple
is a terminating hyper-triple, we check (syntactically) that all loops within 𝐶 are annotated with
decreases clauses, which ensures termination (provided that verification is successful). Finally, for
both rules, we assert that the loop invariant 𝐼 holds before the loop, and assume that (𝐼∨□⊥)∧□(¬𝑏)
(ruleWhileSync) or 𝐼 ∧ □(¬𝑏) (ruleWhileSyncTerm) holds after the loop. The Viper encodings of
loops based on these two rules can be found in Fig. 9a and Fig. 9b, respectively.

Non-synchronized loop rules. The two remaining loop rules from Fig. 8, While-∀∗∃∗ and While-∃,
can be applied when different executions might exit the loop at different times. In this case, our
premises are more complex: We need to reason about the unrollings of the while loop, which we
achieve by proving a loop invariant over if (𝑏) {𝐶} (in contrast to 𝐶 for the synchronized rules).
Deriving verification conditions from the rule While-∀∗∃∗ is non-trivial, as we explain in Sect. 4.2.
For the rule While-∃, assuming that the user-provided loop invariant 𝐼 is of the form ∃⟨𝜎⟩. 𝑃𝜎 (we
write 𝑃𝜎 to emphasize that this hyper-assertion can mention 𝜎),5 and that the user provided a loop

4In theory, we also need to check that assume statements do not break this property. By default, our tool leaves this
responsibility to the user, since assume statements are typically used to restrict non-deterministic assignments to the right
range (as done in the example from Fig. 4), which does not break this property. However, our tool provides the more
conservative option, disabled by default, to check the absence of assume statements within statements whose termination
is required.
5If 𝐼 is not of the shape ∃⟨𝜎 ⟩. 𝑃𝜎 , and no other rule is applicable, our tool emits an error message to inform the user that
the program cannot be verified.
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Does 𝐼 |= low(𝑏)?

Is there a decreases

clause, and is 𝐼 of
the form ∃⟨𝜎⟩. 𝑃𝜎?

Is termina-
tion checked?

While-∃ While-∀∗∃∗ WhileSyncTerm WhileSync

yesno

yes noyes no

recursive call with 𝐼 ≜ 𝑃𝜎

Fig. 10. Automatic loop rule selection to verify a loop while (𝑏) {𝐶} with the invariant 𝐼 . The first choice

checks whether all executions perform the same number of loop iterations. The next choice is based on a

subtle aspect of the loop’s termination: The branch on the left checks whether the given loop performs a

finite number of iterations, but does not require nested loops to terminate; this is sufficient to apply While-∃.
In contrast, the branch on the right requires the loop and all nested loops to terminate, as required by the

rule WhileSyncTerm. While the top-level choice is made semantically by the encoding, the next-level choices

are determined syntactically based on the presence of decreases clauses. The edge fromWhile-∃ back to

the first choice reflects the second premise of this rule, ∀𝜎. |= [𝑃𝜎 ] while (𝑏) {𝐶} [𝑃𝜎 ]: To check that this

premise holds, our tool recursively calls the rule selection procedure, which will automatically select a new

loop rule adapted to the new loop invariant 𝑃𝜎 .

variant 𝑒 , we apply the following weakened version of the rule:

∀𝑣 . |= [∃⟨𝜎⟩. 𝑃𝜎 ∧ 𝑏 (𝜎) ∧ 𝑣 = 𝑒 (𝜎)] if (𝑏) {𝐶} [∃⟨𝜎⟩. 𝑃𝜎 ∧ 0 ≤ 𝑒 (𝜎) < 𝑣] ∀𝜎. |= [𝑃𝜎 ] while (𝑏) {𝐶} [𝑃𝜎 ]
|= [∃⟨𝜎⟩. 𝑃𝜎︸    ︷︷    ︸

𝐼

] while (𝑏) {𝐶} [(∃⟨𝜎⟩. 𝑃𝜎︸    ︷︷    ︸
𝐼

) ∧ □(¬𝑏)]

As before, this version specializes the well-founded order ≺ to be the canonical well-founded order
over natural numbers. Note that, in both premises, 𝑣 and 𝜎 are meta-variables, i.e., there is not one
value of 𝑣 (in the first premise) or 𝜎 (in the second premise) per state, but rather there is one per set
of states.

In practice, to check the first premise, we use a fresh unconstrained variable 𝑣 , and assume that
the set of states and the variable 𝑣 together satisfy the precondition ∃⟨𝜎⟩. 𝑃𝜎 ∧ 𝑏 (𝜎) ∧ 𝑣 = 𝑒 (𝜎),
and check (after the encoding of if (𝑏) {𝐶}) that the set of states and the variable 𝑣 together satisfy
the postcondition ∃⟨𝜎⟩. 𝑃𝜎 ∧ 0 ≤ 𝑒 (𝜎) < 𝑣 . Checking the second premise is more complicated,
since it requires reasoning about the same while loop. However, note that the precondition (and
postcondition) of this premise, 𝑃𝜎 , is smaller than the precondition (and postcondition) of the
conclusion of the rule, ∃⟨𝜎⟩. 𝑃𝜎 . Our tool automatically generates the verification conditions for
this premise, using the approach described in this section, by automatically selecting the right loop
rule based on the new loop invariant 𝑃𝜎 and the same loop variant 𝑒 . The Viper encoding of loops
based on this rule can be found in Fig. 9d.

Automatically selecting the right loop rule(s). As explained at the start of this section, using only
the user-provided loop invariant 𝐼 and optional loop variant 𝑒 , our tool automatically selects the
right loop rule(s) to apply, as depicted in Fig. 10. First, we check (semantically in our encoding)
whether the loop invariant guarantees that all executions will exit the loop simultaneously, that is,
whether 𝐼 |= low(𝑏) holds. If so, we apply one of the two synchronized loop rules,WhileSync or
WhileSyncTerm, depending on whether the user provided a loop variant for this loop and all loops
nested within. Compared to non-synchronized loop rules, these two rules, when applicable, have
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weaker premises (i.e., their premises can be derived from the premises of the non-synchronized loop
rules) and stronger conclusions (e.g., their postconditions after the while loop are at least as strong
as those of the non-synchronized loop rules). Therefore, the synchronized loop rules are always
better than the non-synchronized loop rules when they are applicable. The rule WhileSyncTerm is
the most powerful (when it applies), because its premise only requires reasoning about 𝐶 , which
is easier than reasoning about if (𝑏) {𝐶}, and the postcondition of its conclusion, 𝐼 ∧ □(¬𝑏), is
not weaker than the postcondition given by any other rule (Sect. 4.2 will make clearer why the
postcondition of the rule While-∀∗∃∗ is weaker). When termination is not checked (i.e., no loop
variant is provided), the choice is only between the rules WhileSync and While-∀∗∃∗, and our tool
applies WhileSync whenever possible, for similar reasons.

When 𝐼 ̸ |= low(𝑏), we apply one of the two non-synchronized loop rules,While-∀∗∃∗ orWhile-∃,
depending on the shape of the loop invariant 𝐼 . When 𝐼 is of the form ∀+∃∗, we can apply only the
rule While-∀∗∃∗, because our invariant is not of the form ∃⟨𝜎⟩. 𝑃 , required by the rule While-∃.
Similarly, when 𝐼 is of the form ∃+∀+, we can apply only the rule While-∃, because 𝐼 does not
satisfy the syntactic restriction from the rule While-∀∗∃∗. Thus, there exists a choice between those
two loop rules only when 𝐼 has the shape ∃+ and a loop variant is provided (otherwise the rule
While-∃ cannot be applied). In this case, the ruleWhile-∃ is more powerful, since it easily allows
proving that the existentially-quantified states in 𝐼 will still exist after the while loop, thanks to the
loop variant. As a concrete example, let 𝐼 ≜ ∃⟨𝜎⟩. 𝜎 (𝑥) = 𝜎 (𝑦). We can use the ruleWhile-∃ with
𝑃𝜎 ≜ (𝜎 (𝑥) = 𝜎 (𝑦)), which gives us the desired postcondition ∃⟨𝜎⟩. 𝜎 (𝑥) = 𝜎 (𝑦) in its conclusion.
In contrast, the postcondition of the conclusion of the rule While-∀∗∃∗ is some hyper-assertion
𝑄 , such that |= [∃⟨𝜎⟩. 𝜎 (𝑥) = 𝜎 (𝑦)] assume ¬b [𝑄] holds. In particular, we can get our desired
postcondition ∃⟨𝜎⟩. 𝜎 (𝑥) = 𝜎 (𝑦) only if 𝜎 (𝑥) = 𝜎 (𝑦) implies ¬𝑏, which will typically not be the
case (because ∃⟨𝜎⟩. 𝜎 (𝑥) = 𝜎 (𝑦) is our loop invariant, which has to already hold before the loop).
Thus, when applicable, our tool applies the rule While-∃ over the rule While-∀∗∃∗, which then
recursively applies the same automatic loop rule selection with the smaller loop invariant 𝑃 , as
shown in Fig. 10.

4.2 ∀∗∃∗-Hyperproperties
In some cases, the only loop rule that can be applied is the ruleWhile-∀∗∃∗. Automating this rule is
surprisingly not straightforward. Checking the premise |= [𝐼 ] if (𝑏) {𝐶} [𝐼 ] of the rule is easy, as
it can be checked separately using the user-provided loop invariant 𝐼 . However, deriving from the
loop invariant 𝐼 a suitable postcondition𝑄 that satisfies the syntactic restriction is more challenging.
In the following, we first show why the naive semantic approach for deriving𝑄 does not work, and
then discuss our solution, which derives 𝑄 syntactically from 𝐼 .

Naively deriving 𝑄 semantically is unsound. A natural idea is to check the syntactic restriction
(no universal state-quantifier should occur under an existential quantifier) on 𝐼 instead of 𝑄 , and
then to derive 𝑄 from 𝐼 semantically, i.e., we can obtain the postcondition 𝑄 by considering a fresh
set of states after the loop, assuming that it satisfies 𝐼 , and then encoding assume ¬b. We cannot
check the syntactic restriction on 𝑄 (as mandated by the rule) directly, since 𝑄 is not a syntactic
hyper-assertion. Unfortunately, this natural idea surprisingly results in an unsound encoding, as
we illustrate next.

As an example unsoundly accepted by this naive encoding, consider the method naive_encoding

from Fig. 11. Depending on the value of 𝑡 , this method will either loop forever (if 𝑡 = 1) or simply
increment 𝑥 until 𝑥 = 𝑛 (if 𝑛 ≥ 0 and 𝑡 = 2). Our precondition6 requires the existence of a state that
6Note that no precondition is actually required for the naive encoding to be unsound on this example, but we use one to
simplify the explanations.
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method naive_encoding(t: Int, n: Int) returns (x: Int)
requires ∃ ⟨𝜎1 ⟩ . 𝜎1 ( 𝑡 ) = 1
requires ∀𝑣 . 𝑣 ≥ 0 ⇒ ∃⟨𝜎2 ⟩ . 𝜎2 ( 𝑡 ) = 2 ∧ 𝜎2 (𝑛 ) = 𝑣

ensures ∃𝑣 . ∀⟨𝜎 ⟩ . 𝜎 (𝑥 ) ≤ 𝑣 // this postcondition does not hold
{

x := 0
while (t = 1 || x < n)

invariant ∃ ⟨𝜎1 ⟩ . 𝜎1 ( 𝑡 ) = 1
invariant ∀⟨𝜎1 ⟩ , ⟨𝜎2 ⟩ . 𝜎1 ( 𝑡 ) = 1 ⇒ 𝜎1 (𝑥 ) ≥ 𝜎2 (𝑥 )

{
x := x + 1

}
}

Fig. 11. An example showing why a naive encoding based on the ruleWhile-∀∗∃∗ would be unsound.

will loop forever (𝑡 = 1), and, for all possible non-negative values 𝑣 of 𝑛, the existence of a state
that will do 𝑛 iterations until 𝑥 = 𝑛. The postcondition, which does not hold, requires the existence
of an upper bound 𝑣 for the value of 𝑥 in all states.

To understand why this postcondition does not hold, consider a set of states S that satisfies the
precondition, i.e., 𝑆 contains at least one state with 𝑡 = 1, and, for each natural number 𝑣 , 𝑆 contains
a state 𝜎 where 𝜎 (𝑛) = 𝑣 and 𝜎 (𝑡) = 2. Moreover, let 𝑆 ′ be the set of states after the loop. For all
states with 𝑡 = 2, 𝑥 will be equal to n after the while loop, i.e., ∀𝜎 ′ ∈ 𝑆 ′ . 𝜎 ′ (𝑡) = 2 ⇒ 𝜎 ′ (𝑥) = 𝜎 ′ (𝑛).
Thus, for each natural number 𝑣 , 𝑆 ′ contains a state 𝜎 ′ where 𝜎 ′ (𝑥) = 𝜎 ′ (𝑛) = 𝑣 (and 𝜎 ′ (𝑡) = 2). In
particular, this implies that the set of values {𝜎 ′ (𝑥) | 𝜎 ′ ∈ 𝑆 ′} does not have an upper bound. This
contradicts the postcondition, which expresses the existence of such an upper bound.

We now explain why the naive encoding described above accepts this program. The first premise
of the ruleWhile-∀∗∃∗, |= [𝐼 ] if (𝑡 = 1∨𝑥 < 𝑛) {𝑥 := 𝑥 + 1} [𝐼 ], holds, since any state 𝜎1 with 𝑡 = 1
will enter the if-branch, and thus 𝜎1 will keep having the maximal value (among all executions)
for 𝑥 . Moreover, the loop invariant 𝐼 satisfies the syntactic restriction (no ∀⟨_⟩ appears under any
existential quantifier), and 𝐼 clearly holds before the loop, since 𝑥 = 0 in all states. Finally, let
us consider what happens after the loop, and why this encoding allows us to derive the wrong
postcondition. Let 𝑆 be a set of states that satisfies the loop invariant 𝐼 , and let 𝑆 ′ be the set of
states obtained by executing assume ¬(t = 1 ∨ x < n) in all states from 𝑆 . Note that 𝑆 ′ corresponds
to the subset of states from 𝑆 that satisfy 𝑡 ≠ 1 ∧ 𝑥 ≥ 𝑛. From 𝐼 , we learn that there is a state 𝜎1
in 𝑆 where 𝑡 = 1, and that this state 𝜎1 has the maximum value for 𝑥 among all states in 𝑆 . Thus,
there exists an upper bound 𝑣 for the value of 𝑥 in all states from 𝑆 , namely 𝑣 ≜ 𝜎1 (𝑥). Since 𝑆 ′ is a
subset of 𝑆 , this upper bound 𝑣 is also an upper bound for the value of 𝑥 in all states from 𝑆 ′, which
corresponds to the incorrect postcondition.

A new rule for automating ∀∗∃∗-hyperproperties. The previous example shows that deriving the
postcondition𝑄 semantically from 𝐼 , while checking the syntactic restriction on the loop invariant 𝐼 ,
is unsound. We solve this issue by deriving the postcondition𝑄 syntactically from 𝐼 while enforcing
the syntactic restriction on 𝐼 . This allows us to obtain a sound rule, which can be automated in
a straightforward way as shown by Fig. 9c. We obtain the postcondition from 𝐼 , which we write
Θ¬𝑏 (𝐼 ), by recursively replacing all instances of ∃⟨𝜎⟩. 𝑃 with ∃𝜎. 𝑃 ∧ (¬𝑏 ⇒ ⟨𝜎⟩).7 That is, the
postcondition ensures that the existentially-quantified states in 𝐼 exist, but they are not guaranteed
7We overload the notation ⟨𝜎 ⟩ to mean 𝜆𝑆. 𝜎 ∈ 𝑆 , i.e., the formula is equivalent to 𝜆𝑆. ∃𝜎. 𝑃 ∧ (¬𝑏 ⇒ 𝜎 ∈ 𝑆 ) .
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to belong to the set of states after the loop: they belong to the set of states after the loop if they
satisfy the negation ¬𝑏 of the loop guard. Although Θ¬𝑏 (𝐼 ) is not a well-formed hyper-assertion
according to the syntax in Sect. 2.2, this is not an issue since Θ¬𝑏 (𝐼 ) is not an annotation in a
user-written program but only appears in the generated Viper program. In the example from Fig. 11,
we obtain from 𝐼 the postcondition Θ¬𝑏 (𝐼 ) = (∃𝜎1. 𝜎1 (𝑡) = 1 ∧ (¬(𝜎1 (𝑡) = 1 ∨ 𝜎1 (𝑥) < 𝜎1 (𝑛)) ⇒
⟨𝜎1⟩)) ∧ (∀⟨𝜎1⟩, ⟨𝜎2⟩. 𝜎1 (𝑡) = 1 ⇒ 𝜎1 (𝑥) ≥ 𝜎2 (𝑥)), which does not entail the wrong postcondition
anymore. Indeed, while we still learn the existence of a state 𝜎1 where 𝑡 = 1, we do not learn that 𝜎1
belongs to the set of states after the loop, because we cannot prove ¬(𝜎1 (𝑡) = 1 ∨ 𝜎1 (𝑥) < 𝜎1 (𝑛)),
and, thus, we cannot conclude that ∀⟨𝜎2⟩. 𝜎1 (𝑥) ≥ 𝜎2 (𝑥).

We have proven in Isabelle/HOL [Nipkow et al. 2002] that this novel rule, which our tool leverages,
is sound:

Theorem 1. Novel loop rule for ∀∗∃∗-hyperproperties. Let 𝐶 be a program statement, 𝑏 a
program expression, and 𝐼 a (syntactic) hyper-assertion such that 𝐼 contains no ∀⟨_⟩ after any ∃. If
|= [𝐼 ] if (𝑏) {𝐶} [𝐼 ] holds, then |= [𝐼 ] while (𝑏) {𝐶} [Θ¬𝑏 (𝐼 ) ∧ □(¬𝑏)] holds.

Proof sketch. To prove this result, we use the fact that sem(while (𝑏) {𝐶}, 𝑆), the semantics
of the while loop given a set of initial states 𝑆 , can be seen as the limit of sem( [if (𝑏) {𝐶}]𝑛 ;
assume ¬b, 𝑆) as 𝑛 goes to infinity, where [if (𝑏) {𝐶}𝑛] represents the statement if (𝑏) {𝐶}
sequentially composed with itself 𝑛 times. More formally:

sem(while (𝑏) {𝐶}, 𝑆) =
⋃
𝑛∈N

sem( [if (𝑏) {𝐶}]𝑛 ; assume ¬b, 𝑆) (*)

In other words, every state after the loop must have exited the loop after 𝑛 iterations, for some 𝑛. In
particular, note that the sequence of sets (sem( [if (𝑏) {𝐶}]𝑛 ; assume ¬b, 𝑆))𝑛∈N is non-decreasing.
That is, the set of states that exit the loop in the first 𝑛 iterations can only grow when 𝑛 grows.
We then prove the following property P(𝐼 ), by structural induction over the syntactic hyper-

assertion 𝐼 : "For any non-decreasing sequence (𝑆𝑛)𝑛∈N of set of states, if 𝐼 contains no ∀⟨_⟩ after any
∃, and if ∀𝑛. 𝑆𝑛 |= Θ¬𝑏 (𝐼 ), then (⋃𝑛 𝑆𝑛) |= Θ¬𝑏 (𝐼 ) holds". The theorem follows from this property
and the aforementioned identity (*). In the following, we discuss four cases of the induction; all
other cases are trivial.
The cases for P(∃𝑦. 𝐼 ) and P(∃⟨𝜎⟩. 𝐼 ) are straightforward: By the syntactic restriction, we know

that 𝐼 contains no ∀⟨_⟩, and so does Θ¬𝑏 (𝐼 ). Intuitively, this means that Θ¬𝑏 (𝐼 ) only cares about
the existence of states, and thus Θ¬𝑏 (𝐼 ) grows monotonically (which can be proven by an additional
trivial induction on 𝐼 ): If it is satisfied by a set of states, then it will be satisfied by any superset of
this set. Since it is satisfied by all 𝑆𝑛 , it is also satisfied by their union.
For the case P(∀⟨𝜎⟩. 𝐼 ), we get to assume (1) P(𝐼 ) and (2) ∀𝑛. 𝑆𝑛 |= ∀⟨𝜎⟩.Θ¬𝑏 (𝐼 ), and we want

to prove (⋃𝑛 𝑆𝑛) |= ∀⟨𝜎⟩.Θ¬𝑏 (𝐼 ). To prove this, let 𝜎 be a state in
⋃

𝑛 𝑆𝑛 , and let us prove that
(⋃𝑛 𝑆𝑛), 𝜎 |= Θ¬𝑏 (𝐼 ) (which informally means that the previously existentially-quantified state
𝜎 is instantiated in Θ¬𝑏 (𝐼 ) to the concrete state)8. Because 𝜎 ∈ ⋃

𝑛 𝑆𝑛 , there exists a 𝑘 such that
𝜎 ∈ 𝑆𝑘 . Let 𝑆 ′ such that ∀𝑛. 𝑆 ′𝑛 = 𝑆𝑛+𝑘 . Because ∀𝑛. 𝑆 ′𝑛, 𝜎 |= Θ¬𝑏 (𝐼 ), we can use the induction
hypothesis P(𝐼 ) to get that (⋃𝑛 𝑆

′
𝑛) |= Θ¬𝑏 (𝐼 ). Finally, notice that (

⋃
𝑛 𝑆𝑛) = (⋃𝑛 𝑆

′
𝑛), because 𝑆 is

non-decreasing, which concludes the case.
For the case P(𝐼1 ∨ 𝐼2), we get to assume (1) P(𝐼1), (2) P(𝐼2), and (3) ∀𝑛. 𝑆𝑛 |= Θ¬𝑏 (𝐼1) ∨Θ¬𝑏 (𝐼2),

and we want to prove (⋃𝑛 𝑆𝑛) |= Θ¬𝑏 (𝐼1) ∨Θ¬𝑏 (𝐼2). By (3), we know that Θ¬𝑏 (𝐼1) ∨Θ¬𝑏 (𝐼2) is true
infinitely often, which implies that eitherΘ¬𝑏 (𝐼1) is true infinitely often, orΘ¬𝑏 (𝐼2) is true infinitely
often. Without loss of generality, let us assume that Θ¬𝑏 (𝐼1) is true infinitely often, and let 𝑆 ′ be an
infinite subsequence of 𝑆 such that ∀𝑛. 𝑆 ′𝑛 |= Θ¬𝑏 (𝐼1). By the induction hypothesis P(𝐼1), we get
8In our mechanization, we use de Bruijn indices to handle quantifiers, which we ignore in this paper for simplicity.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 316. Publication date: October 2024.



Hypra: A Deductive Program Verifier for Hyper Hoare Logic 316:21

method framing1(x: Int) returns (y: Int)
requires ∀⟨𝜎1 ⟩ , ⟨𝜎2 ⟩ . 𝜎1 (𝑥 ) = 𝜎2 (𝑥 )
requires ∀⟨𝜎 ⟩ . 𝜎 (𝑥 ) ≥ 0
ensures ∀⟨𝜎1 ⟩ , ⟨𝜎2 ⟩ . 𝜎1 (𝑦 ) = 𝜎2 (𝑦 )

{
y := 0
while (y < x)

invariant ∀⟨𝜎 ⟩ . 𝜎 (𝑦 ) ≤ 𝜎 (𝑥 )

{ y := y + 1 }
}

method framing2(x: Int) returns (y: Int)
requires ∃ ⟨𝜎 ⟩ . ∀⟨𝜎 ′ ⟩ . 𝜎 (𝑥 ) ≥ 𝜎 ′ (𝑥 )
requires ∀⟨𝜎 ⟩ . 𝜎 (𝑥 ) ≥ 0
ensures ∃ ⟨𝜎 ⟩ . ∀⟨𝜎 ′ ⟩ . 𝜎 (𝑦 ) ≥ 𝜎 ′ (𝑦 )

{
y := 0
while (y < x)

invariant ∀⟨𝜎 ⟩ . 𝜎 (𝑦 ) ≤ 𝜎 (𝑥 )
decreases x - y

{ y := y + 1 }
}

Fig. 12. An example from Hypra that requires automatic framing to be successfully verified.

that (⋃𝑛 𝑆
′
𝑛) |= Θ¬𝑏 (𝐼1). Moreover, because 𝑆 is non-decreasing, we get that (⋃𝑛 𝑆𝑛) = (⋃𝑛 𝑆

′
𝑛),

which concludes the case. □

4.3 Automatic Framing
In the previous subsections, we have shown how we derived verification conditions from the
loop rules offered by Hyper Hoare Logic. However, using those loop rules on their own (and not
in conjunction with other rules as we show below) has the limitation that only the information
provided by the loop invariant is preserved, as we illustrate with the examples in Fig. 12. Consider
the method framing1 on the left of the figure, which increments 𝑦 in a loop until 𝑥 = 𝑦. We want to
prove that if 𝑥 has the same initial value in all executions, then 𝑦 will have the same final value in
all executions. Using the standard (unary) loop invariant ∀⟨𝜎⟩. 𝜎 (𝑦) ≤ 𝜎 (𝑥), we can easily prove
that, after the loop, 𝑥 = 𝑦 in all states (1). Moreover, since all executions have the same value for
𝑥 before the loop, and since 𝑥 is not modified by the loop, all executions will still have the same
value for 𝑥 after the loop (2). By conjoining (1) and (2), we get the postcondition.

Unfortunately, the loop encodings presented so far are only able to prove (1), but not (2), since
they assume only (a property derived from) the loop invariant after the loop. Because our loop
invariant does not mention that 𝑥 has the same value in all executions, this piece of information is
lost after the loop.
One way to solve this particular problem is to add this information to the loop invariant, by

conjoining ∀⟨𝜎1⟩, ⟨𝜎2⟩. 𝜎1 (𝑥) = 𝜎2 (𝑥) to it. This solution is cumbersome for the user, who is
required to write longer invariants, by adding information not relevant for the loop (but only for the
postcondition later). Another way to solve this issue is to use the following rule from Hyper Hoare
Logic (where mod (𝐶) represents the variables modified by 𝐶 and fv(𝐹 ) the (program) variables
that appear in 𝐹 ), which allows propagating information about variables not modified by the loop
after the loop:

|= [𝑃] 𝐶 [𝑄] no ∃⟨_⟩ in 𝐹 mod (𝐶) ∩ fv(𝐹 ) = ∅
(FrameSafe)

|= [𝑃 ∧ 𝐹 ] 𝐶 [𝑄 ∧ 𝐹 ]

Since 𝑥 is not modified by the loop, we can use this rule with 𝐹 ≜ (∀⟨𝜎1⟩, ⟨𝜎2⟩. 𝜎1 (𝑥) = 𝜎2 (𝑥)) to
solve our issue. Our goal is to use this rule to automatically frame information around the loop,
without requiring the user to provide 𝐹 .
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We achieve this by recording the set of states before the loop in an auxiliary variable 𝑆𝑝 , and by
adding (after the loop) the assumption that, for each state in the set of states after the loop, there
must exist a state in 𝑆𝑝 with the same values for all variables not modified by 𝐶:

𝑆𝑝 := 𝑆

... // loop encoding
assume ∀𝜎 ′ ∈ 𝑆 . ∃𝜎 ∈ 𝑆𝑝 . (∀𝑥 . 𝑥 ∉ fv (𝐶 ) ⇒ 𝜎 (𝑥 ) = 𝜎 ′ (𝑥 ) ) // (F-OX)

Intuitively, adding this assumption is sound because every state 𝜎 ′ after the loop corresponds
to the final state of an execution of 𝐶 in an initial state 𝜎 from 𝑆𝑝 , and thus 𝜎 and 𝜎 ′ must have
the same values for the variables not modified by 𝐶 . Formally, this encoding is justified by the
following straightforward lemma:

Lemma 1. ∀𝜎 ′ ∈ sem(𝐶, 𝑆). ∃𝜎 ∈ 𝑆.∀𝑥 ∉ mod (𝐶). 𝜎 (𝑥) = 𝜎 ′ (𝑥)

This encoding is stronger than any possible application of the rule FrameSafe, since the former
logically implies the latter (for any frame 𝐹 ). To see why it solves the issue from our example,
consider two states 𝜎 ′

1 and 𝜎
′
2 that belong to the set of states 𝑆 after the loop. From the assumption (F-

OX), we get the existence of two states 𝜎1 and 𝜎2 from 𝑆𝑝 , such that 𝜎1 (𝑥) = 𝜎 ′
1 (𝑥) and 𝜎2 (𝑥) = 𝜎 ′

2 (𝑥).
Because of the precondition, we know that 𝜎1 (𝑥) = 𝜎2 (𝑥), and thus can conclude that 𝜎 ′

1 (𝑥) = 𝜎 ′
2 (𝑥).

Framing hyperproperties with existentially-quantified states. Note that the rule FrameSafe has the
restriction that 𝐹 is not allowed to existentially quantify over states. To see why this is a limitation,
consider as an example the method framing2 on the right of Fig. 12. This method has the same body
and loop invariant as method framing1, but we now want to prove that if there is an execution
whose initial value 𝑥 is maximal (among all executions), then there should exist an execution whose
final value for 𝑦 is also maximal. In this case, we would like to apply the rule FrameSafe with the
frame 𝐹 ≜ (∃⟨𝜎⟩.∀⟨𝜎 ′⟩. 𝜎 (𝑥) ≥ 𝜎 ′ (𝑥)), but cannot because of this restriction.
To overcome this limitation, Hyper Hoare Logic provides the following rule, which lifts this

restriction:

mod (𝐶) ∩ fv(𝐹 ) = ∅ |=⇓ [𝑃] 𝐶 [𝑄] 𝐹 is a syntactic hyper-assertion
(Frame)

|=⇓ [𝑃 ∧ 𝐹 ] 𝐶 [𝑄 ∧ 𝐹 ]

This rule requires however to prove a stronger triple, the terminating hyper-triple |=⇓ [𝑃] 𝐶 [𝑄],
which must ensure the existence of a terminating execution from any initial state. In our tool,
we can ensure that a triple around a loop while (𝑏) {𝐶} is terminating as long as 𝐶 contains no
assume statements, and this loop and all nested loops in𝐶 terminate, i.e., have been annotated with
a decreases clause. This is for example the case for the loop in method framing2. When those two
conditions hold, it is sound to strengthen the previous encoding with the additional assumption
(F-UX), as follows:

𝑆𝑝 := 𝑆

... // loop encoding
assume ∀𝜎 ′ ∈ 𝑆 . ∃𝜎 ∈ 𝑆𝑝 . (∀𝑥 . 𝑥 ∉ fv (𝐶 ) ⇒ 𝜎 (𝑥 ) = 𝜎 ′ (𝑥 ) ) // (F-OX)
assume ∀𝜎 ∈ 𝑆𝑝 . ∃𝜎 ∈ 𝑆 . (∀𝑥 . 𝑥 ∉ fv (𝐶 ) ⇒ 𝜎 (𝑥 ) = 𝜎 ′ (𝑥 ) ) // (F-UX)

Together, those two assumptions are stronger than the application of the rule Frame for any
frame 𝐹 . For example, emitting those two assumptions together lets us automatically derive that
∃⟨𝜎⟩.∀⟨𝜎 ′⟩. 𝜎 (𝑥) ≥ 𝜎 ′ (𝑥) holds after the loop in our example. However, we have noticed in practice
that emitting the assumption (F-UX) does not interact well with the encoding described in Sect. 3.2,
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andmight result in matching loops. Thus, our tool provides an option to emit this second assumption
(when applicable), which is disabled by default.

5 Implementation and Evaluation
We implemented Hypra, a deductive program verifier for hyperproperties, on top of Viper; that is,
Hypra takes as input a text file, translates it into a Viper program (as described in Sect. 3), calls the
Viper verifier to verify this program, and then translates the output (successful verification or error
messages) back to the user.9
We evaluated Hypra on a diverse set of examples, which includes many examples from the

literature, to answer the following questions:
(RQ1) Can our tool (dis-)prove hyperproperties of different types, namely ∀∗, ∃∗, ∀∗∃∗, and ∃∗∀∗?
(RQ2) How many lines of proof annotations are needed by our tool?
(RQ3) Can our tool verify complex examples in a reasonable amount of time?

In summary, our evaluation shows that our tool can efficiently (dis-)prove hyperproperties of
different types with a reasonable amount of proof annotations, and it can do so within a reasonable
amount of time. In the following, we describe how we selected our benchmarks, how we ran the
experiments, and present and discuss the results.

Benchmarks. To evaluate Hypra, we used the benchmarks from Descartes [Sousa and Dillig
2016], HyPa [Beutner and Finkbeiner 2022], ORHLE [Dickerson et al. 2022], and PCSat [Unno et al.
2021]: We selected a subset of their publicly-available benchmarks and translated them into the
programming language supported by our tool to form our benchmarks. We selected the benchmarks
based on the following criteria:
(1) For Descartes, ORHLE, HyPa, and PCSat, we ignored the benchmarks that use data struc-

tures not supported by our tool, such as arrays.
(2) For Descartes, we ignored the benchmarks that use objects with more than 3 fields, since

translating fields into the language supported by our tool is cumbersome.
(3) For ORHLE, HyPa, and PCSat, we ignored the benchmarks that prove hyperproperties over

different programs, since our tool does not support this.
(4) For PCSat, we selected only the benchmarks that do not require reasoning about co-termination,

since our tool does not support this.
For each selected benchmark, we translated it to the syntax accepted by Hypra. To obtain

hyper-triples semantically equivalent to the original specifications, we used the formal translations
given by Dardinier and Müller [2024]. In addition, we annotated the translated benchmarks with
loop variants, loop invariants and hints when necessary.

For invalid benchmarks that fail to prove ∀∗ or ∀∗∃∗-hyperproperties, we also formally disprove
them. To do so, we strengthened the preconditions and proved the negation of the original postcon-
ditions [Dardinier and Müller 2024, Theorem 4]. In particular, this allows us to obtain benchmarks
that prove ∃∗∀∗-hyperproperties, which are not included in the benchmark suites we draw from.

In total, we obtained 84 benchmarks. Fig. 13 provides more details about the selected benchmarks.

Experimental Setup. We ran Hypra to verify the translated benchmarks on a MacBook Pro
running macOS Ventura 13.3 with a 2.3 GHz 8-Core Intel Core i9 processor and 32 GB RAM. Each
benchmark was run with 10 repetitions. For each run, we recorded the verification result and
runtime. In the end, we checked that the verification results in all runs were consistent, and also
computed the average verification time for each benchmark.
9Viper actually provides two verifiers, one based on symbolic execution, and one based on Boogie [Leino 2008]. Our tool
uses the two Viper verifiers to verify the generated Viper program, and reports the first successful verification result.
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Type of Source Files Verification time Annotations
hyperproperty no. Mean (LoC) Mean (s) Median (s) Mean (LoC)

∀∗
Descartes 15 129 2.3 1.7 0.0
PCSat 3 23 1.1 1.1 2.7
Overall 18 111 2.1 1.6 0.4

∃∗
Descartes† 8 81 13.0 5.0 0.0
ORHLE 6 29 2.9 2.5 7.7
Overall 14 59 8.7 3.5 3.3

∀∗∃∗
ORHLE 28 20 2.3 1.4 1.2
HyPa 8 14 1.2 1.1 2.1
PCSat 1 22 1.2 1.2 2.0
Overall 37 19 2.0 1.3 1.4

∃∗∀∗ ORHLE† 15 25 1.6 1.2 1.7

Fig. 13. Results of our evaluation. Benchmarks marked with † are obtained by strengthening the preconditions

and negating the postconditions of the original benchmarks that fail to prove ∀∗ or ∀∗∃∗-hyperproperties.
We count use statements, loop variants and loop invariants as annotations.

Results. The results of our evaluation are shown in Fig. 13. As we can see, Hypra can han-
dle not only all ∀∗, ∃∗ and ∀∗∃∗-hyperproperties that other verifiers can handle, but also ∃∗∀∗-
hyperproperties, which no other existing verifier supports.

Although verification using Hypra is not fully automated, it only requires a reasonable amount
of proof annotations from users, which is evidenced by the last column of Fig. 13.

Moreover, Hypra is quite efficient in general. On average, it took Hypra 258 seconds to run the
entire benchmark suite composed of 84 programs. For 93% of the benchmarks, verification finished
within 5 seconds. In some rare cases, the runtime was relatively long, with the maximum runtime
around 35 seconds. This is not unexpected, since some of those benchmarks have very complex
commands (such as lots of nested conditional statements) and specifications (such as preconditions
and postconditions of the shape ∃∃∃∀∀∀).
In summary, our evaluation demonstrates that Hypra can effectively verify hyperproperties of

different types with a reasonable amount of proof annotations and within a reasonable amount of
time.

6 Related Work
In this section, we first cover related program logics for hyperproperties (Sect. 6.1), and then tools
and approaches for automatically verifying hyperproperties (Sect. 6.2).

6.1 Program Logics for Hyperproperties
As discussed in Sect. 1, many logics to prove that a program satisfies a safety hyperproperty [Clark-
son and Schneider 2008] have been proposed over the years [Naumann and Ngo 2019]. Many
of those logics actually prove relational properties, i.e., properties that relate the executions of
several (potentially different) programs. For example, Relational Hoare Logic (RHL) [Benton 2004]
extends Hoare Logic [Floyd 1967; Hoare 1969] to reason about ∀∀-properties relating the executions
of two programs, e.g., to prove the correctness of some program transformations. RHL has later
been extended to handle more complex programs. For example, RHL has been combined with
separation logic [Reynolds 2002], to support relational properties between two heap-manipulating
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programs in a modular way [Yang 2007]. RHL has also been extended to reason about higher-
order programs [Aguirre et al. 2017]. Several program logics [Amtoft et al. 2006; Costanzo and
Shao 2014; Eilers et al. 2023; Ernst and Murray 2019] have been designed specifically to prove
non-interference [Volpano et al. 1996] properties, a particular case of 2-safety hyperproperties over
pairs of executions of a single program.
Several important safety hyperproperties are not 2-safety hyperproperties, but 𝑘-safety hyper-

properties for 𝑘 > 2, such as transivity (𝑘 = 3) or associativity (𝑘 = 4). Sousa and Dillig [2016]
have proposed Cartesian Hoare Logic (CHL) to reason about 𝑘-safety properties for any fixed 𝑘 .
D’Osualdo et al. [2022] have identified several limitations of CHL when trying to compose together
proofs of different 𝑘-safety properties, and have proposed a novel weakest-precondition calculus to
overcome these limitations. Gladshtein et al. [2024] have further extended the previous calculus to
handle heap-manipulating programs and 𝑘-safety properties for values of 𝑘 depending on program
variables, which is useful to specify and verify computations over structured data.

All aforementioned logics are overapproximate logics, that is, they work by overapproximating
the set of executions, which is sufficient for proving safety hyperproperties. However, hyperprop-
erties outside the safety class require proving the existence of relevant executions, which requires
underapproximation. Underapproximate logics include Reverse Hoare Logic [de Vries and Koutavas
2011] and Incorrectness Logic [O’Hearn 2019], which are useful to prove reachability properties or
the existence of bugs. Underapproximate logics have proven useful to justify the formal foundations
of industrial bug-finding tools [Blackshear et al. 2018; Distefano et al. 2019; Gorogiannis et al.
2019; Le et al. 2022]. Several logics combine over- and underapproximation reasoning for single
executions, such as Dynamic Logic [Harel 1979], Outcome Logic [Zilberstein et al. 2023], Exact
Separation Logic [Maksimović et al. 2023], or Local Completeness Logic [Bruni et al. 2021]. Recently,
Murray [2020] has proposed a program logic for ∃∃-hyperproperties, to prove the presence of
insecurity in a program.

Finally, several program logics combining over- and underapproximation reasoning for relating
multiple executions have been proposed, to reason about∀∗∃∗ or ∃∗∀-hyperproperties. Maillard et al.
[2019] present a general framework for defining relational program logics (for two executions of two
potentially different programs), which can be instantiated for ∀∃-properties. RHLE [Dickerson et al.
2022] combines an underapproximate and an overapproximate Hoare logic, to support relational
∀∗∃∗-properties between (potentially different) programs. Antonopoulos et al. [2023] present BiKAT,
an extension of KAT [Kozen 1997], useful to reason about alignment in the context of relational
verification, and derive from BiKAT inference rules for ∀∀ and ∀∃-properties. The authors also
show that BiKAT can in principle also be used for ∃∃ and ∃∀-properties. Finally, Dardinier and
Müller [2024] present Hyper Hoare Logic (HHL), on which we base our work. Unlike the previously-
mentioned logics, HHL is tailored to properties relating the executions of a single program, and does
not support relational properties between different programs. However, HHL supports a larger class
of hyperproperties than these logics, since it supports hyperproperties with arbitrary quantifier
alternations.

6.2 Automated Verification of Hyperproperties
Deductive Verification. Deductive verifiers are tools that, given as input a program, a specifica-

tion, and proof hints (such as loop invariants), try to automatically construct a proof in a given
program logic that the program satisfies the specification. Many deductive verifiers based on
SMT solvers (such as Z3 [de Moura and Bjørner 2008]) have been developed for verifying safety
properties, i.e., properties that should hold for all individual executions, such as Boogie [Leino 2008],
Why3 [Filliâtre and Paskevich 2013], Dafny [Leino 2010], or Viper [Müller et al. 2016].
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The problem of verifying that a program satisfies a 𝑘-safety hyperproperty can be reduced to the
problem of verifying that a product program [Barthe et al. 2011; Terauchi and Aiken 2005] satisfies
a safety property, where the product program is for example obtained by composing sequentially 𝑘
renamed copies of the original program. The product program can then be verified using deductive
verifiers tailored for safety properties. Eilers et al. [2019] show how to treat method calls modularly
in this context, allowing methods to have relational preconditions and postconditions, similar to
the ∀∗-specifications shown in Sect. 2 (for example in Fig. 2).
Deductive verifiers specifically targeting hyperproperties have been developed as well. Those

include WhyRel [Nagasamudram et al. 2023], SecC (based on SecCSL) [Ernst and Murray 2019],
and HyperViper (based on CommCSL) [Eilers et al. 2023] for non-interference [Volpano et al.
1996] (a 2-safety hyperproperty), Descartes (based on Cartesian Hoare Logic) [Sousa and Dillig
2016] for 𝑘-safety hyperproperties, and ORHLE (based on RHLE) [Dickerson et al. 2022] for ∀∗∃∗-
hyperproperties. As our evaluation shows, our tool handles well the benchmarks from Descartes
and ORHLE, and can even disprove invalid ones. Compared to ORHLE, the closest to our work,
our tool Hypra is more expressive, since it also supports for example ∃∗∀∗-hyperproperties, and
supports reasoning about runtime errors. Our tool is also more flexible, since it allows the user
to write explicit quantifiers in the assertion language itself, and thus allows one to combine
different types of hyperproperties in the same proof, whereas ORHLE requires the user to fixed
the quantification scheme in advance. Moreover, even for ∀∗∃∗-hyperproperties, our tool supports
reasoning about more complex proof patterns, such as while loops where different executions
might exit at different iterations.
Other approaches have been developed to automatically verify hyperproperties [Assaf et al.

2017; Barthe et al. 2019; Farzan and Vandikas 2019; Itzhaky et al. 2024; Unno et al. 2021]. For
example, Assaf et al. [2017] use abstract interpretation [Cousot and Cousot 1977] to verify different
hypersafety properties related to information flow, including some safety hyperproperties that
are not 𝑘-safety for any 𝑘 . To achieve this, they present a hypercollecting semantics, similar in
spirit to the function sem (Def. 1) from Hyper Hoare Logic. Unno et al. [2021] present PCSat, a
tool based on a generalization of Constrained Horn Clauses [Bjørner et al. 2015] to automatically
verify 𝑘-safety hyperproperties, and more complex hyperproperties such as termination-sensitive
non-interference [Volpano and Smith 1997], and generalized non-interference [McCullough 1987;
McLean 1996]. As shown in our evaluation, our tool Hypra can handle all the benchmarks from
PCSat that fall in our supported subset of programs, with a reasonable amount of proof annotations
and in reasonable time. Extending Hypra to reason about properties such as termination-sensitive
non-interference is future work.

Finally, temporal logics to express hyperproperties have been proposed, such as HyperLTL and
HyperCTL* [Clarkson et al. 2014], and model checking [Clarke 1997] algorithms to check whether
finite-state systems satisfy hyperproperties expressed in these temporal logics have been pro-
posed [Finkbeiner et al. 2015]. For example, Hsu et al. [2021] have proposed algorithms for bounded
model checking, Coenen et al. [2019] proposedmodel checking algorithms for∀∗∃∗-hyperproperties,
and Beutner and Finkbeiner [2023] proposed an explicit-state model checking algorithm that is
complete for HyperLTL and for hyperproperties with arbitrary quantifier alternations. Beutner
and Finkbeiner [2022] have also shown that model checking techniques for ∀∗∃∗ can be applied to
infinite-state systems, by using predicate abstraction.

7 Conclusion and Future Work
In this paper, we have presented a novel approach for the deductive verification of hyperproperties,
including hyperproperties of the shape ∀∗∃∗ and ∃∗∀∗. Our approach, based on an extension of
Hyper Hoare Logic [Dardinier and Müller 2024] to reason about runtime errors (Sect. 2.2) and
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implemented in the tool Hypra, tracks a lower bound and an upper bound of the set of reachable
states and the set of error states (Sect. 3.1), and combines both bounds with some carefully-designed
restrictions to avoid matching loops (Sect. 3.2). Our tool is able to automatically generate verification
conditions for loops, based on a user-provided loop invariant and an optional variant. To achieve
this, our tool automatically selects the best loop rule to apply based on the context (Sect. 4.1),
which includes a novel loop rule for proving ∀∗∃∗-hyperproperties (Sect. 4.2), proved sound in
Isabelle/HOL. Finally, our tool is able to automatically frame hyperproperties untouched by loops
(Sect. 4.3), leading to more concise loop invariants. Our evaluation (Sect. 5) shows that Hypra can
prove a large class of hyperproperties for a large class of programs, in a reasonable amount of time
and with a reasonable amount of proof annotations.
Our work opens several avenues for future work. Currently, our tool does not support heap-

manipulating programs. One interesting research direction would thus be to extend Hyper Hoare
Logic to support reasoning about heap-manipulating programs in a modular way (for example by
borrowing concepts from separation logic [Reynolds 2002]), and then extend our approach based
on this extended logic. Another interesting research direction would be to extend our approach
to support relational properties with arbitrary quantifier alternations between different programs,
which could for example allow one to prove that a program does not refine another one, an ∃∀-
property. Finally, similar to how we extended Hyper Hoare Logic to support runtime errors, it
would be interesting to explore an extension of Hyper Hoare Logic to reason about termination
and non-termination in the assertion language itself. On top of proving termination (which our tool
is already capable of), this would enable proving non-termination, and hyperproperties such as
co-termination (e.g., to prove that observing non-termination does not leak any secret information).
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