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Abstract

Automated deductive verifiers are tools that attempt to prove, with mathematical certainty, that all executions
of a program satisfy a given specification, using program logics such as Hoare logic or separation logic.
Modern verifiers have already had significant impact in industry: the F* verifier has been used at Microsoft to
verify code deployed in Microsoft Azure, Firefox, and the Linux kernel; the Gobra verifier (based on Viper)
has been used to verify SCION’s next-generation router; and the Dafny verifier has been used to verify the
core authorization engine of Amazon Web Services, which runs a billion times per second. Despite these
achievements, modern verifiers face two key challenges. First, for verification results to be trustworthy, verifiers
must be sound, i.e., they should only verify programs that actually satisfy their specifications. However,
unsoundnesses (cases where a verifier incorrectly verifies an invalid program) are regularly discovered in
practice, undermining trust in these tools. Second, automated verifiers are limited in their expressiveness.
While they can prove properties of individual executions (such as the absence of runtime errors), they fall
short when it comes to establishing hyperproperties, an important class of functional and security properties
that relate multiple executions of a program. This thesis addresses both of these challenges.

To address the trustworthiness challenge, this thesis develops formal foundations for establishing the
soundness of automated verifiers based on separation logic (SL), a state-of-the-art class of program logics for
modular reasoning about sequential and concurrent heap-manipulating programs, and the basis of many
modern verifiers. We start by introducing the first formal framework for proving the soundness of SL-based
translational verifiers, which work by translating the input program and its specification into an intermediate
verification language (IVL), subsequently checked by a dedicated verifier for the IVL. Our framework applies
to a wide range of translational verifiers, including Gillian (for C, JavaScript, Rust), VeriFast (for C, Java,
C++, Rust), and Viper (for C, Java, Rust, Go, Python, and others). Crucially, our framework modularizes
the reasoning required for the correctness of the front-end translation from that of the back-end verifier,
while supporting diverse verification algorithms and heuristics in the back-end. We demonstrate its practical
utility by instantiating it for Viper and connecting it to a front-end translation for concurrent programs.
Second, we focus on fractional predicates, a generalization of fractional permissions to arbitrary SL predicates,
which enable automated verifiers to reason about concurrent reads of shared data structures. We identify
a fundamental discrepancy between the theoretical treatment of fractional predicates and their practical
implementation in automated verifiers. To resolve this, we present a novel semantics for SL assertions that
allows states to temporarily hold more than full permission to a heap location during assertion evaluation.
This semantics formally justifies the rules used by existing automated verifiers and provides a foundation for
further extensions. Third, we address the automation of the magic wand (also called separating implication), a
key SL connective for reasoning about ownership of partial data structures. Prior to this work, all support for
magic wands in automated verifiers was either manual or unsound. We present a novel formal foundation
that characterizes the broad design space of sound and automated verification algorithms for magic wands,
and use it to implement, in Viper, the first such algorithm.

To address the expressiveness challenge, we introduce Hyper Hoare Logic (HHL), a novel program logic for
hyperproperties. HHL generalizes Hoare logic by lifting assertions from predicates over individual states to
predicates over sets of states. As a result, HHL can be used to establish a broad range of hyperproperties,
encompassing those supported by existing program logics as well as hyperproperties beyond their reach.
Despite its expressiveness, we show that HHL admits intuitive and powerful inference rules that capture
important reasoning principles, e.g., to compose different types of hyperproperties in the same proof, or to
reason about loops where different executions perform different numbers of iterations. We then demonstrate
that HHL is amenable to automation by presenting Hypra, a novel automated verifier for hyperproperties
based on HHL. Hypra automates HHL by translating an input program and its HHL specification into a
Viper program, where one execution of the Viper program simulates a set of executions of the input program.
Our evaluation on new and existing benchmarks demonstrates that Hypra can effectively prove a large class
of hyperproperties in reasonable time and with minimal annotation overhead.

All formal results in this thesis have been formalized in the interactive proof assistant Isabelle/HOL.





Résumé

Be you, be proud of you, because you can be do

what we want to do.

François Hollande

Les vérificateurs déductifs automatisés sont des outils dont l’objectif est de construire une preuve mathématique
que toutes les exécutions d’un programme donné satisfont une spécification donnée, en s’appuyant sur des
logiques de programmes telles que la logique de Hoare ou la logique de séparation. Ces vérificateurs ont
déjà eu un impact significatif dans l’industrie : F* a été utilisé par Microsoft pour vérifier du code déployé
dans Microsoft Azure, Firefox et le noyau Linux ; Gobra (basé sur Viper) a servi à vérifier le code du routeur
de nouvelle génération de SCION ; et Dafny a été utilisé pour vérifier le moteur d’autorisation au cœur
d’Amazon Web Services, qui s’exécute un milliard de fois par seconde. Malgré ces succès, ces outils font face à
deux défis majeurs. D’abord, pour que les résultats de vérification soient fiables, les outils doivent être corrects,
c’est-à-dire qu’ils ne doivent valider que des programmes qui satisfont effectivement leurs spécifications.
Cependant, des cas d’incorrection (quand un vérificateur valide à tort un programme) sont régulièrement
découverts en pratique, ce qui diminue la confiance dans ces outils. Ensuite, les vérificateurs automatisés
sont limités dans leur expressivité. S’ils peuvent prouver des propriétés d’exécutions individuelles (telles que
l’absence d’erreurs à l’exécution), ils s’avèrent insuffisants lorsqu’il s’agit d’établir des hyperpropriétés, une
classe importante de propriétés fonctionnelles et de sécurité qui relient plusieurs exécutions d’un programme.
Cette thèse s’attaque à ces deux défis.

Afin de relever le défi de la fiabilité, cette thèse propose des fondations formelles pour établir la correction
de vérificateurs automatisés basés sur la logique de séparation. Cette famille de logique de programmes,
qui représente l’état de l’art en matière de raisonnement modulaire sur les programmes séquentiels et
concurrents, sert de fondement à de nombreux vérificateurs modernes. Nous introduisons d’abord le premier
cadre formel pour démontrer la correction des vérificateurs translationnels basés sur la logique de séparation,
qui fonctionnent en traduisant le programme d’entrée et sa spécification dans un langage intermédiaire
de vérification, ensuite vérifié par un vérificateur automatisé dédié. Notre cadre s’applique à un large
éventail de vérificateurs translationnels, dont Gillian (pour C, JavaScript, Rust), VeriFast (pour C, Java,
C++, Rust) et Viper (pour C, Java, Rust, Go, Python, et d’autres). Fait essentiel, notre cadre modularise le
raisonnement requis pour la correction des traductions dans le langage intermédiaire de celui requis pour les
vérificateurs dédiés, tout en étant compatible avec une diversité d’algorithmes et d’heuristiques de vérification
pour ces derniers. Nous démontrons son utilité pratique en l’instanciant pour Viper et en le reliant à une
traduction pour des programmes concurrents en entrée. Deuxièmement, nous nous concentrons sur les
prédicats fractionnaires, une généralisation des permissions fractionnaires à des prédicats arbitraires de logique
de séparation, qui permettent aux vérificateurs automatisés de raisonner sur des lectures concurrentes de
structures de données partagées. Nous mettons en évidence un décalage fondamental entre le traitement
théorique des prédicats fractionnaires et leur mise en œuvre pratique dans les vérificateurs automatisés. Pour
y remédier, nous proposons une nouvelle sémantique des prédicats de logique de séparation qui autorise les
états à détenir temporairement plus que la permission pleine sur une cellule du tas pendant l’évaluation
des prédicats. Cette sémantique justifie formellement les règles utilisées par les vérificateurs automatisés
existants et fournit une base pour de futures extensions. Troisièmement, nous traitons l’automatisation de
la baguette magique (également appelée implication séparante), un connecteur clé de la logique de séparation
pour raisonner sur la possession partielle de structures de données Avant cette thèse, tout support de la
baguette magique dans les vérificateurs automatisés était soit manuel, soit incorrect. Nous présentons de
nouvelles fondations formelles qui caractérisent un large espace de conception d’algorithmes de vérification
à la fois corrects et automatisés pour la baguette magique, et nous les utilisons pour développer, pour Viper,
le premier algorithme de ce type.

Pour répondre au défi de l’expressivité, nous introduisons Hyper Hoare Logic (HHL), une nouvelle logique de



programmes pour les hyperpropriétés. HHL généralise la logique de Hoare en passant de préconditions et
postconditions exprimées comme des prédicats sur des états individuels à des prédicats sur des ensembles
d’états. En conséquence, HHL supporte un large éventail d’hyperpropriétés, englobant celles prises en charge
par les logiques de programmes existantes ainsi que des hyperpropriétés au-delà de leur portée. Malgré
son expressivité, nous montrons que HHL admet des règles d’inférence à la fois intuitives et puissantes
qui capturent des principes de raisonnement essentiels, par exemple pour composer différents types
d’hyperpropriétés au sein d’une même preuve, ou pour raisonner sur des boucles où différentes exécutions
effectuent un nombre d’itérations différent. Nous montrons ensuite que HHL se prête à l’automatisation
en présentant Hypra, un nouveau vérificateur automatisé pour les hyperpropriétés, basé sur HHL. Hypra
automatise HHL en traduisant un programme d’entrée et sa spécification HHL en un programme en Viper,
où une exécution de ce dernier simule un ensemble d’exécutions du programme d’entrée. Notre évaluation
sur des benchmarks nouveaux et existants montre que Hypra peut prouver efficacement une large classe
d’hyperpropriétés en un temps raisonnable, avec un effort d’annotation minimal.

Tous les résultats formels de cette thèse ont été formalisés dans l’assistant de preuve interactif Isabelle/HOL.
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Introduction 1.
It starts with

One thing, I don’t know why

It doesn’t even matter how hard you try

Keep that in mind, I designed this rhyme

To explain in due time, all I know

Linkin Park, In the End

Computers play a central role in nearly every aspect of modern life,
including communication, transportation, healthcare, and finance. As
a consequence, bugs and security vulnerabilities in software can have
severe consequences, such as financial losses, data breaches, and even
deaths. To mitigate such risks, a variety of techniques have been proposed,
including unit testing [1], fuzzing [2], property-based testing [3], bounded
model checking [4–6], or runtime verification [7]. While these approaches
are very effective at showing the presence of bugs, they cannot guarantee
their absence. In particular, they may miss corner cases that could be
exploited by malicious attackers.

A fundamentally different approach, called formal verification, is to con-
struct a mathematical proof that a program is correct. Unlike the previously-
mentioned techniques, formal verification does not miss corner cases,
and thus provides a very high level of confidence in the correctness of a
program. Mathematical proofs about programs are typically constructed
using program logics such as Hoare logic [8, 9] or separation logic [10, 11]. A
program logic is a formal proof system with a set of inference rules to
prove properties of programs in a compositional way. However, manually
constructing such proofs requires a lot of effort and expertise.

Automated deductive verifiers (automated verifiers or verifiers in short), such
as Boogie [12], Dafny [13], F* [14], VeriFast [15], Viper [16], or Why3 [17],
attempt to solve these issues by automating the construction of the proof.
As depicted in Figure 1.1, automated verifiers are tools that take as input
a program and a specification (describing what the program should and
should not do, e.g., in the form of a precondition and a postcondition for an
entry method), and try to construct a mathematical proof showing that all

possible executions of the program satisfy the specification. However, since
checking whether a program satisfies its specification is undecidable [18,
19], automated verifiers additionally take hints (such as loop invariants)
as input to help guide the proof search. Automated verifiers either report
a success, indicating that all possible executions of the program satisfy the
specification, or a failure (typically accompanied by one or more error
messages), which either means that the program violates the specification,
or that the verifier was not able to construct a proof, for example because
of insufficient hints.

Automated verifiers have shown practical impact in industry. For example,
code verified with the F* verifier [14] at Microsoft has been deployed
in Microsoft Azure [20], as well as in Mozilla Firefox and the Linux
kernel [21–23]. The Gobra verifier [24] for Go, built on top of the Viper
infrastructure [16], has been used to verify the correctness of the reference
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Figure 1.1.: High-level representation of an automated (deductive) verifier.
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implementation of SCION’s next-generation internet router [25]. The
authorization engine at the core of Amazon Web Services, which runs
a billion times per second, has been formally verified [26] with the Dafny
verifier [13]. Despite these successes, modern verifiers face two key
challenges: trustworthiness and expressiveness.1

Trustworthiness. To provide meaningful guarantees, automated veri-
fiers must be sound, i.e., they should report success only when the program
actually satisfies the specification. However, modern automated verifiers
often lack dedicated formal foundations that accurately capture their
actual verification algorithms. Modern verifiers use complex techniques
optimized for performance and automation, which are typically absent
from existing theoretical frameworks. As a result, unsoundnesses (i.e.,
when the verifier incorrectly reports that the program satisfies the spec-
ification) are discovered regularly, undermining the trustworthiness of
verifiers.

Expressiveness. Automated verifiers are limited in their expressiveness.
While they are capable of establishing correctness properties, they fall
short when it comes to establishing hyperproperties [27], an important class
of properties that relate multiple executions of a program, and that can ex-
press important properties such as (generalized) non-interference [28, 29],
a security property ensuring that public outputs do not leak confidential
data.

This thesis addresses these two challenges. To address the trustworthiness

challenge, we develop novel formal foundations to justify the soundness
of existing automated verifiers based on separation logic [10, 11], such as
Gillian [30], VeriFast [15], and Viper [16]. To address the expressiveness

challenge, we develop a novel program logic (Hyper Hoare Logic) and a
novel automated verifier (Hypra) for hyperproperties.

1.1. Trustworthiness

The first objective of this thesis is to make automated verifiers based on
separation logic more trustworthy. Separation logic (SL) [10, 11, 31] refers to
a broad class of state-of-the-art modular2 program logics for sequential
and concurrent programs that manipulate mutable data structures on
the heap.
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In the following, we present the state of the art for building sound

and automated verifiers based on separation logic, and then we discuss
the challenges that remain to be addressed to make modern SL-based
automated verifiers more trustworthy.

1.1.1. State of the Art

On a high-level, we can distinguish two approaches to build sound and

automated verifiers based on separation logic. The soundness-first approach
starts with a program logic that has been formally proven sound in an
interactive theorem prover, and then adds automation to the construction of
a proof in this program logic, typically by developing dedicated tactics.
While sound, this method lacks the high degree of automation achieved
by modern automated verifiers, which are designed around SMT-based
automation from the start. In contrast, the automation-first approach,
which this thesis is about, starts with an existing SMT-based automated
verifier that enjoys a high degree of automation, and establishes its
soundness retroactively.

Soundness-first approach

Interactive theorem provers (ITPs), such as Rocq3 [32], Isabelle/HOL [33],
or Lean [34], are more trustworthy than automated verifiers, because
every proof is checked by a small kernel that enforces the rules of
a well-defined formal logic. Thus, one natural approach to build a
sound and automated verifier is to first embed a program logic (such
as separation logic [10, 11]) in an ITP, and then add automation in
the form of tactics [35–40]. We call such verifiers tactic-based verifiers.
For example, DiaFrame [38], an automated verifier for fine-grained
concurrent programs, is implemented as a Rocq library on top of Iris [31,
41], a higher-order concurrent separation logic framework embedded in
the Rocq prover. RefinedC [37] and RefinedRust [39], two automated
verifiers for C and Rust programs, also build on Iris: Given a C or Rust
program annotated with specifications and hints, they automatically
generate proofs that are then checked by Rocq. VST-Floyd [36] and
VST-A [40] add automation on top of VST’s separation logic [42], which
is embedded in Rocq, to verify C programs. Tactic-based verifiers are
sound by construction4, as each successful run results in a proof in an
ITP, but they typically offer less automation than SMT-based verifiers.

Another way to obtain a sound and automated verifier is to implement
the verifier in an ITP and then extract the implementation. For example,
adaptations of SmallFoot [43], the first automated verifier based on
symbolic execution for separation logic [44], have been implemented
in HOL [45] and in Rocq [46]. More recently, Keuchel et al. [47] have
developed Katamaran, a symbolic execution engine for instruction set
architectures verified in Rocq.

Another example based on this approach is Steel [48], an SL-based
proof-oriented programming language embedded in F*.5 Steel programs
are automatically proven correct using a type checker that is proved
sound against SteelCore [49], a concurrent separation logic proven sound
in F*;6 the type checker uses the SMT solver Z3 [52] to discharge proof
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obligations.

Automation-first approach

In contrast to the soundness-first approach, many practical automated
verifiers based on separation logic are not embedded in an ITP but are
rather implemented in efficient mainstream programming languages, and
they often include subtle optimizations and advanced automation that
are absent from existing theoretical frameworks. Those include jStar [53],
VCC [54], VeriFast [15], GRASShopper [55], Viper [16], Caper [56], Ver-
Cors [57], Nagini [58], Prusti [59], Gillian [30], Gobra [24], CN [60], or
TPot [61]. Notably, several among them are translational verifiers, i.e., they
are organized into a front-end, which encodes an input program along
with its specification and verification logic into an intermediate verification

language (IVL), and a back-end, which computes proof obligations from
the IVL program and discharges them, for instance, using an SMT solver
such as Z3 [52] or CVC5 [62]. Developing a program verifier on top of
an IVL has major engineering benefits. For example, back-end verifiers,
which often contain complex proof search algorithms, sophisticated
optimizations, and functionality to communicate with solvers and to
report errors, can be re-used across different verifiers, which reduces
the effort of developing a program verifier dramatically. Examples of
such translational verifiers include Gillian [30] (for C, JavaScript [63]
and Rust [64]), VeriFast [15] (for C, Java, C++ [65], and Rust [66]), and
Viper [16] (with support for C, Java [57], Rust [59], Go [24], Python [58],
and others).

Several works have attempted to provide formal foundations for practical
automated verifiers based on separation logic to justify their sound-
ness. Jacobs et al. [67] have formalized and proved sound, in Rocq, the
soundness of a simplified version of the symbolic execution used in
VeriFast [15]. There have also been formalizations, on paper, of the
core approach taken by Gillian [30]: Maksimović et al. [68] briefly de-
scribe a parametric soundness framework and show soundness of the
resulting symbolic execution, while Lööw et al. [69] present a formal
compositional symbolic execution engine inspired by Gillian. Smans
et al. [70] introduce implicit dynamic frames, a variant of separation logic
on which Viper [16] and its front-end verifiers are based, and prove, on
paper, the soundness of a verification conditions generator for a small
imperative language. Zimmerman et al. [71] formalize and prove sound,
also on paper, a simplified variant of Viper’s symbolic execution back-end
verifier targeted at gradual verification [72]. In work not presented in this
thesis [73], we give a semantics to a high-level parametric verification
language that captures the essence of verifiers such as GRASShopper [55],
VeriFast, and Viper, for the purpose of showing formal results on method
call inlining and loop unrolling. In another work not presented in this
thesis [74] (and led by Gaurav Parthasarathy), we formalize a low-level
semantics for a subset of Viper in Isabelle/HOL and instrument one of
Viper’s back-end verifiers to generate per-run certificates of correctness
in Isabelle/HOL.
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1.1.2. Challenges

Remarkably, despite substantial progress in the literature, a significant
gap remains between existing theoretical foundations and the practical
automated verifiers based on separation logic that employ advanced
automation, as we explain next.

Gap 1: Translational verifiers

As explained earlier, several modern SL-based verifiers are translational

verifiers, such as Gillian [30], VeriFast [15], and Viper [16]. Formally rea-
soning about translational verifiers, in particular proving their soundness,
is more difficult than for verifiers developed by embedding a program
logic in an interactive theorem prover. Indeed, proving that a translational
verifier is sound requires (1) a formal semantics of the IVL as well as
proofs that connect the IVL program (2) to the verification back-end
and (3) to the input program. While these steps have been studied for
IVLs based on standard first-order logic [75–77], they pose additional
challenges for IVLs that natively support more-complex widely-used
reasoning principles such as those of separation logic (and variations
such as implicit dynamic frames [70]).

Gap 2: Advanced separation logic features

Additionally, modern SL-based verifiers employ advanced Separation
Logic (SL) features that are not covered by existing theory.

For example, several automated verifiers [24, 57, 58] support magic wands

(also called separating implication), an important SL connective, which is
in particular useful to specify properties of partial data structures, for
instance during iterative traversals of lists or trees. Surprisingly, as we
discovered in this thesis, existing support for magic wands in automated
verifiers was either manual [78] or unsound [79], illustrating the need for
dedicated mechanized formal foundations.

As another example, many modern verifiers [15, 16, 24, 57, 58, 80] support
fractional predicates, a generalization of fractional permissions [81, 82] to
arbitrary SL predicates such as (co)inductive predicates and magic wands,
important for example to reason about concurrent reads of shared data
structures. Surprisingly, as we also discovered in this thesis, there is
a fundamental discrepancy between existing theory about fractional
predicates [83, 84] and the rules used by these verifiers.

Yet another gap comes from the fact that automated verifiers based on
Viper [16, 24, 57–59] combine several advanced features and permission
models from separation logic [10], which are typically defined using
separation algebras [31, 85, 86], with implicit dynamic frames [70], where
states are typically formalized as total heaps [87].
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Table 1.1.: (Non-exhaustive) list of hyperproperties, classified according to their (quantification) types. CRDTs stand for conflict-free

replicated data types [97].

Type Violation Property Example use case
∀ ∃ Safety properties Absence of runtime errors, functional correctness
∃ ∀ Reachability Bug finding [89], test input generators [90]

∀∀ ∃∃

Non-interference Information flow security
Determinism Cryptographic hash functions
Monotonicity CRDTs [91]
Commutativity Parallel aggregations (e.g., MapReduce [92]), CRDTs
Idempotence CRDTs
Function sensitivity Differential privacy [93]

∀∀∀ ∃∃∃ Transitivity Custom comparators [88]
Homomorphism Homomorphic encryption [94]

∃∃ ∀∀ Non-determinism Random generator, test flakyness

∀∀∀∀ ∃∃∃∃ Associativity Parallel reductions (e.g., MapReduce [92]), CRDTs
Robust declassification [95] Information flow security with declassification

∀∃ ∃∀ Semantic parameter usage [96] Dead-parameter elimination
∀∀∃ ∃∃∀ Generalized non-interference [28] Information flow security for non-deterministic programs
∃∀ ∀∃ Existence of a minimum Optimization algorithms

[27]: Clarkson et al. (2008), Hyperproper-

ties

[29]: Goguen et al. (1982), Security Policies

and Security Models

[88]: Sousa et al. (2016), Cartesian Hoare

Logic for Verifying K-Safety Properties

[28]: McCullough (1988), Noninterference

and the Composability of Security Properties

1.2. Expressiveness

The second objective of this thesis is to improve the expressiveness of
automated verifiers by developing novel formal foundations for reason-
ing about a large class of hyperproperties [27] and a novel automated
verifier based on these foundations. Many important security and func-
tional properties are hyperproperties, i.e., properties that relate multiple
executions of a program. For example, information flow security, which
ensures that confidential data does not leak through public outputs, can
be formalized as non-interference [29]. Non-interference requires that any
two executions with the same public inputs (but potentially different
confidential inputs) have the same public outputs. Non-interference is
an example of a 2-safety hyperproperty, i.e., a property that should hold
for all pairs of executions of a program. Another example of hyperprop-
erty is transitivity, which custom comparators between objects (e.g., in
Java) must satisfy (e.g., for sorting to be correct). Transitivity is a 3-safety

hyperproperty, as it compares three executions of a program [88]: If two
runs of a comparator compare(a, b) and compare(b, c) both return
a positive result, then the third run compare(a, c) should also return
a positive result. In this thesis, we often refer to 𝑘-safety hyperproperties

as ∀𝑘-properties, as they can be expressed with 𝑘 universal quantifiers
over executions of a program, where 𝑘 is the number of executions that
the property relates. For example, non-interference is a ∀∀-property, and
transitivity is a ∀∀∀-property.

Many interesting hyperproperties fall outside the class of∀𝑘-properties, as
shown in Table 1.1. For example, reachability is an ∃-property, as it requires
the existence of at least one execution that satisfies a given property.
Moreover, some hyperproperties require both universal and existential
quantification over executions, such as generalized non-interference [28]
(∀∀∃), a weaker form of non-interference suitable for non-deterministic
programs or the existence of an execution with minimal output values
(∃∀). Finally, violations of ∀𝑘-properties also fall outside the class of
∀𝑘-properties: To prove a violation of a ∀𝑘-property, one must show
the existence of 𝑘 executions that together violate the property, which
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Table 1.2.: (Non-exhaustive) overview of program logics for hyperproperties, classified in two dimensions. The type of properties a logic
can establish, and the number of program executions these properties can relate (column “∞” subsumes an unbounded and an infinite
number of executions). The distinction between ∃∗ (backward) and ∃∗ (forward) is explained in Appendix A.3. A green checkmark
indicates that a property is handled by Hyper Hoare Logic, a novel contribution of this thesis, and ∅ indicates that no other program
logic supports it.

Number of executions
Type 1 2 𝒌 ∞

∀∗ (hypersafety) ✓
HL [8, 9], OL [102], RHL [103], CHL [88],
RHLE [96], MHRM [104], BiKAT [105] ✓

RHL [103], CHL [88], RHLE [96],
MHRM [104], BiKAT [105] ✓ CHL [88], RHLE [96] ✓ ∅

∃∗ (backward) ✓ IL [89, 106], InSec [107], BiKAT [105] ✓ InSec [107], BiKAT [105] ✓ ∅ ✓ ∅
∃∗ (forward) ✓ OL [102], RHLE [96], MHRM [104], BiKAT [105] ✓ RHLE [96], MHRM [104], BiKAT [105] ✓ RHLE [96] ✓ ∅
∀∗∃∗ not applicable ✓ RHLE [96], MHRM [104], BiKAT [105] ✓ RHLE [96] ✓ ∅
∃∗∀∗ not applicable ✓ ∅ ✓ ∅ ✓ ∅
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[101]: Le et al. (2022), Finding Real Bugs
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Programs

[9]: Hoare (1969), An Axiomatic Basis for

Computer Programming

[103]: Benton (2004), Simple Relational Cor-

rectness Proofs for Static Analyses and Pro-

gram Transformations

[104]: Maillard et al. (2019), The next 700

Relational Program Logics

[108]: Francez (1983), Product Properties

and Their Direct Verification

[109]: Naumann (2020), Thirty-Seven

Years of Relational Hoare Logic

[110]: Yang (2007), Relational Separation

Logic

[111]: Aguirre et al. (2017), A Relational

Logic for Higher-Order Programs

[112]: Amtoft et al. (2006), A Logic for Infor-

mation Flow in Object-Oriented Programs

[113]: Costanzo et al. (2014), A Separation
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Flow Control Policies

[114]: Ernst et al. (2019), SecCSL

[115]: Eilers et al. (2023), CommCSL

[88]: Sousa et al. (2016), Cartesian Hoare

Logic for Verifying K-Safety Properties

[116]: D’Osualdo et al. (2022), Proving

Hypersafety Compositionally

[117]: Gladshtein et al. (2024), Mechanised

Hypersafety Proofs about Structured Data

[89]: O’Hearn (2019), Incorrectness Logic

[106]: de Vries et al. (2011), Reverse Hoare

Logic
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Approximate Relational Logic

[118]: Raad et al. (2020), Local Reasoning

About the Presence of Bugs

[119]: Raad et al. (2022), Concurrent

Incorrectness Separation Logic

corresponds to an ∃𝑘-property. Program logics for proving the existence
of executions have been successfully used as foundation of industrial
bug-finding tools [98–101].

Despite their importance, very few automated verifiers are able to es-
tablish hyperproperties. In the following, we present the state of the art
for program logics (summarized in Table 1.2) and automated verifiers
for hyperproperties, and then discuss the challenges that remain to be
addressed to build an automated verifier that can be used to verify all
hyperproperties presented in Table 1.1.

1.2.1. State of the Art

Program logics for hyperproperties

Deductive verification started with Floyd’s seminal work on assigning
meanings to programs [8], followed by Hoare Logic [9], a program logic
designed to formally prove functional correctness of computer programs.
Hoare Logic is widely used to prove the absence of runtime errors,
functional correctness, resource bounds, etc. However, classical Hoare
Logic cannot reason about hyperproperties, as it is limited to ∀-properties.
To overcome such limitations and to reason about more types of properties,
Hoare Logic has been extended and adapted in various ways.

Among them are several logics that can establish properties of two [103,
104, 108–115] or even 𝑘 [88, 116, 117] executions of the same program,
where 𝑘 > 2 is useful for properties such as transitivity and associativity.
Relational logics are able to prove relational properties, i.e., properties relating
executions of two (potentially different) programs, for instance, to prove
program equivalence.

All of these logics have in common that they can prove only properties
that hold for all (combinations of) executions (∀𝑘-properties), that is, they
prove the absence of bad (combinations of) executions; to achieve that,
their judgments overapproximate the possible executions of a program.
Overapproximate logics cannot prove the existence of (combinations
of) executions and thus cannot establish certain interesting program
properties, such as the presence of a bug or non-determinism.

To overcome this limitation, recent work [89, 106, 107, 118, 119] proposed
program logics that can prove the existence of (individual) executions
(∃-properties), for instance, to disprove functional correctness. We call



1. Introduction 8

[98]: Blackshear et al. (2018), RacerD

[99]: Gorogiannis et al. (2019), A True

Positives Theorem for a Static Race Detector

[100]: Distefano et al. (2019), Scaling Static

Analyses at Facebook

[101]: Le et al. (2022), Finding Real Bugs

in Big Programs with Incorrectness Logic

[102]: Zilberstein et al. (2023), Outcome

Logic

[120]: Maksimović et al. (2023), Exact

Separation Logic

[96]: Dickerson et al. (2022), RHLE

[105]: Antonopoulos et al. (2023), An Alge-

bra of Alignment for Relational Verification

[104]: Maillard et al. (2019), The next 700

Relational Program Logics

[121]: Beutner (2024), Automated Software

Verification of Hyperliveness

[12]: Leino (2008), This Is Boogie 2

[13]: Leino (2010), Dafny

[16]: Müller et al. (2016), Viper

[17]: Filliâtre et al. (2013), Why3 — Where

Programs Meet Provers

[122]: Barthe et al. (2004), Secure Informa-

tion Flow by Self-Composition
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[124]: Eilers et al. (2019), Modular Product

Programs

[125]: Barthe et al. (2013), Beyond 2-Safety
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WhyRel Prototype for Modular Relational

Verification of Pointer Programs

[88]: Sousa et al. (2016), Cartesian Hoare

Logic for Verifying K-Safety Properties

[96]: Dickerson et al. (2022), RHLE

[121]: Beutner (2024), Automated Software

Verification of Hyperliveness

[125]: Barthe et al. (2013), Beyond 2-Safety

[127]: Unno et al. (2021), Constraint-Based

Relational Verification

[128]: Beutner et al. (2022), Software Veri-

fication of Hyperproperties Beyond K-Safety

[96]: Dickerson et al. (2022), RHLE

[121]: Beutner (2024), Automated Software

Verification of Hyperliveness

[28]: McCullough (1988), Noninterference

and the Composability of Security Properties

7: Assuming no public (low-sensitivity)
input.

such program logics underapproximate. Tools based on underapproximate
logics have proven useful for finding bugs on an industrial scale [98–101].
More recent work has proposed program logics that combine underap-
proximate and overapproximate reasoning for single executions (i.e., ∀-
and ∃-properties) such as Outcome Logic [102] and Exact Separation
Logic [120], and for ∀∗∃∗-properties, such as RHLE [96], BiKAT [105], and
others [104, 121].

Automated verifiers for hyperproperties

Most existing automated verifiers (e.g., Boogie [12], Dafny [13], Viper [16],
Why3 [17]) are specifically designed to verify ∀-properties, i.e., properties
of individual executions of a program, such as functional correctness,
absence of runtime errors, and resource bounds. While these verifiers are
primarily designed for ∀-properties, they can be leveraged to verify ∀𝑘-
properties (𝑘-safety hyperproperties) by reducing the problem to standard
safety verification. This is typically achieved via self-composition [122]
or by constructing product programs [123, 124], which simulate multiple
executions within a single program. Asymmetric product programs [125]
can also be used to verify ∀∃-properties.

Deductive verifiers specifically designed for hyperproperties are mostly
limited to ∀𝑘-properties. Examples include HyperViper (based on Comm-
CSL) [115], SecC (based on SecCSL) [114], and WhyRel [126], for ∀∀-
properties, and Descartes (based on Cartesian Hoare Logic [88]) for
∀𝑘-properties.

Recently, several approaches [96, 121, 125, 127, 128] have been proposed
to verify ∀∗∃∗-properties. For example, ORHLE (based on RHLE) [96]
and ForEx (based on FEHL) [121] are both based on program logics for
∀𝑘∃𝑙-properties, where 𝑘 and 𝑙 must be fixed beforehand. It is, thus, not
possible to compose proofs with different quantification schemes, e.g., to
use a ∀∀-property and a ∀∃-property in the same proof.

1.2.2. Challenges

Despite the existing literature, several challenges remain to build an
automated verifier that can be used to verify all hyperproperties presented
in Table 1.1.

Gap 1: Limited expressiveness of existing program logics

As shown by Table 1.2, existing program logics for hyperproperties face
two main limitations. First, some types of hyperproperties cannot be
expressed by any existing program logic (represented by ∅). For example,
to prove that a program violates generalized non-interference [28], one
needs to show that there exist two executions 𝜏1 and 𝜏2 such that all

executions with the same high-sensitivity input as 𝜏1 have a different
low-sensitivity output than 𝜏2.7 Such∃∗∀∗-properties cannot be proved by
any existing Hoare logic. Second, the existing logics cover different, often
disjoint program properties, which may hinder practical applications:
reasoning about a wide spectrum of properties of a given program
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Separation Algebras and Share Accounting

requires the application of several logics, each with its own judgments;
properties expressed in different, incompatible logics cannot be composed
within the same proof system.

Gap 2: Automation

Even with a suitable program logic, there are many challenges to build a
general-purpose SMT-based automated verifier for ∀∗∃∗-properties and
∃∗∀∗-properties. Such alternations of quantifiers are notoriously hard for
SMT solvers (e.g., to find witnesses for existentially-quantified executions),
especially when different types of hyperproperties can interact in the
same proof. Another key challenge is to design a verification algorithm to
automatically verify loops while minimizing the amount of required user-
provided hints (such as loop invariants or loop variants), as reasoning
about loops in a relational setting is notoriously hard, especially when
different executions perform a different number of iterations.

1.3. Contributions and Outline

In this thesis, we address the two aforementioned challenges: For the
trustworthiness challenge, we provide novel formal foundations for ex-
isting automated verifiers based on separation logic, to justify their
soundness. For the expressiveness challenge, we develop a new program
logic (Hyper Hoare Logic) to reason about hyperproperties, along with a
novel automated verifier (Hypra) based on this new program logic.

In the following, we describe the contributions of this thesis.

1.3.1. Trustworthiness: Formal Foundations for Verifiers
based on Separation Logic

Contribution 1: Formal foundations for translational verifiers based
on separation logic

Our first contribution, presented in Chapter 2, is a formal framework for
proving the soundness of translational verifiers based on separation logic,
such as Gillian [30], VeriFast [15], and Viper [16].

At the center of our framework is a generic intermediate verification
language (IVL) called CoreIVL, which can be instantiated for a partic-
ular SL-based IVL. To support both Viper (based on implicit dynamic
frames [70]) and Gillian and VeriFast (based on separation logic), Core-
IVL is parametric over an IDF algebra, a novel generalization of separation
algebras [85, 86] that capture both separation logic and implicit dynamic
frames. We present two novel semantics for CoreIVL, which we prove
equivalent: an operational semantics to connect to the back-end veri-
fiers, and an axiomatic semantics to connect to the front-end program
logic. Our operational semantics uses dual (i.e., angelic and demonic)
non-determinism to enable the application of different verification algo-
rithms and heuristics in the back-end verifiers. Our axiomatic semantics
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simplifies reasoning about the front-end translation by performing es-
sential proof steps once and for all in the equivalence proof with the
operational semantics, rather than for each concrete front-end translation.
We demonstrate the practical utility of this framework by instantiating it
with elements of the Viper IVL, and formally connecting to a front-end
translation based on concurrent separation logic [11], as well as two Viper
back-end verifiers: one based on symbolic execution, and one based on
verification condition generation (which we have formally validated in work
not presented in this thesis [74]).

Contribution 2: Formal foundations for fractional predicates

Our second contribution, presented in Chapter 3, is a novel formal
semantics for SL assertions, which justifies the rules for (inductive and
coinductive) fractional predicates used in practice by existing automated
verifiers.

Fractional predicates are supported by existing SL verifiers such as
VeriFast [15], Viper [16], VerCors [57], Nagini [58], and Gobra [24],
via a notion of syntactic multiplication, which is assumed to satisfy three
key properties: it distributes over assertions (distributivity), it permits
fractions to be factored out from assertions (factorizability), and two
fractions of the same assertion can be combined into one larger fraction
(combinability). However, existing formal semantics [83, 84] for fractional
predicates define multiplication semantically (via models), resulting in a
semantics in which distributivity and combinability do not hold for key
SL connectives such as magic wands, and fractions cannot be factored out
from a separating conjunction. To resolve this discrepancy, we present
a novel semantics for separation logic assertions allows states to hold
more than a full permission to a heap location during the evaluation of
an assertion. By reimposing upper bounds on the permissions held per
location at statement boundaries, we retain key properties of (concurrent)
separation logic, such as the frame rule and the parallel rule. Our
novel assertion semantics, which enjoys distributivity, factorizability, and
combinability, justifies the rules for (inductive and coinductive) fractional
predicates used in practice by existing automated verifiers and can be
used to extend this support to additional SL connectives, such as magic
wands.

Contribution 3: Formal foundations for automating magic wands

Our third contribution, presented in Chapter 4, is a formal framework
to prove the soundness of package algorithms (i.e., verification algorithms
that automatically extract the resources required to satisfy a magic wand

from a SL state), and the first sound and automated package algorithm
for magic wands (built on this formal framework).

The key challenge of proving a magic wand 𝐴 −∗ 𝐵 (also called packaging

a wand) is to find a footprint, i.e., a state that, combined with any state
in which A holds, yields a state in which B holds. Existing package
algorithms (in Gobra, VerCors, Viper) either have a high annotation
overhead or, as we show in this chapter, are unsound. We present a formal
framework, which we call package logic, that precisely characterizes a wide
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design space of possible package algorithms applicable to a large class of
separation logics (as it is parametric over an IDF algebra). We prove that
our package logic is sound and complete and use it to develop a novel
package algorithm that offers competitive automation and, crucially, is
sound. We also show that our package logic can be used with alternative
definitions of magic wands, which we illustrate with a novel definition
for magic wands that ensures that magic wands are combinable. We have
implemented our techniques for Viper and demonstrate that they are
effective in practice.

1.3.2. Expressiveness: A Novel Foundation and Verifier for
Hyperproperties

Contribution 4: Hyper Hoare Logic, a novel program logic for
hyperproperties

Our fourth contribution, presented in Chapter 5, is Hyper Hoare Logic,
a novel program logic for hyperproperties, which supports arbitrary
program hyperproperties over the terminating executions of a program,
including ∀∗∃∗- and ∃∗∀∗-properties.

Hyper Hoare Logic (HHL) generalizes Hoare logic by lifting assertions
from predicates over individual states to predicates over sets of states: It
establishes hyper-triples of the form [𝑃] 𝐶 [𝑄], where 𝐶 is a program
statement, and 𝑃 and 𝑄 are hyper-assertions (i.e., predicates over sets of
states). In particular, we show that hyper-triples can express arbitrary
hyperproperties over the terminating executions of a program, including
hyperproperties that no other existing program logic can express (such
as ∃∗∀∗-properties), and we show how judgments of existing logics
can be expressed as hyper-triples. To establish hyper-triples, we first
present a minimal set of core rules, which are sound and complete (i.e.,
every valid triple can be proven using the core rules). We then present
a language for syntactic hyper-assertions (which restricts the interaction
with the set of states to universal and existential quantification over
states) and corresponding syntactic rules for atomic statements (such as
assignments), which are easier to use than the core rules. We also present
novel loop rules, which capture important reasoning principles. Finally,
we present compositionality rules, which enable the flexible composition
of hyper-triples of different forms and, thus, facilitate modular proofs.

Contribution 5: Hypra, a novel deductive verifier for hyperproperties
based on Hyper Hoare Logic

Our fifth and last contribution, presented in Chapter 6, is Hypra, a novel
automated deductive verifier for hyperproperties based on Hyper Hoare
Logic (HHL), which can be used to prove ∀∗∃∗- and ∃∗∀∗-properties, as
well as hyperproperties about runtime errors.

Hypra is a Viper front-end: It translates an input program and corre-
sponding HHL specification and hints (such as loop invariants) into a
Viper program and uses both Viper back-ends to verify the resulting
program. Our key insight is that verification conditions for HHL can be
encoded into a standard IVL by representing sets of states of the input
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program explicitly in the states of the intermediate program. To support
reasoning about runtime errors, we extend the definition of hyper-triples
accordingly and add universal and existential quantifier over error states
to the syntactic language of hyper-assertions. To avoid matching loops,
where the underlying SMT solver gets stuck in an infinite instantiation
of quantifiers, our encoding for loop-free statements separately tracks
an upper bound and a lower bound of the set of reachable states at each
program point. To verify loops, we show how to automatically select the
right loop rule depending on the situation, and we present a novel loop
rule that is more suitable for automated verification than the correspond-
ing HHL rule. Finally, our evaluation on a set of benchmarks from the
literature shows that Hypra can prove a large class of hyperproperties
for a large class of programs, in a reasonable amount of time and with a
reasonable amount of proof annotations.

1.4. Mechanization

All formal results presented in this thesis (definitions, lemmas, proposi-
tions, theorems) have been formalized in the interactive proof assistant
Isabelle/HOL [33]. While publications based on each chapter have their
own formalizations and artifacts available online [129–137], we have
unified these formalizations into a single artifact for the thesis [138].

This artifact makes novel contributions over the ones associated with
the individual publications, by increasing the compatibility between the
individual results in the following ways. In the first part, the formal-
ization of Chapter 4 is now based on the IDF algebra from Chapter 2,
and the formalization of Chapter 3 is now based on a building block
(partial commutative monoid) of the IDF algebra. Moreover, to show that the
unbounded logic from Chapter 3 is compatible with important SL rules
such as the parallel and the frame rule, we have additionally developed
and proved sound a novel concurrent separation logic (CSL) based on
a concrete unbounded model for SL states. We have shown that this
concrete state model satisfies all the axioms described in Section 3.2.2,
and that it is an instance of the IDF algebra from Chapter 2. Additionally,
this unbounded CSL is based on the concurrent programming language
defined in Chapter 2 (Section 2.5). Finally, in the second part, the formal-
ization of the formal results from Chapter 6 is based on the formalization
of Chapter 5.

1.5. Publications and Collaborations

The main results of this thesis have been presented in various publica-
tions.

Chapter 2 has been presented in

Formal Foundations for Translational Separation Logic Verifiers

Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander
J. Summers, and Peter Müller
Proceedings of the ACM on Programming Languages (POPL) 2025 [139]

Chapter 3 has been presented in
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[74]: Parthasarathy et al. (2024), Towards

Trustworthy Automated Program Verifiers
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singular to distinguish my contributions
in contrast to those of my collaborators.

[144]: Li (2023), An Automatic Program

Verifier for Hyperproperties

Fractional Resources in Unbounded Separation Logic

Thibault Dardinier, Peter Müller, Alexander J. Summers
Proceedings of the ACM on Programming Languages (OOPSLA)
2022 [140]
Chapter 4 has been presented in

Sound Automation of Magic Wands

Thibault Dardinier, Gaurav Parthasarathy, Noé Weeks, Peter Müller,
Alexander J. Summers
International Conference on Computer Aided Verification (CAV)
2022 [141]
Chapter 5 has been presented in

Hyper Hoare Logic: (Dis-)Proving Program Hyperproperties

Thibault Dardinier, Peter Müller
Proceedings of the ACM on Programming Languages (PLDI) 2024 [142]

Chapter 6 has been presented in

Hypra: A Deductive Program Verifier for Hyper Hoare Logic

Thibault Dardinier, Anqi Li, Peter Müller
Proceedings of the ACM on Programming Languages (OOPSLA)
2024 [143]
This thesis benefited from the contributions of several collaborators,
in addition to my supervisor. In Chapter 2, Michael Sammler proved
the soundness of both the symbolic execution (which he formalized)
and the existing verification condition generation [74] with respect to
ViperCore’s operational semantics (Section 2.4). In Chapter 4, Gaurav
Parthasarathy performed the evaluation described in Section 4.5, and
Noé Weeks came up with the novel definition of combinable wands
presented in Section 4.4.2 (as part of a summer internship at ETH
Zurich cosupervised by Gaurav Parthasarathy and me8). Additionally,
Alex Summers and Gaurav Parthasarathy contributed to the work on
Chapter 2, Chapter 3, and Chapter 4, through numerous technical and
non-technical discussions. Finally, Hypra, presented in Chapter 6, was
implemented and evaluated by Anqi Li as part of her Master’s thesis [144],
which I supervised.

Contributions beyond this thesis

In the time working on this thesis, I also contributed to the following
publications, which are not part of this thesis.

A Formally Verified, Optimized Monitor for Metric First-Order Dynamic Logic

David Basin, Thibault Dardinier, Lukas Heimes, Srđan Krstić, Martin
Raszyk, Joshua Schneider, Dmitriy Traytel
International Joint Conference on Automated Reasoning (ĲCAR)
2020 [145]
Verification-Preserving Inlining in Automatic Separation Logic Verifiers

Thibault Dardinier, Gaurav Parthasarathy, Peter Müller
ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA) 2023 [73]
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CommCSL: Proving Information Flow Security for Concurrent Programs using

Abstract Commutativity

Marco Eilers, Thibault Dardinier, Peter Müller
ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI) 2023 [115]

Towards Trustworthy Automated Program Verifiers: Formally Validating Trans-

lations into an Intermediate Verification Language

Gaurav Parthasarathy, Thibault Dardinier, Benjamin Bonneau, Peter
Müller, Alexander J. Summers
ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI) 2024 [74]

PulseCore: An Impredicative Concurrent Separation Logic for Dependently

Typed Programs

Gabriel Ebner, Guido Martínez, Aseem Rastogi, Thibault Dardinier,
Megan Frisella, Tahina Ramananandro, Nikhil Swamy
ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI) 2025 [50]
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Translational Verifiers 2.
Beware of bugs in the above code; I have only

proved it correct, not tried it.

Donald Knuth

2.1. Introduction

As explained in Chapter 1, many modern automated verifiers are trans-

lational verifiers, i.e., they are composed of a front-end translation of an
input program with its specification (and hints to guide the proof search)
into an intermediate verification language (IVL), and a back-end verifier that
automates the verification of the IVL program. Examples of translational

verifiers include Civl [146] and Dafny [13] based on the Boogie IVL [12],
Creusot [147] and Frama-C [148] based on Why3 [17], Gillian for C and
JavaScript [63] and Rust [64] based on GIL [30], as well as Prusti [59] and
VerCors [57] based on Viper [16].

Developing a program verifier on top of an IVL has major engineering ben-
efits. Most importantly, back-end verifiers, which often contain complex
proof search algorithms, sophisticated optimizations, and functionality
to communicate with solvers and to report errors, can be re-used across
different verifiers, which reduces the effort of developing a program
verifier dramatically.

On the other hand, formal reasoning about translational verifiers, in
particular, proving their soundness, is more difficult than for verifiers
developed by embedding a program logic in an interactive theorem
prover (such as Bedrock [35], VST [36], and RefinedC [37]). Proving that
a translational verifier is sound requires (1) a formal semantics of the IVL
as well as proofs that connect the IVL program (2) to the verification back-
end and (3) to the input program. While these steps have been studied
for IVLs based on standard first-order logic [75–77], they pose additional
challenges for IVLs that natively support more-complex widely-used
reasoning principles such as those of separation logic (SL) [10] (and
variations such as implicit dynamic frames (IDF) [70]). We focus on
these IVLs, which are commonly-used and especially useful for building
verifiers for heap-manipulating and concurrent programs.

Challenge 1: Defining the semantics of the IVL. Standard program-
ming languages and the intermediate languages used in compilers come
with a notion of execution that can naturally be captured by an oper-
ational semantics. In contrast, IVLs are typically not designed to be
executable, but instead to capture a wide range of verification problems
and algorithms for solving them.

To capture different verification problems, IVLs contain features that
enable the encoding of a diverse set of input programs (e.g., by offering
generic operations suitable for encoding different concurrency primitives),
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specifications (e.g., by offering rich assertion languages), and verification
logics (e.g., by supporting concepts such as framing). An IVL semantics
must reflect this generality. For instance, separation logic-based IVLs
provide complex primitives for manipulating separation logic resources,
which can be used to encode separation logic rules into the IVL. As a
result, these primitives can be used to encode a large variety of input
program features including procedure calls, loops, and concurrency.

To capture different verification algorithms, an IVL semantics must not
prescribe how to construct a proof and should instead abstract over dif-
ferent algorithms. Back-ends should have the freedom to apply various
techniques to compute proof obligations (e.g., symbolic execution or
verification condition generation), to resolve trade-offs between complete-
ness and automation (e.g., by over-approximating proof obligations), and
to discharge proof obligations (e.g., instantiating existentially quanti-
fied variables in different ways). For instance, existing algorithms have
different performance characteristics for different classes of verification
problems [149]; an IVL semantics should provide the freedom to choose
the best one for the problem at hand. In practice, capturing different
verification algorithms is important for verifiers with multiple back-ends
for the same language (e.g., based on either symbolic execution or verifi-
cation condition generation). However, even a single back-end may offer
a variety of different algorithms, which are chosen based on heuristics
or configured by the user (e.g., via command-line options or dedicated
hints). For example, as we will see in Chapter 4, there is a wide design
space of possible algorithms for automatically introducing a magic wand;
an IVL semantics should not prescribe a specific algorithm, but instead
allow the back-end to employ any correct algorithm. Moreover, back-ends
along with their verification algorithms apply different algorithms over
time, as their developers optimize existing verification algorithms or add
support for new verification algorithms.

Challenge 2: Connecting the IVL to back-ends. Soundness requires
that successful verification of an IVL program by a back-end verifier
implies the correctness of the IVL program. Since a back-end verifier’s al-
gorithm ultimately decides the outcome of a verification run, a soundness
proof needs to formally connect the concrete verification algorithm to
the IVL’s semantics. In particular, this soundness proof needs to consider
the proof search algorithms and optimizations performed by a concrete
verification back-end and show that they produce correct results accord-
ing to the IVL semantics. However, different back-ends typically use a
diverse range of strategies to (for example) represent the program state,
unroll recursive definitions, choose existentially-quantified permission
amounts, and select the footprints of magic wands (as we will see in
Chapter 4).

Challenge 3: Connecting the IVL to front-ends. Soundness also re-
quires that the correctness of the IVL program implies the correctness of
the input program with respect to its intended verification logic. Such
soundness proofs are difficult due to the large semantic gap between
input and IVL programs. The two programs may use different reasoning
concepts and proof rules, which need to be connected by a soundness
proof. This gap is particularly large for typical encodings into IVLs based
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on separation logic, because the verification logic for the source of this
translation is typically different from the one for the IVL program, e.g.,
one of the vast wealth of concurrent separation logics. For instance, a
parallel composition of two threads in the input program is typically
encoded as three sequential IVL programs: two for the parallel branches,
each of which is verified using a separate specification provided by the
user, and one for the enclosing code, which composes the two specifica-
tions to encode the behavior of the parallel composition overall. Such a
translation of front-end proof rules into multiple sequential verification
problems is not obvious; a soundness proof must bridge this gap.

Prior work. Several works formalize aspects of translational verifiers
with IVLs based on separation logic, but none of them addresses all
three challenges outlined above. For Viper, in work not presented in this
thesis [74], we build a proof-producing version of Viper’s verification
condition generation back-end, but do not attempt to connect it to front-
end languages nor give a general semantics for Viper that would also
capture Viper’s symbolic execution back-end. Similarly, Zimmerman et al.
[71] formalize a version (only) of Viper’s symbolic execution back-end; their
focus is on adapting it to gradual verification. Jacobs et al. [67] show
the soundness of the symbolic execution of VeriFast [15] w.r.t. an input
C program.1 However, VeriFast has only a single (symbolic execution)
back-end that is used as the basis for multiple front-end languages (C,
Java, Rust) and thus the formalization does not abstract over different
verification algorithms.

Maksimović et al. [68] briefly describe a soundness framework for GIL [63],
a parametric program representation used by the Gillian project. GIL
needs to be instantiated with a state model, primitive assertions, and
memory actions to obtain specific intermediate representations (essen-
tially, multiple IVLs) useful for different verification projects (e.g., for
JavaScript [63] and Rust [64]). However, each GIL instantiation also deter-
mines the back-end verification algorithm. As such, there is no common
semantics that abstracts over different verification algorithms.

This work. In this chapter, we present a framework for formally jus-
tifying translational separation logic verifiers. At its center is a generic
IVL, called CoreIVL, that captures the essence of different IVLs based on
separation logics. In particular, CoreIVL can be instantiated with different
statements, assertion languages, and separation algebras; we introduce
in particular the novel concept of an IDF algebra, which generalizes the
notion of separation algebra to also model the implicit dynamic frames
logic used in Viper.

To address Challenge 1 above, we define the semantics of CoreIVL
(and correspondingly, each of its instantiations) using dual (i.e., demonic

and angelic) non-determinism. Demonic non-determinism is a standard
technique to verify properties for all inputs, thread schedules, etc. Our
novel insight is to complement it with angelic non-determinism to
abstract over the different proof search algorithms employed by back-
ends. Intuitively, the IVL program is correct if any of these algorithms
succeeds, which is an angelic behavior.
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To address Challenge 2, we define an operational semantics for CoreIVL,
which incorporates these notions of dual non-determinism and, like
CoreIVL itself, is parametric in an IDF algebra, to support both separation
logic and IDF. An operational semantics facilitates proving a formal
connection to the concrete verification algorithms used in back-ends.
Separation logic verifiers typically perform symbolic execution, which is
typically described operationally [150] and (as we show) can be connected
to our operational semantics via a standard simulation proof. Similarly, an
operational IVL semantics is well-suited for formalizing the connections
to back-ends that encode IVL programs into a further, more basic IVL,
such as Viper’s verification condition generator, which encodes Viper
programs into Boogie.

To address Challenge 3, we define an axiomatic semantics for CoreIVL
and prove its equivalence to our operational semantics. An axiomatic

semantics facilitates proving a formal connection to the program logic
used on the front-end level because both deal with derivations, which
are often structurally related due to the compositional nature of most
IVL translations. In addition, we are able to prove some powerful generic
results about idiomatic encoding patterns once-and-for-all, further mini-
mizing the instantiation-specific gap that a formal soundness proof needs
to bridge.

We illustrate the practical applicability of our formal framework by
instantiating CoreIVL with elements of Viper. We use the resulting oper-
ational semantics to prove the soundness of two verification back-ends: a
formalization of the central features of Viper’s symbolic execution back-
end, and a pre-existing formalization of Viper’s verification condition
generator not presented in this thesis [74]. These proofs demonstrate, in
particular, that our use of angelic non-determinism allows us to capture
these two rather disparate (and representative) back-ends. At the other
end, we prove soundness of a front-end based on concurrent separation
logic using our axiomatic semantics. These proofs demonstrate that our
framework effectively closes the large semantic gap between front-ends
and back-ends and enables formal reasoning about the entire chain.

Contributions and outline. We make the following technical contribu-
tions:

▶ We introduce a novel notion of IDF algebra, which generalizes the
notion of separation algebra to capture both separation logic and
implicit dynamic frames.

▶ We present a formal framework for reasoning about translational
separation logic verifiers, via a parametric language CoreIVL, for
which we define a novel operational semantics combining core
separation-logic reasoning principles and dual non-determinism.
We define an alternative axiomatic semantics, and show its equiva-
lence with our operational semantics.

▶ We define a Viper instantiation of CoreIVL. We formalize and prove
the soundness of the core of Viper’s symbolic execution back-end.
Similarly, we show soundness of an existing formalization of Viper’s
back-end based on verification condition generation. These proofs
illustrate how angelic non-determinism can abstract over these
different algorithmic choices.
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▶ We formalize a front-end for a simple concurrent language to
be verified with concurrent separation logic, as well as its stan-
dard encoding as employed in translational verifiers, and prove
this encoding sound with respect to our axiomatic semantics for
CoreIVL.

We give an overview of our key ideas in Section 2.2. We define the
operational and axiomatic IVL semantics in Section 2.3. We discuss how
to prove back-end soundness in Section 2.4 and front-end soundness in
Section 2.5, and we discuss related work in Section 2.6.

All formalizations and proofs in this chapter are mechanized in the
Isabelle proof assistant [33] and our mechanization is publicly avail-
able [129].

2.2. Key Ideas

In this section, we present the key ideas behind our work. Our framework
and its instantiation to Viper is presented in Figure 2.1. At its center
is CoreIVL (depicted by the grey area), a general core language for
representing SL-based IVLs. This core language bridges the substantial
gap between proofs of high-level programs using custom verification
logics (e.g., concurrent separation logic [11] (CSL) in the figure) at the front-
end level and verification algorithms for SL-based IVLs at the back-end
level (e.g., symbolic execution and verification condition generation).
CoreIVL is parametric in its state model and assertions, so that it can
represent multiple variants of separation logic (e.g., those on which
VeriFast and GIL are based), including implicit dynamic frames (on which
Viper is based). In Figure 2.1, ViperCore represents the instantiation of
these parameters for Viper. We give two equivalent semantics to CoreIVL:
An operational semantics, which is designed to enable soundness proofs
for diverse back-end verification algorithms (shown on the right of
Figure 2.1), and an axiomatic semantics, which can be used to prove
front-end translations into CoreIVL sound, by connecting this axiomatic
semantics to the front-end separation logic (shown on the left).

The rest of this section is organized as follows. Section 2.2.1 introduces
the general core language CoreIVL for representing SL-based IVLs. Sec-
tion 2.2.2 illustrates how to check for the existence of a Concurrent
Separation Logic front-end proof for a parallel program by encoding
the verification problem into our sequential CoreIVL, mimicking the
approach of modern translational verifiers. Section 2.2.3 presents the
formal operational semantics of CoreIVL. Finally, Section 2.2.4 presents
an alternative equivalent axiomatic semantics for CoreIVL, and shows how
it can be leveraged to prove a front-end translation sound.

2.2.1. A Core Language for SL-Based IVLs

In this section, we first motivate and then define a core language for
SL-based IVLs, called CoreIVL, which captures central aspects of SL-based
verifiers, such as Viper [16], Gillian [30, 63], or VeriFast [15].
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Figure 2.1.: Overview of our framework and its application to Viper. The yellow boxes represent components of our framework (such
as semantics and logics), while the arrows show the theorems that connect them. The dashed arrows and the unlabeled yellow boxes
represent potential additional front-ends and back-ends that could be connected to ViperCore. CSL stands for concurrent separation logic,
and VCG for verification condition generation. We have formally connected VCG to VCGSem in work not presented in this thesis [74].
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Manipulating SL states via inhale and exhale. At the core of these
verifiers is the SL state they track throughout the verification, typically
containing a heap (a mapping from heap locations to values) and SL
resources (such as fractional permissions to heap locations). This SL state
is manipulated with two verification primitives: inhale 𝐴 (also called as-

sume* and produce) and exhale 𝐴 (also called assert* and consume), where
𝐴 is a separation logic assertion. inhale 𝐴 assumes the logical constraints
in 𝐴 (e.g., constraints on integer values), and adds the resources (e.g.,
ownership of heap locations) specified by 𝐴 to the current state. Dually,
exhale 𝐴 asserts that the logical constraints in 𝐴 hold, and removes the
resources specified by 𝐴 from the current state. These two primitives
can encode the verification conditions for a wide variety of program
constructs. For instance, a procedure call is encoded as exhaling the call’s
precondition (to check its logical constraints and transfer ownership of
resources from caller to callee), followed by inhaling the postcondition
(to assume logical constraints and gain resources back from the call).

Diversity of logics and their semantics. While SL-based IVLs all
employ some version of these two inhale and exhale primitives, their
actual logics are surprisingly diverse in both core connectives and their
semantics. GIL and VeriFast support different separation logics, while
Viper uses implicit dynamic frames (IDF), a variation of separation logic
that allows for heap-dependent expressions in assertions (e.g., separation
logic’s points-to predicate 𝑒. 𝑓 ↦→ 𝑣 is expressed as acc(𝑒. 𝑓 ) ∗ 𝑒. 𝑓 = 𝑣 in
IDF, in which the ownership of the heap location and a logical constraint
on its value are expressed as two separate conjuncts)2.

IVLs also support different SL connectives: Viper supports iterated
separating conjunctions [151], Viper and VeriFast support fractional
recursively-defined predicates [81, 140] (which will be discussed in
Chapter 3), Viper and Gillian support magic wands [79, 141] (which will
be discussed in Chapter 43), and VeriFast supports arbitrary existential
quantification.

A standard approach for generic reasoning over large classes of separation
logics is to build reasoning principles based on a separation algebra (built
over a partial commutative monoid) [85, 86]. We extend this classic
concept to a novel notion of IDF algebra, which can model separation
logics and IDF alike. In particular, IDF algebras allow asserting knowledge
about the value of heap locations 𝑒. 𝑓 without asserting ownership of the
heap location itself.
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𝐶 F inhale 𝐴 | exhale 𝐴 | havoc 𝑥 | 𝐶;𝐶 | if (𝑏) {𝐶} else {𝐶} | 𝑥 := 𝑒 | skip | custom 𝐶′

Figure 2.2.: Syntax of statements in CoreIVL. 𝐴 is an assertion, 𝑥 a variable, 𝑏 a Boolean expression, 𝑒 an arbitrary expression. Assertions
and expressions are represented semantically as sets of states and partial functions from states to values, respectively. 𝐶′ represents
custom statements and is a parameter of the language.

method main(p: Cell)
// requires acc(p.v, _)

{
q := alloc(0)

// {𝑃𝑙} {𝑃𝑟}
q.v := p.v || tmp := p.v
// {𝑄𝑙} {𝑄𝑟}

tmp := tmp + q.v

free(q)

assert tmp = p.v + p.v
}

method main_ivl(p: Ref) {
inhale acc(p.v, _)

havoc q
inhale acc(q.v) * q.v = 0

exhale 𝑃 𝑙 * 𝑃 𝑟
havoc tmp
inhale 𝑄 𝑙 * 𝑄 𝑟

tmp := tmp + q.v

exhale acc(q.v)

exhale tmp = p.v + p.v
}

method l(p,q:Ref){
inhale 𝑃 𝑙
q.v := p.v
exhale 𝑄 𝑙

}

method r(p,q:Ref){
inhale 𝑃 𝑟
tmp := p.v
exhale 𝑄 𝑟

}

Figure 2.3.: A simple parallel program (left), annotated with a method precondition, as well as pre- and postconditions for the parallel
branches, and its encoding into CoreIVL (instantiated to model Viper), consisting of a main IVL method (middle) and two further
methods (right) modeling the parallel branches (that is, the premises of CSL’s parallel composition rule). We use the shorthands
𝑃𝑙 ≜ acc(𝑝.𝑣, _) ∗ acc(𝑞.𝑣), 𝑄𝑙 ≜ acc(𝑝.𝑣, _) ∗ acc(𝑞.𝑣) ∗ p.v = q.v, 𝑃𝑟 ≜ acc(𝑝.𝑣, _), and 𝑄𝑟 ≜ acc(𝑝.𝑣, _) ∗ tmp = p.v, where the IDF
assertion acc(𝑒 , _) expresses non-zero permission to 𝑒 (corresponding to the SL assertion ∃𝑝, 𝑣. 𝑒

𝑝
↦→ 𝑣).

4: In Chapter 3, we will present a syntax
for separation logic assertions, and show
how to interpret them.

Core Language. The syntax of CoreIVL is shown in Figure 2.2. To
capture the diversity of assertions supported in existing SL-based IVLs,
assertions 𝐴 in our core language are semantic, i.e., assertions are sets of

states (as opposed to fixing a syntax, and having the semantics for this
syntax determine the set of states in which a syntactic assertion is true);4
states themselves are taken from any chosen IDF algebra. Similarly, ex-
pressions 𝑒 are semantically represented as partial functions from states
to values. Moreover, although we assume some core statements in our
language, we allow these to be arbitrarily extended via a parameter for
custom statements𝐶′, for instance, to add field assignments. The statements
of our core language contain the key verification primitives inhale and
exhale described above, as well as havoc, which non-deterministically
assigns a value to a variable. Combined with conditional branching,
inhale, exhale, and havoc allow us to encode many important state-
ments, such as while loops, procedure calls, and even proof rules for
parallel programs, as we show in the next subsection.

2.2.2. Background: Translational Verification of a Parallel
Program

We use the parallel program on the left in Figure 2.3 to illustrate how
translational verification works, and the challenges that arise in formal-
izing this widely-used approach. This program takes as input a Cell p
(an object with a value field v), allocates a new Cell q, assigns the value
of p.v in parallel to q.v and to the variable tmp, then adds the value of
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q.v to tmp, deallocates q, and finally asserts that tmp is equal to p.v +

p.v. Our goal is to verify this program in Concurrent Separation Logic
(CSL) [11], that is, by encoding the program and the proof rules of CSL
into CoreIVL. In particular, we want to prove that the assertion on its last
line holds.

Although the original CSL is presented via standard separation logic
syntax, we use the syntax of IDF to annotate this example. The syntax
acc(e.v, f) denotes fractional permission (ownership) of the heap location
e.v (where 𝑓 = 1 allows reading and writing, and a fraction 0 < 𝑓 < 1
allows reading) [81]. The syntax acc(p.v, _) (used as precondition in our
example) denotes a so-called wildcard permission (or wildcard in short); it
is shorthand for ∃ 𝑓 > 0. acc(p.v, 𝑓 ), which guarantees read access while
abstracting the precise fraction.

Correctness of our example means proving a CSL triple
Δ ⊢CSL [acc(p.v, _)] 𝐶 [⊤], where 𝐶 is the body of the method main

in the front-end (left) program (⊤ is the trivial postcondition). Instead
of constructing a proof directly, a translational verifier maps this to an
IVL program (shown as a CoreIVL program to the middle and right of
Figure 2.3) whose correctness implies the existence of a CSL proof for
the original program.

Encoding the program into CoreIVL. Our encoding models each proof
task of the CSL verification problem as a separate IVL method, whose
statements reflect the individual proof steps [152]. The IVL methods
main_ivl, l and r are constructed such that the correctness of all three

implies the existence of a valid CSL proof for main.

The precondition acc(p.v, _) of main is modeled by the first inhale
statement in main_ivl, reflecting that the proof of the main method may
rely on the resources and assumptions guaranteed by this precondition.
The allocation q := alloc(0) is then encoded via a havoc and an inhale

statement to non-deterministically choose a memory location and obtain
a full (i.e., 1) permission. Dually, the deallocation free(q) after the
parallel composition is encoded via an exhale statement, which removes
this (full) permission from the IVL state. Since permissions are non-
duplicable (technically, affine) resources, this encoding guarantees that
no permission can remain and so any attempt to later access this location
would cause a verification failure.

To understand the encoding of a source-level parallel composition, we
recall the CSL proof rule5:

Par
Δ ⊢CSL [𝑃𝑙] 𝐶𝑙 [𝑄𝑙] Δ ⊢CSL [𝑃𝑟] 𝐶𝑟 [𝑄𝑟]

Δ ⊢CSL [𝑃𝑙 ∗ 𝑃𝑟] 𝐶𝑙 || 𝐶𝑟 [𝑄𝑙 ∗𝑄𝑟]

From the point of view of the outer thread (forking and joining the parallel
branches), the overall effect of the parallel composition can be seen
as giving up the separating conjunction 𝑃𝑙 ∗ 𝑃𝑟 of the preconditions of
the parallel branches, and obtaining the corresponding postconditions
𝑄𝑙 ∗𝑄𝑟 before resuming any remaining code6. This exchange of assertions
across the triple in the conclusion of the rule (as well as the intervening
modification of tmp) is modeled in the IVL program by the sequence
exhale 𝑃𝑙 ∗ 𝑃𝑟 ; havoc tmp; inhale 𝑄𝑙 ∗𝑄𝑟 .
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InhaleOp
⟨inhale 𝐴, 𝜔⟩ →Δ {𝜔} ∗ 𝐴

ExhaleOp
𝜔 = 𝜔′ ⊕ 𝜔𝐴 𝜔𝐴 ∈ 𝐴
⟨exhale 𝐴, 𝜔⟩ →Δ {𝜔′}

SeqOp
⟨𝐶1 , 𝜔⟩ →Δ 𝑆1 ∀𝜔1 ∈ 𝑆1 . ⟨𝐶2 , 𝜔1⟩ →Δ S(𝜔1)

⟨𝐶1;𝐶2 , 𝜔⟩ →Δ ∪𝜔1∈𝑆1S(𝜔1)

(a) Selected operational semantics rules.

InhaleAx
Δ ⊢ [𝑃] inhale 𝐴 [𝑃 ∗ 𝐴]

ExhaleAx
𝑃 |= 𝑄 ∗ 𝐴

Δ ⊢ [𝑃] exhale 𝐴 [𝑄]

SeqAx
Δ ⊢ [𝑃] 𝐶1 [𝑅] Δ ⊢ [𝑅] 𝐶2 [𝑄]

Δ ⊢ [𝑃] 𝐶1;𝐶2 [𝑄]

(b) Selected axiomatic semantic rules.

Figure 2.4.: Selected simplified operational and axiomatic semantic rules.

The premises of the parallel rule are checked by verifying two extra
methods l and r, whose pre- and postconditions correspond to the
Hoare triples from the rule premises directly. The encoded bodies of
l and r follow the standard pattern: an inhale of their preconditions
(which can be seen as the other “half” of the transfer from the outer
thread, modeled by exhale 𝑃𝑙 ∗ 𝑃𝑟), the translation of their source
implementations, and finally an exhale of their postconditions.

If running a back-end verifier for the IVL on the three encoded methods
succeeds, we have demonstrated that a CSL proof for the original program
exists—provided that the translational verification is sound. Soundness
depends on a non-trivial translation, the subtle semantics of an IVL,
and the algorithms employed by back-end verifiers. In the rest of this
section, we explain our formal framework for establishing the soundness
of translational verifiers.

2.2.3. Operational Semantics and Back-End Verifiers

To make formal claims about an IVL program, we need a formal se-
mantics and notion of correctness for the IVL itself. As explained in the
introduction, an operational semantics facilitates a formal connection
to various back-end algorithms, which typically have an operational
flavor. Since our semantics needs to capture verification algorithms that
make heavy use of (demonic) non-determinism (to model concurrency,
allocation, or abstract modularly over the precise behavior of program
elements), our operational semantics embraces such non-determinism.
Moreover, to account for the diversity of the verification algorithms used
in back-ends, our semantics also incorporates the dual notion of angelic

non-determinism.

Consider verifying the statement exhale acc(a.v) ∨ acc(b.v), which
requires giving up (full) permission to either a.v or b.v; if the original state
holds both permissions, either choice avoids a failure here, but results
in different successor states, and so might affect whether subsequent
statements verify successfully. Such algorithmic choices occur for other
IVL constructs, such as for choosing the values of existentials (including
the amount of permission for a wildcard permission), or determining the
footprints of magic wands (as we will see in Chapter 4). Our operational
semantics makes all algorithmic choices possible and defines a program as
correct if any such choice avoids failure.
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Operational semantics. To capture the dual non-determinism, we
define our operational semantics as a multi-relation [153, 154]

⟨𝐶, 𝜔⟩ →Δ 𝑆

where 𝐶 is an IVL statement, 𝜔 an initial state, 𝑆 a set of final states,
and Δ a type context (mapping for example variables to types, i.e.,
to sets of values). The set 𝑆 captures the demonic choices, i.e., con-
tains the resulting state for each possible demonic choice. On the
other hand, angelic choices are reflected by different result sets deriv-
able in our semantics. Returning to our previous example, if 𝜔 is a
state with full permission to both a.v and b.v, our semantics allows
for both transitions ⟨exhale acc(a.v) ∨ acc(b.v), 𝜔⟩ →Δ {𝜔−𝑎} and
⟨exhale acc(a.v) ∨ acc(b.v), 𝜔⟩ →Δ {𝜔−𝑏} (where 𝜔−𝑎 and 𝜔−𝑏 are
identical to 𝜔 but with the permission to a.v resp. b.v removed).

A successful verification by a back-end is represented by an execution
in our operational semantics, leading to the following definition of
correctness of a CoreIVL statement:

Definition 2.2.1 Correctness and validity of CoreIVL statements.
A CoreIVL statement 𝐶 is correct for an initial state 𝜔 iff 𝐶 executes

successfully in 𝜔, i.e., ∃𝑆. ⟨𝐶, 𝜔⟩ →Δ 𝑆.

𝐶 is valid iff it is correct for all well-typed
7 7: We do not discuss typing in details in

this chapter, but our Isabelle formaliza-
tion covers it.

stable initial states.

Figure 2.4a shows simplified rules for the operational semantics of
inhale 𝐴, exhale 𝐴, and sequential composition. The (non-simplified)
rules for all statements are shown in Section 2.3. Inhaling A in state
𝜔 leads to the set of all possible combinations 𝜔 ⊕ 𝜔𝐴 for 𝜔𝐴 ∈ 𝐴,
capturing the demonic non-determinism of inhale: All possible states
satisfying 𝐴 must be considered in the rest of the program. Dually, the
rule ExhaleOp allows any choice of state 𝜔𝐴 satisfying 𝐴 (that is, uses angelic
non-determinism), and to remove it from 𝜔. In our previous example,
𝜔 can be decomposed into 𝜔 = 𝜔−𝑎 ⊕ 𝜔𝑎 or 𝜔 = 𝜔−𝑏 ⊕ 𝜔𝑏 , where 𝜔𝑎

and 𝜔𝑏 respectively contain the permission to a.v and b.v (and thus 𝜔𝑎

and 𝜔𝑏 both satisfy the exhaled assertion acc(a.v) ∨ acc(b.v)). The rule
SeqOp for sequential composition is more involved, since it needs to deal
with the dual non-determinism: It requires a single function S that maps
every state 𝜔1 from 𝑆1 (the set of states obtained after executing 𝐶1 in 𝜔)
to a set of states S(𝜔1) that can be reached by executing 𝐶2 in 𝜔1. The
choice of the function Scaptures the angelic choices in 𝐶2.

Connection to back-end verifiers. To show that this operational se-
mantics for CoreIVL is indeed suitable to capture different verification
algorithms, we connect it to formalizations of the two main back-ends
used by Viper. First, we formalize a version of Viper’s symbolic execution
back-end [155] in Isabelle/HOL and prove it sound against the opera-
tional semantics of CoreIVL. Second, we connect the formalization of
Viper’s verification condition generation back-end by Parthasarathy et al.
[74] to CoreIVL by constructing a CoreIVL execution from a successful
verification by their back-end. The soundness proofs of these back-ends
are described in Section 2.4. There we will also see that the angelic choice
described earlier in this section is crucial for enabling these proofs since
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the two back-ends use different heuristics, in particular around exhaling
wildcard permissions.

2.2.4. Axiomatic Semantics

The previously-introduced definition of correctness (Definition 2.2.1)
based on the operational semantics is well-suited to connect to back-end
verifiers. However, connecting it to front-end programs, and especially
logics such as CSL in our example from Figure 2.3, requires substantial
effort due to the large semantic gap between the operational IVL semantics
and the front-end logic. The IVL semantics presented previously is
operational, describes the execution from a single state, and exposes low-
level details (such as handling the dual non-determinism in the rule SeqOp).
In contrast, the program logic is axiomatic, describes the behavior of sets of

states (via assertions), and is more high-level (e.g., it uses an intermediate
assertion in the rule SeqAx instead of the semantic function S). To bridge
this gap, we present an alternative (and, as we later prove, equivalent)
axiomatic semantics for CoreIVL, which is closer to the separation logics
typically used for front-end programs and, thus, simplify the proof that
a front-end translation is sound.

Our axiomatic semantics uses judgments of the form

Δ ⊢ [𝑃] 𝐶 [𝑄]

where 𝑃 and 𝑄 are semantic assertions (sets of states), 𝐶 is an IVL
statement, and Δ is a type context. Intuitively, this triple expresses that
𝐶 can be executed successfully in any state from 𝑃 (with the right
angelic choices), and 𝑄 is (precisely) the set of all states reached by these
executions. Formally, we want the following soundness property (we will
present the completeness theorem in Section 2.3):

Theorem 2.2.1 Operational-to-axiomatic soundness.
If the CoreIVL statement 𝐶 is well-typed and valid (Definition 2.2.1) then

there exists a set of states 𝐵 such that Δ ⊢ [⊤] 𝐶 [𝐵] holds.

Note that, in contrast to when one defines a proof system for a pre-existing
operational semantics, the desired implication here is from operational
to axiomatic semantics; this is due to the connection we are aiming for
from back-end algorithms (defined operationally) to front-end proofs.

The rules for the axiomatic semantics of inhale 𝐴, exhale 𝐴, and
sequential composition are shown in Figure 2.4b. The rule InhaleAx for
inhale 𝐴 corresponds to the operational rule InhaleOp, where 𝜔 has
been lifted to the set of states 𝑃 (since 𝑃 ∗ 𝐴 =

⋃
𝜔∈𝑃({𝜔} ∗ 𝐴)). The rule

ExhaleAx for exhale 𝐴 is more involved, as it first requires weakening
the set of initial states 𝑃 to 𝑄 ∗ 𝐴. Weakening is in general necessary to
disentangle the states in 𝑄 and 𝐴: For example, to exhale acc(a.v) from
a precondition acc(a.v) ∗ acc(b.v) ∗ a.v = b.v, we have to first drop
the equality a.v = b.v because otherwise the resulting postcondition
would refer to a memory location that is no longer owned. Moreover,
similarly to how Hoare logic hides the induction necessary to reason about
unbounded while loops behind a loop invariant, our axiomatic semantics
hides the dual non-determinism of the operational semantics behind
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Frame
Δ ⊢CSL [𝑃] 𝐶 [𝑄] fv(𝐹) ∩ mod(𝐶) = ∅

Δ ⊢CSL [𝑃 ∗ 𝐹] 𝐶 [𝑄 ∗ 𝐹]

Par
Δ ⊢CSL [𝑃𝑙] 𝐶𝑙 [𝑄𝑙] Δ ⊢CSL [𝑃𝑟] 𝐶𝑟 [𝑄𝑟] . . .

Δ ⊢CSL [𝑃𝑙 ∗ 𝑃𝑟] 𝐶𝑙 || 𝐶𝑟 [𝑄𝑙 ∗𝑄𝑟]

Seq
Δ ⊢CSL [𝑃] 𝐶1 [𝑅] Δ ⊢CSL [𝑅] 𝐶2 [𝑄]

Δ ⊢CSL [𝑃] 𝐶1;𝐶2 [𝑄]

Cons
Δ ⊢CSL [𝑃′] 𝐶 [𝑄′] 𝑃 |= 𝑃′ 𝑄′ |= 𝑄

Δ ⊢CSL [𝑃] 𝐶 [𝑄]

Alloc
𝑟 ∉ fv(𝑒)

Δ ⊢CSL [⊤] r := alloc(𝑒) [acc(r.v) ∗ 𝑟.𝑣 = 𝑒]
Free
Δ ⊢CSL [acc(q.v)] free(q) [⊤]

Figure 2.5.: Selected CSL rules. In the rule Frame, fv(𝐹) and mod(𝐶) denote the set of variables free in 𝐹 and the set of variables potentially
modified by 𝐶, respectively.

high-level connectives such as the separating conjunction. Intuitively,
in the rule ExhaleAx, the angelic choice is hidden in the choice of 𝑄
and in the split of every state in 𝑃 into a state in 𝑄 and a state in
𝐴. In our previous example exhale acc(a.v) ∨ acc(b.v), we could
choose 𝑄 to be either acc(a.v) or acc(b.v), i.e., we could derive both
Δ ⊢ [acc(a.v) ∗ acc(b.v)] exhale acc(a.v) ∨ acc(b.v) [acc(a.v)] and
Δ ⊢ [acc(a.v) ∗ acc(b.v)] exhale acc(a.v) ∨ acc(b.v) [acc(b.v)].

Finally, the rule SeqAx for sequential composition illustrates how the
axiomatic semantics abstracts over the low-level details of the dual non-
determinism in the operational semantics, such as the existence of the
semantic function S in rule SeqOp. Instead, the axiomatic rule SeqAx uses
an intermediate assertion 𝑅; its relation to S is proved once and for all
in the soundness proof and, thus, does not have to be proved for each
front-end.

Crucially, we have designed the axiomatic semantics such that it contains
exactly one rule per statement. In particular, it contains no structural rules
such as a frame rule or a consequence rule, which are not necessary in our
setting. This allows us to deconstruct an axiomatic semantic derivation
into smaller blocks, to then reconstruct a proof in the front-end logic. For
example, one can derive from Δ ⊢ [𝑃] 𝐶1;𝐶2 [𝑄] the existence of some
assertion 𝑅 such that Δ ⊢ [𝑃] 𝐶1 [𝑅] and Δ ⊢ [𝑅] 𝐶2 [𝑄] hold. Using this
axiomatic semantics, we can now easily connect the correctness of the
IVL program to the correctness of the front-end program, as we explain
next.

Connecting to front-end programs and logics. Let us now see how the
axiomatic semantics enables us to construct a CSL proof for the front-end
program from Figure 2.3. Concretely, we build a CSL proof of the triple
Δ ⊢CSL [acc(p.v, _)] 𝐶 [⊤], where 𝐶 corresponds to the body of the
method main. To do this, we use the CSL rules shown in Figure 2.5 and
the CoreIVL triples Δ ⊢ [⊤] 𝐶 [𝐵] for the methods l, r, and main_ivl

that we obtain from Theorem 2.2.1.

The first step of proving the CSL triple for main is to pair each statement
in main with the corresponding code in main_ivl. For this, we use CSL’s
Seq rule and (the inversion of) SeqAx to split the proofs for main and



2. Translational Verifiers 29

8: Note that the CSL we use in this chap-
ter has the same state model as the IVL,
and thus the IVL assertions do not need
to be converted to CSL assertions. Our
axiomatic semantics can also be used
to reconstruct proofs in program logics
with different state models, but this goes
beyond the scope of this thesis.

main_ivl into smaller parts:

Δ ⊢ [⊤] inhale acc(p.v, _) [𝐴0]
Δ ⊢CSL [𝐴0] q := alloc(0) [𝐴1] Δ ⊢ [𝐴0] havoc q;inhale acc(q.v) * q.v = 0 [𝐴1]
Δ ⊢CSL [𝐴1] q.v := p.v || tmp := p.v [𝐴2] Δ ⊢ [𝐴1] exhale 𝑃𝑙∗𝑃𝑟 ; havoc tmp; inhale 𝑄𝑙∗𝑄𝑟 [𝐴2]
Δ ⊢CSL [𝐴2] tmp := tmp + q.v [𝐴3] Δ ⊢ [𝐴2] tmp := tmp + q.v [𝐴3]
Δ ⊢CSL [𝐴3] free(q) [𝐴4] Δ ⊢ [𝐴3] exhale acc(q.v) [𝐴4]
Δ ⊢CSL [𝐴4] assert tmp = p.v + p.v [𝐵] Δ ⊢ [𝐴4] exhale tmp = p.v + p.v [𝐵]

Note how deconstructing the applications of SeqAx in the proof of main_-
ivl gives us intermediate assertions 𝐴0−4, which we use to instantiate the
intermediate assertion 𝑅 in Seq.8 Matching statements of the front-end
program to segments of the CoreIVL program is straightforward since
the front-end translation is typically defined statement by statement.

After decomposing the sequential compositions, we justify the CSL triple
for each primitive front-end statement from the corresponding CoreIVL
triple. For some statements like tmp := tmp + q.v, this is trivial as
the triples (and corresponding logic rules) match. Let us now focus on
the most interesting cases: q := alloc(0), q.v := p.v || tmp := p.v,
and free(q).

The exhale-havoc-inhale pattern. To derive the CSL triples for these
statements, we observe that their encoding follows a pattern: The Core-
IVL code first exhales the precondition 𝑃 of the CSL rule (omitted if
𝑃 = ⊤), then havocs the variables modified by the statement (q for
q := alloc(0) and tmp for q.v := p.v || tmp := p.v), and finally
inhales the postcondition 𝑄 of the CSL rules (omitted if 𝑄 = ⊤), leading
to the pattern exhale 𝑃; havoc 𝑥1; . . . ; havoc 𝑥𝑛 ; inhale 𝑄. To handle
this general pattern, we can use the following lemma, which holds for
any separation logic Lwith a consequence rule and a frame rule (see
Section 2.5 for the proof):

Lemma 2.2.2 Exhale-havoc-inhale pattern.
For any separation logic L that has a frame rule and a consequence rule, if

Δ ⊢ [𝐴] exhale 𝑃; havoc 𝑥1; . . . ; havoc 𝑥𝑛 ; inhale 𝑄 [𝐵] holds

and Δ ⊢L [𝑃] 𝐶 [𝑄] holds, where {𝑥1 , . . . , 𝑥𝑛} = mod(𝐶),
then Δ ⊢L [𝐴] 𝐶 [𝐵] holds.

Intuitively, this lemma shows that a CoreIVL triple for the exhale-havoc-
inhale pattern allows us to obtain the corresponding CSL triple. In the
case of q := alloc(0), this lets us lift Alloc to the precondition 𝐴0 and
postcondition𝐴1, giving us exactly the triple we need. To justify the triple
for q.v := p.v || tmp := p.v, we need to establish the premises of the
rule Par, Δ ⊢CSL [𝑃𝑙] q.v := p.v [𝑄𝑙] and Δ ⊢CSL [𝑃𝑟] tmp := p.v [𝑄𝑟],
which can be derived from the correctness of the methods l and r using
a lemma similar to Lemma 2.2.2, as we formally show in Section 2.5.

Summary. We have now seen how to justify the translational verification
of the program from Figure 2.3 in CSL in three steps. First, we showed that
the successful verification of its CoreIVL encoding in a back-end implies
that the CoreIVL program is valid. Second, we used the soundness
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9: In addition, values must exist for
those heap locations where the state
has non-zero permission. That is, ΣIDF

is restricted to states (ℎ,𝜋) such that
∀𝑙.𝜋(𝑙) > 0 ⇒ 𝑙 ∈ dom(ℎ). Alterna-
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by defining the state model as ΣIDF ≜
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with ΣSL is that we use the interval [0, 1]
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theorem for the axiomatic IVL semantics to derive judgments in the
axiomatic semantics. Third, we use those judgments to prove the desired
CSL triple. Each of these steps is well-suited for its task: The operational
semantics allows us to connect to the back-end verifiers, while the
axiomatic semantics facilitates the reconstruction of the front-end logic
proof—both linked by Theorem 2.2.1.

2.3. Semantics

In this section, we present an operational and an axiomatic semantics for
the CoreIVL language defined in Figure 2.2. We first define in Section 2.3.1
an IDF algebra that captures both separation logic and implicit dynamic
frames state models. We then formalize the operational semantics of
CoreIVL in Section 2.3.2 and define its axiomatic semantics and prove
their equivalence in Section 2.3.3. We instantiate CoreIVL for key features
of Viper in Section 2.3.4.

2.3.1. An Algebra for Separation Logic and Implicit
Dynamic Frames

A standard way to capture different separation logic state models is
to use a separation algebra [85, 86], i.e., a partial commutative monoid
(Σ,⊕), where Σ is the set of all states, and ⊕ is a partial, commutative,
and associative binary operator, used to combine states (e.g., via the
separating conjunction operator ∗). In SL, assertions about values of
heap locations must also assert ownership of those heap locations. In
particular, asserting that a heap location x.f has the value 5 requires
using the points-to predicate x.f ↦→ 5, which also expresses ownership
of the location x.f. This requirement is embedded in the SL state model.
For example, a typical SL state with a heap and fractional permissions
(ignoring local variables for now) isΣSL ≜ (𝐿⇀ (𝑉 × (0, 1])), i.e., a partial
function from a set 𝐿 of heap locations to pairs of values from a set 𝑉
and positive fractional permissions. That is, any value for a heap location
is associated with a strictly positive permission.

In contrast, in implicit dynamic frames, an assertion may constrain the
value of a heap location independently of expressing ownership. For
example, x.f = 5 is a valid IDF assertion that expresses that x.f stores
the value 5 without expressing ownership of x.f. However, IDF requires
assertions used as pre- and postconditions, loop invariants, frames (for
the frame rule), etc. to be self-framing, that is, to express ownership of
all heap locations they mention. For example, acc(x.f) ∗ x.f = 5 is
self-framing, while x.f = 5 is not. To capture IDF states with fractional
permissions, we define the state model ΣIDF ≜ (𝐿⇀ 𝑉) × (𝐿⇀ [0, 1]).9
In contrast to ΣSL, values and permissions are separated in ΣIDF, which
allows states (ℎ,𝜋) where ℎ(x.f) = 5 but 𝜋(x.f) = 0.

We call a state (ℎ,𝜋) ∈ ΣIDF stable iff it contains values exactly for the
heap locations with non-zero permission, i.e., dom(ℎ) = {𝑙 | 𝜋(𝑙) > 0}.
Stable states are exactly those that can be represented as states in ΣSL; By
construction, all states in ΣSL are stable.
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𝑎 ⊕ 𝑏 = 𝑏 ⊕ 𝑎 𝑎 ⊕ (𝑏 ⊕ 𝑐) = (𝑎 ⊕ 𝑏) ⊕ 𝑐 𝑐 = 𝑎 ⊕ 𝑏 ∧ 𝑐 = 𝑐 ⊕ 𝑐 ⇒ 𝑎 = 𝑎 ⊕ 𝑎

𝑥 = 𝑥 ⊕ |𝑥| |𝑥| = |𝑥| ⊕ |𝑥| 𝑥 = 𝑥 ⊕ 𝑐 ⇒ |𝑥| ⪰ 𝑐 |𝑎 ⊕ 𝑏| = |𝑎| ⊕ |𝑏|

𝑥 ⊕ 𝑎 = 𝑥 ⊕ 𝑏 ∧ |𝑎| = |𝑏| ⇒ 𝑎 = 𝑏 stable(𝜔) ⇒ 𝜔 = stabilize(𝜔)

stable(stabilize(𝜔)) stabilize(𝑎 ⊕ 𝑏) = stabilize(𝑎) ⊕ stabilize(𝑏)

𝑥 = stabilize(𝑥) ⊕ |𝑥| 𝑎 = 𝑏 ⊕ stabilize(|𝑐|) ⇒ 𝑎 = 𝑏
Figure 2.6.: Axioms for our IDF alge-
bra (Σ,⊕, |_|, stable, stabilize). We define
(𝜔′ ⪰ 𝜔) ≜ (∃𝑟.𝜔′ = 𝜔 ⊕ 𝑟).

[41]: Jung et al. (2015), Iris

[86]: Dockins et al. (2009), A Fresh Look at

Separation Algebras and Share Accounting

To capture arbitrary SL and IDF states, we define an IDF algebra as
follows:

Definition 2.3.1 IDF algebra.
An IDF algebra is a quintuple (Σ,⊕, |_|, stable, stabilize) that satisfies all

axioms in Figure 2.6, where Σ is a set of states, ⊕ is a partial, commutative,

and associative addition on Σ (i.e., a partial function from Σ × Σ to Σ), |_|
and stabilize are endomorphisms of Σ, and stable is a predicate on Σ.

The set Σ and the partial addition ⊕ are the standard components of
a separation algebra. Using ⊕, we define the standard partial order ⪰
induced by ⊕ as (𝜔′ ⪰ 𝜔) ≜ (∃𝑟.𝜔′ = 𝜔 ⊕ 𝑟). We require positivity

(𝑐 = 𝑎 ⊕ 𝑏 = 𝑐 ∧ 𝑐 = 𝑐 ⊕ 𝑐 ⇒ 𝑎 = 𝑎 ⊕ 𝑎) to ensure that the partial order is
antisymmetric (𝑎 ⪰ 𝑏 ∧ 𝑏 ⪰ 𝑎 ⇒ 𝑎 = 𝑏). Intuitively, the endomorphism
|_| projects a state 𝜔 on its largest duplicable part, i.e., |𝜔| is the largest state
smaller than 𝜔 such that |𝜔| = |𝜔| ⊕ |𝜔|. Similarly, the endomorphism
stabilize projects a state 𝜔 on its largest stable part, i.e., stabilize(𝜔) is the
largest stable state smaller than 𝜔.

Instantiations. For our concrete IDF state model ΣIDF, the combination
(ℎ1 ,𝜋1) ⊕ (ℎ2 ,𝜋2) is defined iff ℎ1 and ℎ2 agree on the locations to which
both states hold non-zero permission and the sums of their permissions
pointwise is at most 1, i.e., iff ∀𝑙. (𝜋1(𝑙) + 𝜋2(𝑙) ≤ 1) ∧ (𝑙 ∈ dom(ℎ1) ∩
dom(ℎ2) ⇒ ℎ1(𝑙) = ℎ2(𝑙)). When the combination is defined, (ℎ1 ,𝜋1) ⊕
(ℎ2 ,𝜋2) ≜ (ℎ1 ∪ ℎ2 ,𝜋1 +𝜋2). Knowledge about heap values is duplicable,
whereas permissions are not. Thus, |_| puts all permissions to 0 but
preserves the heap, i.e., |(ℎ,𝜋)| ≜ (ℎ,𝜆𝑙. 0). Moreover, stabilize erases all
values for heap locations to which the state does not hold any permission,
i.e., stabilize((ℎ,𝜋)) ≜ ((𝜆𝑙. if 𝜋(𝑙) > 0 then ℎ(𝑙) else ⊥),𝜋).

Separation algebra instances can also be instantiated as IDF algebras,
by defining stable to be true for all states, and stabilize to be the identity
function on Σ. For example, ΣSL (defined above) can be instantiated as
an IDF algebra with these definitions of stable and stabilize, and with |_|
mapping every state to the unit state (where all permissions are 0, and
the domain of the heap is empty). Moreover, like separation algebras [41,
86], IDF algebras support standard constructions like the agreement
algebra (where only 𝜔 = 𝜔 ⊕ 𝜔 holds), and can be constructed by
combining smaller algebras, via combinators such as product and sum
types (where both types must be IDF algebras), function types (where
only the codomain must be an IDF algebra), etc.
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10: In this chapter, we do not discuss typ-
ing in details, but our Isabelle formaliza-
tion includes it. In particular, it ensures
that our operational and axiomatic se-
mantics deal only with well-typed states,
i.e., states whose local store and heap con-
tain values of the right types (defined by
the type context Δ). By default, all states
discussed in this section are well-typed.

State model for CoreIVL. Our CoreIVL framework can be instantiated
for any IDF algebra. We obtain the state model by extending this IDF
algebra with a store of local variables, i.e., a partial mapping from variables
in Var to values in Val. Concretely, given an IDF algebra with carrier
set Σ, we define the state model for CoreIVL as the product algebra
ΣIVL ≜ ((Var ⇀ Val)×Σ), where the store Var ⇀ Val is instantiated to the
agreement algebra, i.e., addition on stores is defined for identical stores
(as the identity). Using the agreement algebra for the store ensures that
inhale and exhale have no effect on local variables.

Self-framing IDF assertions. Given an arbitrary IDF algebra, we can
define a general notion of self-framing assertions and a relative notion of
assertions framing other assertions as follows.

Definition 2.3.2 Properties of IDF assertions.
In the following, 𝑃 is an IDF assertion (i.e., a set of states from an IDF

algebra).

▶ 𝑃 is self-framing, written selfFraming(𝑃),
iff ∀𝜔.𝜔 ∈ 𝑃 ⇔ stabilize(𝜔) ∈ 𝑃.

▶ A state 𝜔 frames 𝑃, written frames(𝜔, 𝑃), iff selfFraming({𝜔} ∗ 𝑃).
▶ An IDF assertion 𝐵 frames 𝑃, written frames(𝐵, 𝑃),

iff ∀𝜔 ∈ 𝐵. stable(𝜔) ⇒ frames(𝜔, 𝑃).
▶ 𝑃 frames the expression (i.e., a partial function from states to values)

𝑒, written frames(𝑃, 𝑒), iff 𝑒(𝜔) is defined for all states 𝜔 ∈ 𝑃.

Those different notions are tightly connected: If 𝐴 is self-framing and
𝐴 frames 𝐵 then 𝐴 ∗ 𝐵 is self-framing. For example, the assertion 𝐴 ≜
(acc(x.f) ∗ x.f = 5) is self-framing, because any state 𝜔𝐴 ∈ 𝐴 has
full permission to x.f, and thus stabilize(𝜔𝐴) will retain the knowledge
that x.f is 5, and hence stabilize(𝜔𝐴) ∈ 𝐴. In contrast, the assertion
𝐵 ≜ (x.f = 5) is not self-framing, since a state 𝜔𝐵 with no permission
to x.f but with the knowledge that x.f is 5 satisfies 𝐵, but stabilize(𝜔𝐵)
will not retain the knowledge that x.f = 5, and hence will not satisfy 𝐵.
Moreover, any state that satisfies acc(x.f) frames 𝐵, thus the assertion
acc(x.f) frames 𝐵. Note that, in an instantiation with SL states (e.g., ΣSL),
all assertions are self-framing, since all SL states are stable.

2.3.2. Operational Semantics

We now formally define the operational semantics of CoreIVL for the state
model described above (given an arbitrary IDF algebra). As explained
in Section 2.2.3, our operational semantics has judgments of the form
⟨𝐶, 𝜔⟩ →Δ 𝑆, where Δ is a type context,10 𝐶 is a statement, 𝜔 is a state,
and 𝑆 is a set of states (to capture demonic non-determinism; angelic
non-determinism is captured by the existence of different derivations
⟨𝐶, 𝜔⟩ →Δ 𝑆1 and ⟨𝐶, 𝜔⟩ →Δ 𝑆2).

The rules for the operational semantics are given in Figure 2.7. As shown
by the rule InhaleOp, inhale 𝐴 can reduce in a state 𝜔 only if 𝜔 frames
𝐴. In our concrete instantiation ΣIDF, this means that 𝜔 or 𝐴 must
contain the permission to any heap location mentioned in𝐴. For example,
inhale x.f = 5 can reduce correctly only in a state 𝜔 that has some
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InhaleOp
frames(𝜔, 𝐴)

⟨inhale 𝐴, 𝜔⟩ →Δ {𝜔′ | ∃𝜔𝐴 ∈ 𝐴.𝜔′ = 𝜔 ⊕ 𝜔𝐴 ∧ stable(𝜔′)}

ExhaleOp
𝜔 = 𝜔′ ⊕ 𝜔𝐴 𝜔𝐴 ∈ 𝐴 stable(𝜔′)

⟨exhale 𝐴, 𝜔⟩ →Δ {𝜔′}

SeqOp
⟨𝐶1 , 𝜔⟩ →Δ 𝑆1 ∀𝜔1 ∈ 𝑆1 . ⟨𝐶2 , 𝜔1⟩ →Δ S(𝜔1)

⟨𝐶1;𝐶2 , 𝜔⟩ →Δ ∪𝜔1∈𝑆1S(𝜔1)

AssignOp
Δ(𝑥) = 𝜏 𝑒(𝜔) = 𝑣 𝑣 ∈ 𝜏

⟨𝑥 := 𝑒 , 𝜔⟩ →Δ {𝜔[𝑥 ↦→ 𝑣]}
SkipOp
⟨skip, 𝜔⟩ →Δ {𝜔}

HavocOp
Δ(𝑥) = 𝜏

⟨havoc 𝑥, 𝜔⟩ →Δ {𝜔[𝑥 ↦→ 𝑣] | 𝑣 ∈ 𝜏}

IfTOp
𝑏(𝜔) = ⊤ ⟨𝐶1 , 𝜔⟩ →Δ 𝑆1

⟨if (𝑏) {𝐶1} else {𝐶2}, 𝜔⟩ →Δ 𝑆1

IfFOp
𝑏(𝜔) = ⊥ ⟨𝐶2 , 𝜔⟩ →Δ 𝑆2

⟨if (𝑏) {𝐶1} else {𝐶2}, 𝜔⟩ →Δ 𝑆2

Figure 2.7.: Operational semantics rules.

permission to x.f. If 𝜔 has a different value than 5 for x.f, the statement
will reduce to an empty set of states, i.e., ⟨inhale x.f = 5, 𝜔⟩ →Δ ∅,
capturing the fact that we inhaled an assumption inconsistent with our
state. In this case, the rest of the program is trivially correct (because it
will be executed in no state). If 𝜔 has value 5 for x.f, then the statement
will reduce to the singleton set {𝜔}, i.e., ⟨inhale x.f = 5, 𝜔⟩ →Δ {𝜔}.
Finally, inhaling acc(x.f) in a state 𝜔 with no permission and no value
to x.f will result in a set with multiple states (potentially infinitely many),
one state for each possible value of x.f. We require stable(𝜔′) in the rule
to ensure that executing a statement in any stable state leads to a set of
stable states, i.e., stable(𝜔) ∧ ⟨𝜔, 𝐶⟩ →Δ 𝑆 ⇒ (∀𝜔′ ∈ 𝑆. stable(𝜔′)). In
other words, the operational semantics preserves the stability of states.

Dually, the rule ExhaleOp requires the final state𝜔′ to be stable. This ensures
that values of heap locations for which the state lost all permission will be
erased. For example, exhale acc(𝑥. 𝑓 ) succeeds only in a state with full
permission to x.f, and results in a final state without any permission nor
value for x.f. Note that the rule ExhaleOp is the only atomic rule that uses
angelic nondeterminism, because the rule can be applied with different
𝜔′ (corresponding to different angelic choices). (The rules InhaleOp and
HavocOp use demonic non-determinism, while AssignOp and SkipOp are
deterministic.) The rule SeqOp first executes 𝐶1 in 𝜔, which yields a set
of states 𝑆1. Since 𝑆1 captures demonic choices, 𝐶2 must be executed
in all states from 𝑆1, but the angelism in 𝐶2 can be resolved differently
for each state, which is captured by the choice of the function S. The
function Smust map every state 𝜔1 from 𝑆1 (the set of states obtained
after executing 𝐶1 in 𝜔) to a set of states S(𝜔1) that can be reached by
executing 𝐶2 in 𝜔1.

Finally, note that expressions in CoreIVL are semantic, i.e., they are partial

functions from states to values. We model them as partial functions
because they might be heap-dependent, and thus might not be defined
for all states. For example, the expression x.f = 5 is only meaningful in
states where x.f has a value. The rules AssignOp, IfTOp, and IfFOp require
that the expressions are defined in the initial state 𝜔.

2.3.3. Axiomatic Semantics

Using the same extended state model as in the operational semantics, we
define an axiomatic semantics with judgments of the form Δ ⊢ [𝑃] 𝐶 [𝑄],
where Δ is a type context, 𝑃 and 𝑄 are assertions (sets of states), and 𝐶
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SkipAx
selfFraming(𝑃)

Δ ⊢ [𝑃] skip [𝑃]

InhaleAx
selfFraming(𝑃) frames(𝑃, 𝐴)

Δ ⊢ [𝑃] inhale 𝐴 [𝑃 ∗ 𝐴]

ExhaleAx
selfFraming(𝑃) 𝑃 |= 𝑄 ∗ 𝐴 selfFraming(𝑄)

Δ ⊢ [𝑃] exhale 𝐴 [𝑄]

IfAx
selfFraming(𝑃) frames(𝑃, 𝑏) Δ ⊢ [𝑃 ∧ 𝑏] 𝐶1 [𝐵1] Δ ⊢ [𝑃 ∧ ¬𝑏] 𝐶2 [𝐵2]

Δ ⊢ [𝑃] if (𝑏) {𝐶1} else {𝐶2} [𝐵1 ∨ 𝐵2]

HavocAx
selfFraming(𝑃) Δ(𝑥) = 𝜏

Δ ⊢ [𝑃] havoc 𝑥 [∃𝑥 ∈ 𝜏. 𝑃]

SeqAx
Δ ⊢ [𝑃] 𝐶1 [𝑅] Δ ⊢ [𝑅] 𝐶2 [𝑄]

Δ ⊢ [𝑃] 𝐶1;𝐶2 [𝑄]

AssignAx
selfFraming(𝑃) frames(𝑃, 𝑒)

Δ ⊢ [𝑃] 𝑥 := 𝑒 [∃𝑣. 𝑃[𝑣/𝑥] ∧ 𝑥 = 𝑒[𝑣/𝑥]]

Figure 2.8.: Axiomatic semantic rules.

is a CoreIVL statement. All rules are shown in Figure 2.8. Multiple rules
have side-conditions requiring the preconditions and postconditions to
be self-framing, ensuring that if we have Δ ⊢ [𝑃] 𝐶 [𝑄], 𝑃 and 𝑄 are
self-framing.

As explained in Section 2.2.4, our operational and axiomatic semantics
are equivalent. The soundness property expressed in Theorem 2.2.1 (in
Section 2.2.4) allows one to bridge the gap between a valid CoreIVL
program (according to Definition 2.2.1) and the front-end program logic.
The proof of Theorem 2.2.1 is not straightforward. In particular, our proof
explicitly tracks the angelic choices made based on the sequence of past
states of each execution, as shown by the following lemma, which implies
Theorem 2.2.1. Let ≪𝐴≫ ≜ {𝜔′ | stabilize(𝜔′) ∈ 𝐴} for a set of states
𝐴.

Lemma 2.3.1 Correspondence between operational and axiomatic
semantics.
Given a set Ω ∈ ℙ(Σ∗ × Σ) of lists of past states paired with current states, a

CoreIVL statement 𝐶, and a function Smapping elements from Ω to sets of

states, if for all (𝑙 , 𝜔) ∈ Ω we have

1. stable(𝜔), and

2. ⟨𝐶, 𝜔⟩ →Δ S(𝑙 , 𝜔),

then Δ ⊢ [≪{𝜔 | (𝑙 , 𝜔) ∈ Ω}≫] 𝐶 [≪⋃
(𝑙 ,𝜔)∈Ω S(𝑙 , 𝜔)≫].

An element ([𝜔0 , . . . , 𝜔𝑛], 𝜔𝑛+1) ∈ Ω represents all the intermediate
states of one execution up to now, which we use to resolve the future
angelism. The function Smaps each such element to a set of states that
can be reached from 𝜔𝑛+1 by executing 𝐶. Intuitively, the precondition
collects all the current states from Ω, and the postcondition collects all
the states they can reach by executing 𝐶. The proof proceeds by structural
induction over the statement 𝐶.

The reason for tracking sequences of past states. The reader might
be wondering why Lemma 2.3.1 keeps track of the list of all past states,
instead of only keeping track of the current state. The reason is that
only keeping track of the current state would not allow us to prove the
inductive case for sequential composition. To understand why, assume

that Ω is instead a set of single states, and S is a function from single states

to a set of states. Consider proving the inductive case for the sequential
composition, i.e., for 𝐶 ≜ (𝐶1;𝐶2). Assume that, in this scenario, we



2. Translational Verifiers 35

are given Ω = {𝜔𝐴 , 𝜔𝐵}, and that S is such that S(𝜔𝐴) = {𝜔′
𝐴
} and

S(𝜔𝐵) = {𝜔′
𝐵
}. From assumption (2) in Lemma 2.3.1, we know that

⟨𝐶1;𝐶2 , 𝜔𝐴⟩ →Δ {𝜔′
𝐴
} and ⟨𝐶1;𝐶2 , 𝜔𝐵⟩ →Δ {𝜔′

𝐵
} hold. It might be the

case that executing 𝐶1 in either 𝜔𝐴 or 𝜔𝐵 yields the same set of states
{𝜔′}, i.e., ⟨𝐶1 , 𝜔𝐴⟩ →Δ {𝜔′} and ⟨𝐶1 , 𝜔𝐵⟩ →Δ {𝜔′}, but that the angelic
non-determinism when executing 𝐶2 in state 𝜔′ was resolved differently
in both executions, leading to 𝜔′

𝐴
in the execution from 𝜔𝐴 and 𝜔′

𝐵
in

the execution from 𝜔𝐵. More concisely, the executions of 𝐶1;𝐶2 in 𝜔𝐴

and 𝜔𝐵 might have been constructed as follows:

⟨𝐶1 , 𝜔𝐴⟩ →Δ {𝜔′} ∧ ⟨𝐶2 , 𝜔
′⟩ →Δ {𝜔′

𝐴} ⇒ ⟨𝐶1;𝐶2 , 𝜔𝐴⟩ →Δ {𝜔′
𝐴}

⟨𝐶1 , 𝜔𝐵⟩ →Δ {𝜔′} ∧ ⟨𝐶2 , 𝜔
′⟩ →Δ {𝜔′

𝐵} ⇒ ⟨𝐶1;𝐶2 , 𝜔𝐵⟩ →Δ {𝜔′
𝐵}

In this case, our intermediate set of states between 𝐶1 and 𝐶2 is Ω ≜ {𝜔′}.
To apply our induction hypothesis for 𝐶2, we need to find a function S2
that maps 𝜔′ to both {𝜔′

𝐴
} and {𝜔′

𝐵
}, as required by the assumption (2)

in the lemma, which is not possible.

To solve this issue, we explicitly keep track of all past states. In this
way, our intermediate set of states for the previous example is Ω ≜
{([𝜔𝐴], 𝜔′), ([𝜔𝐵], 𝜔′)}, which allows us to define a function S2 such that
S2([𝜔𝐴], 𝜔′) = {𝜔′

𝐴
} and S2([𝜔𝐵], 𝜔′) = {𝜔′

𝐵
}, allowing us to apply our

induction hypothesis and prove the sequential composition case.

Completeness. To show that our operational and axiomatic semantics
are equivalent, we also prove the following completeness property (whose
proof is less involved than for soundness):

Theorem 2.3.2 Axiomatic-to-operational completeness.
Assume Δ ⊢ [𝑃] 𝐶 [𝑄], and let 𝜔 ∈ 𝑃 such that stable(𝜔). Then there

exists 𝑆 such that ⟨𝐶, 𝜔⟩ →Δ 𝑆 and 𝑆 ⊆ 𝑄.

2.3.4. ViperCore: Instantiating CoreIVL with Viper

To show the practical usefulness of CoreIVL, we instantiated it for the
Viper language. We call this instantiation ViperCore, and we use it in
Section 2.4 and Section 2.5. To instantiate the framework presented in this
section, one needs (1) an IDF algebra, (2) a type of custom statements 𝐶′,
(3) operational and axiomatic semantic rules for each custom statement,
and (4) proofs that those operational and axiomatic semantic rules are
compatible with our framework (i.e., soundness and completeness for
the custom semantic rules, and a proof that the operational semantics of
custom statements preserves stability).

We instantiate (1) with the IDF algebra ΣIDF defined in Section 2.3.1,
where the set 𝐿 of heap locations is the set of pairs of a reference and
a field (represented by a string). For (2), we add field assignments
as 𝐶′ F (𝑒1. 𝑓 := 𝑒2), where 𝑒1 and 𝑒2 are semantic expressions that
evaluate to a reference and a value, respectively, and 𝑓 is a field. The
field assignment 𝑒1. 𝑓 := 𝑒2 is deterministic. In an initial state (𝜎, (ℎ,𝜋)),
it reduces to the singleton set {(𝜎, (ℎ[(𝑟, 𝑓 ) ↦→ 𝑣],𝜋))} if 𝑒1 evaluates to
a reference 𝑟, 𝑒2 evaluates to a value 𝑣, and 𝜋((𝑟, 𝑓 )) = 1. This semantics
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is reflected both in its corresponding operational and axiomatic semantic
rules (3), and the associated proofs (4) are straightforward.

Moreover, we have also connected the deep embedding of the Viper
language developed by Parthasarathy et al. [74] (which we leverage in the
next section) to ViperCore, by defining a function ↓𝐶 that converts their
syntactic statements, expressions and assertions into semantic ViperCore
statements, expressions and assertions.

2.4. Back-End Soundness

In this section, we show how our framework enables formalizing the
soundness of different back-end verifiers. We prove the soundness of
two fundamentally different verification algorithms commonly used in
practice: symbolic execution and verification condition generation. We
connect both to the same instantiation of CoreIVL, namely ViperCore
introduced in Section 2.3.4. This demonstrates that CoreIVL’s semantics
can accommodate fundamentally different verification algorithms.

Symbolic execution is a common kind of verification algorithm used in
separation logic-based verifiers [15, 30, 44]. Section 2.4.1 introduces a
symbolic execution back-end for ViperCore. Its design follows Viper’s
symbolic execution back-end [155], but it is formalized as a function
inside Isabelle/HOL. The main result of Section 2.4.1 is a soundness proof
of this symbolic execution against the operational semantics of ViperCore,
showing how CoreIVL is general enough to justify widely-used symbolic
execution algorithms.

In Section 2.4.2 we connect ViperCore to the formalization by Parthasarathy
et al. [74] of Viper’s verification condition generation (VCG) back-end,
which translates an input Viper program to Boogie.11 This formalization
includes a formal operational semantics of Viper that we call VCGSem.
Unlike ViperCore, which is designed to capture the verification algo-
rithms of multiple back-ends, VCGSem is specific to the verification
algorithm of the VCG back-end. For example, VCGSem uses a total heap
(i.e., all possible locations on the heap store a value), while ViperCore is
based on a partial heap (which is important to capture existing symbolic
execution algorithms). Moreover, VCGSem uses (constrained) demonic

choice when exhaling wildcard permissions, while ViperCore uses an-
gelic choice. Despite these differences, we show that ViperCore’s (and
thus also CoreIVL’s) operational semantics is general enough to capture
VCGSem, which embodies Viper’s VCG back-end.

We have chosen these two back-ends since they implement very different
proof search algorithms: The symbolic execution algorithm manipulates
a symbolic state including a list of heap chunks, while the VCG back-
end maps to Boogie code whose operations are embodied by VCGSem,
a big-step operational semantics with a total heap. These back-ends
show CoreIVL’s generality for justifying multiple common verification
algorithms. A key aspect that enables this generality is CoreIVL’s use of
angelic choice. Concretely, the two back-ends use different algorithms
for exhaling wildcard permissions (the symbolic execution halves the
permission of one heap chunk while VCGSem demonically chooses a
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𝜎 : SymState B {store : Var ⇀ SymExpr, pc : SymExpr, heap : List(Chunk)}
𝑡 B 𝑥 | 𝑙 | ⊙ 𝑡 | 𝑡 ⊕ 𝑡 where ⊙ ∈ {¬,−, . . .} and ⊕ ∈ {∧,∨,=,+,−, . . .}

𝑐 : Chunk B {recv : SymExpr, field : FieldName, perm : SymExpr, val : SymExpr}

sexec 𝜎 𝐶 𝐾 ≜



sproduce 𝜎 𝐴 𝐾 if 𝐶 = inhale 𝐴

sconsume 𝜎 𝐴 (𝜆𝜎. .scleanup 𝜎 𝐾) if 𝐶 = exhale 𝐴

sexp 𝜎 𝑒 (𝜆𝜎. 𝑡.sexec pc_add(𝜎, 𝑡) 𝐶1 𝐾 if 𝐶 = (if 𝑒 then 𝐶1 else 𝐶2)
∧ sexec pc_add(𝜎,¬𝑡) 𝐶2 𝐾)

. . .

sproduce 𝜎 (acc(𝑒𝑟 . 𝑓 , 𝑒𝑝)) 𝐾 ≜ sexp 𝜎 𝑒𝑟 (𝜆𝜎. 𝑡𝑟 .sexp 𝜎 𝑒𝑝 (𝜆𝜎. 𝑡𝑝 .chunk_add 𝜎 {𝑡𝑟 , 𝑓 , 𝑡𝑝 , fresh} 𝐾))
sconsume 𝜎 (acc(𝑒𝑟 . 𝑓 , _)) 𝐾 ≜ sexp 𝜎 𝑒𝑟 (𝜆𝜎. 𝑡𝑟 .extract 𝜎 𝑡𝑟 𝑓 _ (𝜆𝜎. 𝑐.chunk_add 𝜎 𝑐{perm := 𝑐.perm/2} 𝐾))

Figure 2.9.: Symbolic states and excerpts of sexec, sproduce, and sconsume. The full definition can be found in Dardinier et al. [156].
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suitably-constrained permission amount). Yet, CoreIVL can capture both
algorithms thanks to its use of angelic choice.

2.4.1. Symbolic Execution

We formalized a symbolic execution back-end for ViperCore in Is-
abelle/HOL based on the description of Viper’s back-end by Schwerhoff
[155] while also taking inspiration from the (on paper) formalization of
symbolic execution by Zimmerman et al. [71].

Symbolic states. The symbolic state tracked during verification is
defined in Figure 2.9. It consists of the following components:12 (1) A
symbolic store (store) mapping variables to symbolic expressions, (2) a
path condition (pc)—which is a symbolic expression tracking logical facts
that hold in the current branch of the program—, and (3) a symbolic

heap (heap) given by a list of heap chunks. Symbolic expressions 𝑡 consist
of symbolic variables 𝑥, literals 𝑙 (e.g., for concrete integers, booleans
or permission amounts), unary operations ⊙ 𝑡, and binary operations
𝑡 ⊕ 𝑡. We define a function pc_add(𝜎, 𝑡) that adds the (boolean) symbolic
expression 𝑡 to the path condition of 𝜎.

The most crucial part of symbolic states is the symbolic heap. As is
common [15, 43, 155], we represent the symbolic heap as a list of (heap)
chunks. Conceptually, each heap chunk corresponds to an acc(𝑒𝑟 . 𝑓 , 𝑒𝑝)
resource, which we call an acc-resource in this section, together with an
associated value. Concretely, a chunk 𝑐 is a record with four fields, as
shown in Figure 2.9. recv and field describe the heap location that the
chunk belongs to, perm describes the permission of the chunk, and val
gives the (symbolic) value of the heap location. A symbolic heap is a list
of chunks. Note that this list can contain multiple chunks for the same
location (cf. state consolidation, described shortly).

Defining the symbolic execution. Our symbolic execution is defined via
the sexec function for symbolically executing a statement 𝐶. It delegates
calls to: the sproduce function (for inhaling an assertion 𝐴), the sconsume
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function (for exhaling an assertion𝐴), the scleanup function (for removing
empty heap chunks after exhaling an assertion), and the sexp function
(for symbolically evaluating an expression 𝑒). Each of these functions are
formalized as functions in Isabelle/HOL and can be executed inside the
prover to verify a concrete program. The parts of these functions relevant
to this chapter are shown in Figure 2.9. The full definition can be found
in Dardinier et al. [156]. Following Schwerhoff [155], these functions are
written in continuation passing style with continuation 𝐾. This allows
us to easily split the verification in multiple branches as shown e.g., by
the if-case of sexec. We now highlight the most important aspects of the
symbolic execution.

Representing different state consolidation algorithms. After inhaling
an acc-resource and adding it to the list of heap chunks, the symbolic
execution might try to merge chunks for the same location and deduce
additional information (e.g., that for chunks of the same location their
permissions sum to at most 1 and their values match). This process, called
state consolidation [155], is incorporated into the chunk_add function, used
to model inhaling an acc-resource during sproduce:

chunk_add 𝜎 𝑐 𝐾 ≜ consolidate 𝜎{heap := 𝑐 :: 𝜎.heap} 𝐾

Since there are many possible ways to implement state consolidation [155]
(e.g., merging chunks eagerly or lazily), we do not prescribe a specific
implementation of the consolidate function, but instead characterize
consolidate semantically:13

consolidate 𝜎 𝐾 ≜ ∀𝜔.𝜔 ∼sym 𝜎 ⇒ ∃𝜎′.𝜔 ∼sym 𝜎′ ∧ 𝐾 𝜎′

Concretely, when executing consolidate, one is given a ViperCore state 𝜔
related to the current symbolic execution state 𝜎 (using the ∼sym relation)
and one can pick an arbitrary new state 𝜎′ as long as it is related to
the same ViperCore state 𝜔. Intuitively, 𝜔 ∼sym 𝜎 is defined by stating
that there exists a mapping from symbolic variables to concrete values,
which can be simply extended to a mapping from 𝜎 to 𝜔. The existential
quantifier allows us to represent many different state consolidation
algorithms. However, this generality also means that consolidate cannot
be executed directly. Instead, one can provide a concrete algorithm and
prove it sound against consolidate (our implementation uses the trivial
algorithm that does not consolidate at all). However, the soundness proof
of our symbolic execution works for any valid consolidation algorithm.

Soundness. We prove sexec sound against the operational semantics
of ViperCore:14

Theorem 2.4.1 Soundness of ViperCore’s symbolic execution.
For each (syntactic) statement 𝐶, ViperCore state 𝜔 and symbolic state 𝜎
related via 𝜔 ∼sym 𝜎, if sexec 𝜎 𝐶 𝐾 evaluates to true, then ↓𝐶 is correct for

the initial state 𝜔.

↓𝐶 is the compilation function from syntactic statements to ViperCore
statements described in Section 2.3.4. The operational semantics of
CoreIVL is well-suited for this soundness proof since the symbolic
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execution also traverses the statements in an operational way, and it is
straightforward to relate one ViperCore state to one symbolic execution
state via 𝜔 ∼sym 𝜎.

Soundness of exhaling wildcards via angelic choice. Let us highlight
the most interesting part of this soundness proof: exhaling wildcards.
Exhaling assertions is handled by the sconsume function in Figure 2.9.
When exhaling an acc-resource with a wildcard permission amount,
sconsume finds and removes a matching chunk from the symbolic heap
using the extract function.15 Then it adds the chunk back with its permis-
sion amount halved. Representing this algorithm directly in ViperCore
would be impossible since there might be multiple heap chunks for the
same location and thus the amount of permissions removed depends
on the structure of the symbolic heap. This structure is not visible in
ViperCore, which tracks only a single concrete heap. However, we can still
prove this algorithm sound against ViperCore. The angelic choice in the
operational semantics allows us to pick any non-zero permission amount
to remove when constructing the ViperCore execution, in particular,
the amount that was chosen by the execution of sexec. This shows how
angelic choice gives CoreIVL the flexibility to be used in the soundness
proof for different verification algorithms, even some that cannot be
represented directly in the CoreIVL.

2.4.2. Verification Condition Generation

We now describe how we connect the ViperCore instantiation of CoreIVL
to the VCGSem formalization of Viper’s VCG introduced by Parthasarathy
et al. [74]. VCGSem is expressed as an operational big-step semantics
⟨𝐶, 𝜎𝑡⟩ →VCG 𝑟. Here, 𝐶 is a (deeply embedded) Viper statement, 𝜎𝑡 the
initial VCGSem state consisting of a total heap (mapping all locations
to values) and a permission mask (mapping all locations to permission
amounts), and 𝑟 is an outcome, which can be either failure F, magic M, or a
normal outcome N(𝜎′

𝑡).16 The key result of Parthasarathy et al. [74] is that
for each successful verification run of the VCG algorithm, they provide a
proof that the VCGSem execution does not fail: ¬(⟨𝐶, 𝜎𝑡⟩ →VCG F).

What makes the connection between VCGSem and ViperCore interesting
is that VCGSem makes various design choices that are specific to the Viper
back-end that it was designed to represent. For instance, VCGSem defines
the exhale of a wildcard to demonically remove a non-zero permission
amount smaller than the currently held amount, which precisely mimics
Viper’s VCG. Morever, VCGSem chooses a total heap representation for
the Viper states, where all locations store a value (VCGSem checks that
only locations with non-zero permission are accessed), because this is
how Viper’s VCG back-end represents the heap. In contrast, ViperCore
uses a more standard partial heap introduced in Section 2.3.1. By proving
VCGSem sound against ViperCore, we show that CoreIVL as a general
semantics for verification algorithms can capture this preexisting verifi-
cation algorithm. The most significant challenge in the proof connecting
VCGSem and ViperCore is the difference in their heap representations.
We explain this challenge and our solutions next.
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Total vs. partial heap. The seemingly superficial difference between
VCGSem’s total heap and ViperCore’s partial heap has far-reaching
ramifications: a ViperCore execution does not correspond to a single

VCGSem execution, but rather to a set of VCGSem executions.

The reason for this mismatch is in the semantics of exhale. When
exhaling all permissions to a location and later inhaling permissions to
this location again, a Viper semantics needs to pick a fresh value for the
location such that one cannot unsoundly assume that the value remained
unchanged between the inhale and the exhale. This requirement is
naturally expressed with the partial heap of ViperCore: when exhaling
all permissions to a location in ViperCore, the location is removed from
the partial heap and when new permissions for the location are inhaled, it
gets re-added with a (non-deterministically chosen) fresh value. However,
since VCGSem uses a total heap, it cannot remove locations. Instead,
VCGSem non-deterministically assigns these locations new values after

the exhale and leaves the heap unchanged in the inhale. Consequently,
VCGSem and ViperCore apply (demonic) non-deterministic choice at
different program points: VCGSem already picks a fresh value during
the exhale, while ViperCore chooses it during the inhale. To address
this mismatch17, we relate a ViperCore execution not to a single VCGSem
execution but to a set of VCGSem executions that represent all possible
choices for the demonic non-determinism.

Soundness. We prove the following soundness statement for VCGSem:18

Theorem 2.4.2 Soundness of VCGSem.
For all (syntactic) statements 𝐶 and ViperCore states 𝜔,

if we have¬(⟨𝐶, 𝜎𝑡⟩ →VCG F) for all VCGSem states 𝜎𝑡 such that𝜔 ∼VCG 𝜎𝑡 ,
then ↓𝐶 is correct for the state 𝜔.

Intuitively, this theorem allows us to transform a proof about a successful
verification by the VCG back-end into a verification proof according
to the ViperCore semantics. Note that the theorem relates a single
ViperCore execution to a set of VCGSem executions since the relation
𝜔 ∼VCG 𝜎𝑡 relates a ViperCore state 𝜔 to multiple VCGSem states 𝜎𝑡
representing the different choices for the demonic non-determinism.
(Otherwise, 𝜔 ∼VCG 𝜎𝑡 is similar to 𝜔 ∼sym 𝜎 from Section 2.4.1, but
adapted for the different notion of states used by VCGSem.) In fact, to
prove Theorem 2.4.2 via induction, we need to prove a stronger lemma
that also requires us to construct all possible VCGSem executions for the
statement corresponding to the ViperCore execution.

Summary. We have demonstrated in this section how CoreIVL’s oper-
ational semantics helps us solve Challenge 2, by being general enough
to capture the two predominant verification algorithms back-ends im-
plemented in practice: our new formalization of symbolic execution
in Section 2.4.1 and the preexisting formalization of Viper’s VCG back-
end [74] in Section 2.4.2.
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2.5. Front-End Soundness

In this section, we show how our axiomatic semantics addresses Challenge
3 from the introduction, by formalizing and proving sound a concrete
front-end translation into ViperCore for a parallel programming language
ParImp with loops, shared memory, and dynamic memory allocation and
deallocation. We define the language and an IDF-based program logic
in Section 2.5.1. In Section 2.5.2, we define the translation of annotated
ParImp programs into ViperCore and prove it sound using the axiomatic
semantics of ViperCore. While the soundness proof is specific to this
translation, it highlights key reusable ingredients and demonstrates how
our axiomatic semantics for CoreIVL makes such proofs simple.

2.5.1. An IDF-Based Concurrent Separation Logic

Our parallel programming language ParImp is defined as

𝐶 F 𝑥 ≔ 𝑒 | 𝑥 ≔ 𝑟.𝑣 | 𝑟.𝑣 ≔ 𝑒 | 𝑟 ≔ alloc(𝑒) | free(𝑟) | skip |
𝐶;𝐶 | if (𝑏) {𝐶} else {𝐶} | 𝐶 || 𝐶 | while (𝑏) {𝐶}

𝐶 ranges over ParImp statements, 𝑒 over arithmetic expressions, 𝑏 over
boolean expressions, 𝑥 over integer variables, 𝑟 over reference variables,
and 𝑣 is a fixed field. We consider objects with a unique field 𝑣 for sim-
plicity; extending our work to support multiple fields is straightforward.
The statement 𝑥 := 𝑟.𝑣 loads the value of the field 𝑣 of the reference 𝑟
into the variable 𝑥, while 𝑟.𝑣 := 𝑒 stores the value of the expression 𝑒 in
the field 𝑣 of the reference 𝑟. The statement 𝑟 := alloc(𝑒) allocates a new
reference with the value of the expression 𝑒 for the field 𝑣, and free(𝑟)
deallocates the reference 𝑟. The other statements are standard. We use
a standard small-step semantics ⟨𝐶, 𝜎⟩ → ⟨𝐶′, 𝜎′⟩ where 𝜎 and 𝜎′ are
pairs of a store (a partial mapping from variables to values) and a heap
(a partial mapping from pairs of an address and a field to values). The
rules of the small-step semantics are given in Appendix A.1.

An IDF-based program logic for ParImp. We build and prove sound a
program logic analogous to CSL for ParImp based on our IDF state model
ΣIDF (defined in Section 2.3.1). Our framework also supports standard
separation logic, but connecting an IDF logic to ViperCore allows us to
focus on the most interesting aspects of the soundness proof.

Our program logic judgment is written Δ ⊢CSL [𝑃] 𝐶 [𝑄], where 𝑃 and
𝑄 are ViperCore assertions (i.e., sets of IDF states). The most important
rules of our program logic are given in Figure 2.10. The rules Seq, Cons, If,
While, Free, Assign, and Skip, are standard. The rules Alloc, Store, Load, Frame,
and Parallel are analogous to the standard CSL rules, but adapted to our
IDF setting. In particular, the rule Frame requires the precondition 𝑃 and
the frame 𝐹 to be self-framing. Without this restriction, one could for
example use 𝑃 ≜ (acc(r.v)) and 𝐹 ≜ (r.v = 5) to unsoundly derive the
invalid triple Δ ⊢CSL [acc(r.v) ∗ r.v = 5] r.v := 3 [(acc(r.v) ∗ r.v =

3) ∗ r.v = 5] (whose postcondition is not satisfiable) using the rules Frame
and Store. Similarly, the rule Parallel requires the preconditions 𝑃𝑙 and 𝑃𝑟
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Frame
Δ ⊢CSL [𝑃] 𝐶 [𝑄] selfFraming(𝑃) selfFraming(𝐹) fv(𝐹) ∩ mod(𝐶) = ∅

Δ ⊢CSL [𝑃 ∗ 𝐹] 𝐶 [𝑄 ∗ 𝐹]
Skip
Δ ⊢CSL [𝑃] skip [𝑃]

Parallel
mod(𝐶𝑙) ∩ (fv(𝐶𝑟 ) ∪ fv(𝑄𝑟 )) = ∅

mod(𝐶𝑟 ) ∩ (fv(𝐶𝑙) ∪ fv(𝑄𝑙)) = ∅ Δ ⊢CSL [𝑃𝑙] 𝐶𝑙 [𝑄𝑙] Δ ⊢CSL [𝑃𝑟 ] 𝐶𝑟 [𝑄𝑟 ] selfFraming(𝑃𝑙) selfFraming(𝑃𝑟 )
Δ ⊢CSL [𝑃𝑙 ∗ 𝑃𝑟 ] 𝐶𝑙 || 𝐶𝑟 [𝑄𝑙 ∗𝑄𝑟 ]

Seq
Δ ⊢CSL [𝑃] 𝐶1 [𝑅] Δ ⊢CSL [𝑅] 𝐶2 [𝑄]

Δ ⊢CSL [𝑃] 𝐶1;𝐶2 [𝑄]

Cons
Δ ⊢CSL [𝑃′] 𝐶 [𝑄′] 𝑃 |= 𝑃′ 𝑄′ |= 𝑄

Δ ⊢CSL [𝑃] 𝐶 [𝑄]

If
Δ ⊢CSL [𝑃 ∧ 𝑏] 𝐶1 [𝑄] Δ ⊢CSL [𝑃 ∧ ¬𝑏] 𝐶2 [𝑄]

Δ ⊢CSL [𝑃] if (𝑏) {𝐶1} else {𝐶2} [𝑄]

Alloc
𝑟 ∉ fv(𝑒)

Δ ⊢CSL [⊤] r := alloc(e) [acc(r.v) ∗ r.v = e]

While
Δ ⊢CSL [𝐼 ∧ 𝑏] 𝐶 [𝐼]

Δ ⊢CSL [𝐼] while (𝑏) {𝐶} [𝐼 ∧ ¬𝑏]

Load
𝑃 |= acc(r.v, _)

Δ ⊢CSL [𝑃] x := r.v [∃𝑢. 𝑃[𝑢/𝑥] ∗ x = r.v]

Store
Δ ⊢CSL [acc(r.v)] r.v := e [acc(r.v) ∗ r.v = e]

Free
Δ ⊢CSL [acc(q.v)] free(q) [⊤]

Assign
Δ ⊢CSL [𝑃[𝑥/𝑒]] x := e [𝑃]

Figure 2.10.: Inference rules of our IDF-based concurrent separation logic.
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to be self-framing. Finally, the rule Load allows arbitrary preconditions 𝑃,
as long as 𝑃 asserts some permission to read r.v.

Soundness of the IDF-based program logic. To prove the soundness
and the adequacy of this program logic, we adapt Vafeiadis [157]’s
approach to our IDF setting. We first define a predicate safe𝑛(𝐶, 𝑠, 𝜔, 𝑄)
where 𝑛 is a natural number, 𝐶 is a ParImp command, 𝑠 is a store,
𝜔 ∈ ΣIDF is an IDF state, and 𝑄 ⊆ ΣIVL is a set of IDF states with
stores of local variables. Intuitively, safe𝑛(𝐶, 𝑠, 𝜔, 𝑄) holds iff it is safe to
execute the command 𝐶 for 𝑛 steps in an initial state corresponding to
the IDF state (𝑠, 𝜔) ∈ ΣIVL, and any final state (reached within 𝑛 steps)
will correspond to an IDF state satisfying the postcondition 𝑄. A CSL
triple Δ ⊢CSL [𝑃] 𝐶 [𝑄] is then valid, written Δ |=CSL [𝑃] 𝐶 [𝑄], iff
safe𝑛(𝐶, 𝑠, 𝜔, 𝑄) holds for all 𝑛 and for all states (𝑠, 𝜔) ∈ 𝑃 such that 𝜔
is stable.

Definition 2.5.1 Validity of CSL triples.
We denote the sets of heap locations accessed and modified by 𝐶 in one

step as accesses(𝐶, 𝑠) and writes(𝐶, 𝑠), respectively, which we formally

define in Appendix A.1. Moreover, we define the functions readDom(𝜔)
and writeDom(𝜔) as the sets of locations for which 𝜔 has reading and

writing permissions respectively, i.e., readDom(𝜔) ≜ {𝑙 | ∃𝑣, 𝑝.𝜔(𝑙) =
(𝑣, 𝑝) ∧ 𝑝 > 0} and writeDom(𝜔) ≜ {𝑙 | ∃𝑣.𝜔(𝑙) = (𝑣, 1)}.

Moreover, an IDF state 𝜔 ∈ ΣIDF corresponds to a heap ℎ (a partial map from

heap locations to values), written 𝜔 ⇝ ℎ, iff they have the same domain and

agree on their values, and 𝜔 has exclusive permission to all locations in its

domain:

𝜔 ⇝ ℎ ≜ (dom(𝜔) = dom(ℎ) ∧ (∀𝑙 ∈ dom(𝜔).𝜔(𝑙) = (ℎ(𝑙), 1)))
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We can now define the predicate safe𝑛(𝐶, 𝑠, 𝜔, 𝑄), where 𝑛 is a natural

number, 𝐶 a ParImp command, 𝑠 a store, 𝜔 ∈ ΣIDF an IDF state, and

𝑄 ⊆ ΣIVL a set of IDF states with stores, as follows:

safe0(𝐶, 𝑠, 𝜔, 𝑄) always holds.

safe𝑛+1(𝐶, 𝑠, 𝜔, 𝑄) holds iff the following conditions hold:
19 19: Ignoring typing to avoid clutter.

1. If 𝐶 = skip then (𝑠, 𝜔) ∈ 𝑄
2. accesses(𝐶, 𝑠) ⊆ readDom(𝜔) and writes(𝐶, 𝑠) ⊆ writeDom(𝜔)
3. For all heaps ℎ and IDF states 𝜔 𝑓 , if 𝜔#𝜔 𝑓 , 𝜔 ⊕ 𝜔 𝑓 ⇝ ℎ, and

stable(𝜔 𝑓 ), then ⟨𝐶, (𝑠, ℎ)⟩ ↛ ⊥
4. For all heaps ℎ, IDF states 𝜔 𝑓 , commands 𝐶′

, stores 𝑠′, and heaps ℎ′, if

𝜔#𝜔 𝑓 , 𝜔 ⊕ 𝜔 𝑓 ⇝ ℎ, stable(𝜔 𝑓 ), and ⟨𝐶, (𝑠, ℎ)⟩ → ⟨𝐶′, (𝑠′, ℎ′)⟩,
then there exists another state 𝜔′

such that 𝜔′#𝜔 𝑓 , 𝜔′ ⊕ 𝜔 𝑓 ⇝ ℎ′,
stable(𝜔′), and safe𝑛(𝐶′, 𝑠′, 𝜔′, 𝑄).

Finally, we define the validity of CSL triples as follows:

Δ |=CSL [𝑃] 𝐶 [𝑄] ≜
(
∀(𝑠, 𝜔) ∈ 𝑃. stable(𝜔) ⇒ (∀𝑛. safe𝑛(𝐶, 𝑠, 𝜔, 𝑄))

)
In the definition of safe𝑛+1(𝐶, 𝑠, 𝜔, 𝑄), condition 1 ensures that final states
satisfy the postcondition, conditions 2 and 3 ensure the absence of data
races and crashes, and condition 4 performs a step and ensures that this
safety predicate holds for the next 𝑛 steps as well. In conditions 3 and 4,
𝜔 𝑓 represents the frame, which is intuitively the (fractional) part of the
global state of the program that is not owned by the current local state. The
parts specific to our IDF setting are highlighted in blue: All IDF states
considered in this definition (𝜔, 𝜔′, and 𝜔 𝑓 ) must be stable (which is why
the rules Frame and Parallel require the assertions in the precondition to
be self-framing). In other words, unstable states are used only internally
to give a semantics to IDF assertions, but they do not matter when giving
a semantics to CSL triples.20

We have proven in Isabelle that this definition of validity for CSL triples
is adequate, in the following sense:

Theorem 2.5.1 Adequacy of the CSL triples.
Let 𝐶 be a well-typed program, and 𝑃 and 𝑄 be predicates on ParImp states

(i.e., without permissions). If the triple Δ |=CSL [𝑃] 𝐶 [𝑄]21 21: Here, we abuse the notation and as-
sume that 𝑃 and 𝑄 are extended to IDF
states in the obvious way.

holds, and if 𝜎 is

a well-typed state such that 𝑃(𝜎), then executing 𝐶 in the state 𝜎 will not abort

nor encounter any data race, and for all 𝜎′
such that ⟨𝐶, 𝜎⟩ →∗ ⟨skip, 𝜎′⟩,

we have 𝑄(𝜎′).

Finally, we have proven in Isabelle that the rules from Figure 2.10 are
sound, in the following sense:22

Theorem 2.5.2 Soundness of the IDF-based CSL.
If Δ ⊢CSL [𝑃] 𝐶 [𝑄] holds, then Δ |=CSL [𝑃] 𝐶 [𝑄] holds.

2.5.2. A Sound Front-End Translation

Building on the previously-defined IDF-based program logic, we define
a standard front-end translation from ParImp programs with annotations
into ViperCore programs, shown in Figure 2.11. This translation was
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⟦𝑟 := alloc(𝑒)⟧ ≜ ((havoc 𝑟; inhale acc(𝑟.𝑣) ∗ 𝑟.𝑣 = 𝑒),∅)
⟦free(𝑟)⟧ ≜ (exhale acc(𝑟.𝑣),∅)
⟦𝐶1;𝐶2⟧ ≜ ((⟦𝐶1⟧.1; ⟦𝐶2⟧.1), (⟦𝐶1⟧.2 ∪ ⟦𝐶2⟧.2))
⟦if (𝑏) {𝐶1} else {𝐶2}⟧ ≜ (if (𝑏) {⟦𝐶1⟧.1} else {⟦𝐶2⟧.1}), (⟦𝐶1⟧.2 ∪ ⟦𝐶2⟧.2))

⟦skip⟧ ≜ (skip,∅)
⟦𝑥 := 𝑒⟧ ≜ (𝑥 := 𝑒 ,∅)
⟦𝑟.𝑣 := 𝑒⟧ ≜ (𝑟.𝑣 := 𝑒 ,∅)
⟦𝑥 := 𝑟.𝑣⟧ ≜ (𝑥 := 𝑟.𝑣,∅)

⟦𝐶𝑙 || 𝐶𝑟⟧ ≜ ((exhale 𝑃𝑙 ∗ 𝑃𝑟 ; havoc mod(𝐶𝑙) ∪ mod(𝐶𝑟 ); inhale 𝑄𝑙 ∗𝑄𝑟 ),
{inhale 𝑃𝑙 ; ⟦𝐶𝑙⟧.1; exhale 𝑄𝑙} ∪ {inhale 𝑃𝑟 ; ⟦𝐶𝑟⟧.1; exhale 𝑄𝑟} ∪ ⟦𝐶𝑙⟧.2 ∪ ⟦𝐶𝑟⟧.2)

⟦while (𝑏) {𝐶}⟧ ≜ ((exhale 𝐼; havoc mod(𝐶); inhale 𝐼 ∧ ¬𝑏),
{inhale 𝐼 ∧ 𝑏; ⟦𝐶⟧.1; exhale 𝐼} ∪ ⟦𝐶⟧.2)

Figure 2.11.: Front-end translation from ParImp to ViperCore. The translation function ⟦_⟧ takes as input an annotated ParImp statement
𝐶 and returns a pair of a ViperCore statement and a set of ViperCore statements. We write ⟦𝐶⟧.1 and ⟦𝐶⟧.2 to denote its first and
second components, respectively. Assertions 𝑃𝑙 , 𝑃𝑟 , 𝑄𝑙 , and 𝑄𝑟 for the parallel composition and 𝐼 for the while loop are annotations
provided by the user, which are all required to be self-framing. The notation havoc 𝑉 , where 𝑉 is a set of variables {𝑥1 , . . . , 𝑥𝑛}, is a
shorthand for havoc 𝑥1; . . . ; havoc 𝑥𝑛 .

illustrated in the example in Figure 2.3 from Section 2.2. The translation
function ⟦_⟧ takes as input an annotated ParImp statement 𝐶 and yields
a pair of a ViperCore statement and a set of ViperCore statements. The first
component, written ⟦𝐶⟧.1, corresponds to the main translation of 𝐶,
while the second component, written ⟦𝐶⟧.2, corresponds to the set of
auxiliary Viper methods generated by the translation along the way.
Auxiliary methods are generated for loops and parallel compositions
only. Methods l and r in Figure 2.3 are examples of such auxiliary
methods.

The translation of field and variable assignments is straightforward.
The translation of sequential composition and conditional statements
is also straightforward since they use the corresponding sequential
composition and conditional statements of ViperCore, and collect the
auxiliary methods generated by the translation of the sub-statements.
The translation of allocation and deallocation statements corresponds to
the rules Alloc and Free from Figure 2.10.

The translation of parallel composition and while loops is more involved,
but they follow the same pattern. First, the premises of the relevant
rules (Parallel and While) are checked by generating auxiliary methods,
which first inhale the relevant precondition, then translate the relevant
statement, and finally exhale the relevant postcondition. For example, the
premise Δ ⊢CSL [𝐼 ∧ 𝑏] 𝐶 [𝐼] of the rule While is checked by generating the
auxiliary method inhale 𝐼 ∧ 𝑏; ⟦𝐶⟧.1; exhale 𝐼. We call this pattern the
inhale-translation-exhale pattern. Then, the main translation follows the con-
clusion of the rule, by exhaling the precondition, havocking the modified
variables, and inhaling the postcondition. For example, the main transla-
tion of the loop while (𝑏) {𝐶} is exhale 𝐼; havoc mod(𝐶); inhale 𝐼 ∧¬𝑏,
reflecting the conclusion Δ ⊢CSL [𝐼] while (𝑏) {𝐶} [𝐼 ∧ ¬𝑏] of the rule
While. We call this pattern, which we have already seen in Section 2.2.4,
the exhale-havoc-inhale pattern. Those two patterns are not specific to our
translation, but are general patterns that can be found in many front-end
translations.

Soundness. We assume that the ParImp statement 𝐶 we want to verify
is annotated with a precondition 𝑃 and a postcondition𝑄. In this case, we
add inhale 𝑃 before the main translation (as we did in Figure 2.3), and
exhale 𝑄 afterwards, following the inhale-translation-exhale pattern.
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Our complete front-end translation yields the set of ViperCore statements
{inhale 𝑃; ⟦𝐶⟧.1; exhale 𝑄} ∪ ⟦𝐶⟧.2. Our translation is sound, as
stated in the following theorem. We say that a ViperCore statement
𝐶𝑣 is valid w.r.t. the axiomatic semantics, which we write valid𝐴𝑥(𝐶𝑣), iff
∃𝐵.Δ ⊢ [⊤] 𝐶𝑉 [𝐵].

Theorem 2.5.3 Soundness of the front-end translation.
Let 𝐶 be a front-end statement, and 𝑃 and 𝑄 be assertions. If

(1) the axiomatic semantics triple Δ ⊢ [𝑃] ⟦𝐶⟧.1 [𝑄] holds, and

(2) all ViperCore statements in ⟦𝐶⟧.2 are valid w.r.t. the axiomatic semantics,

then Δ ⊢CSL [𝑃] 𝐶 [𝑄] holds.

To prove this theorem, we show that the translation of every front-end
statement 𝐶 is backward-convertible (or convertible in short), which we
write as convertible(C). Intuitively, this means that if the translation of
the front-end statement into ViperCore is valid (including all auxiliary
ViperCore methods) then we can convert the axiomatic semantics triple
Δ ⊢CSL [𝑃] ⟦𝐶⟧.1 [𝑄] into a front-end triple Δ ⊢CSL [𝑃] 𝐶 [𝑄]. Formally,
convertible(C) holds iff

∀𝑃, 𝑄. ((∀𝐶𝑣 ∈ ⟦𝐶⟧.2. valid𝐴𝑥(𝐶𝑣))∧Δ ⊢ [𝑃] ⟦𝐶⟧.1 [𝑄]) ⇒ Δ ⊢CSL [𝑃] 𝐶 [𝑄]

This convertibility property combined with the following lemma allows
us to prove Theorem 2.5.3:

Lemma 2.5.4 Inhale-translation-exhale pattern.
If

(1) all auxiliary methods from ⟦𝐶⟧.2 are valid w.r.t. the axiomatic semantics,

(2) convertible(C) holds, and

(3) Δ ⊢ [𝑃] inhale 𝐴; ⟦𝐶⟧.1; exhale 𝐵 [𝑄] holds,

then Δ ⊢CSL [𝑃 ∗ 𝐴] 𝐶 [𝐵 ∗𝑄] holds.

Proof. By inverting the rules SeqAx, InhaleAx, and ExhaleAx in (3), we get
the existence of 𝑅 such that (a) Δ ⊢ [𝑃 ∗ 𝐴] ⟦𝐶⟧.1 [𝑅] holds and (b)
𝑅 |= 𝐵 ∗𝑄. By applying convertible(C) (from (2)), and from (1) and (a), we
get Δ ⊢CSL [𝑃 ∗ 𝐴] 𝐶 [𝑅]. We conclude by combining (b) with the rule
Cons.

The proof of this lemma is straightforward thanks to CoreIVL’s axiomatic

semantics. Relating CSL to an operational IVL semantics would require
substantially more effort to re-prove standard reasoning principles, which
we prove once and for all in the equivalence proof of the two IVL
semantics.

We now need to prove convertible(C) for all 𝐶, which we do by structural
induction. The inductive cases for most statements are straightforward;
the interesting cases are allocation, deallocation, parallel compositions,
and while loops. As explained above, the main translation of those
statements follows the same exhale-havoc-inhale pattern, which we have
already seen in Section 2.2.4, and prove below:

Lemma 2.5.5 Exhale-havoc-inhale pattern.
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[16]: Müller et al. (2016), Viper

[74]: Parthasarathy et al. (2024), Towards
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Let 𝑃 and 𝑄 be self-framing assertions
23 23: This condition is trivially true for

standard SLs.
, and L be a separation logic with a

frame rule and a consequence rule (such as our IDF-based CSL).

If Δ ⊢ [𝐴] exhale 𝑃; havoc 𝑥1; . . . ; havoc 𝑥𝑛 ; inhale 𝑄 [𝐵] holds,

where {𝑥1 , . . . , 𝑥𝑛} = mod(𝐶), then Δ ⊢L [𝐴] 𝐶 [𝐵] holds.

Proof. By inverting the rule SeqAx, we obtain (a)Δ ⊢ [𝐹] inhale 𝑄 [𝐵] and
(b) Δ ⊢ [𝐴] exhale 𝑃; havoc 𝑥1; . . . ; havoc 𝑥𝑛 [𝐹] for some assertion 𝐹.
From (b), by inverting the rules SeqAx and HavocAx, we obtain an assertion
𝑅 such that (c) Δ ⊢ [𝐴] exhale 𝑃 [𝑅] holds, (d) fv(𝐹) ∩ {𝑥1 , . . . , 𝑥𝑛} = ∅,
and (e) 𝑅 |= 𝐹.24 By applying the frame rule with 𝐹 and Δ ⊢L [𝑃] 𝐶 [𝑄],
where the side condition is justified by (d), we get Δ ⊢L [𝑃 ∗ 𝐹] 𝐶 [𝑄 ∗ 𝐹].
Finally, we obtain 𝐵 = 𝐹 ∗𝑄 from (a) (by inverting the rule InhaleAx), and
𝐴 |= 𝑃 ∗ 𝐹 from (c) (by inverting the rule ExhaleAx) and (e); applying the
consequence rule yields Δ ⊢L [𝐴] 𝐶 [𝐵].

This proof shows that, in this pattern, the role of the exhale statement,
followed by a sequence of havoc statements, is to compute (implicity)
the suitable frame for the front-end statement. The inhale statement
afterwards then adds the postcondition of the front-end statement to the
frame.

convertible(free(r)) and convertible(r := alloc(e)) follow directly from
the lemma above, by observing that inhale ⊤ and exhale ⊤ are equiva-
lent to skip (and so omitted when encoding).

To prove convertible(while (b) {C}) (assuming 𝐶 is convertible), we first
apply Lemma 2.5.4 on the auxiliary method inhale 𝐼∧𝑏; ⟦𝐶⟧.1; exhale 𝐼
to get Δ ⊢CSL [𝐼 ∧ 𝑏] 𝐶 [𝐼]. We then apply the rule While to get Δ ⊢CSL

[𝐼] while (𝑏) {𝐶} [𝐼∧¬𝑏]. Finally, we conclude by applying Lemma 2.5.5
on the main translation (exhale 𝐼; havoc mod(𝐶); inhale 𝐼 ∧ ¬𝑏).

The proof of convertible(C1||C2) proceeds similarly, by first applying
Lemma 2.5.4 on the two auxiliary methods (corresponding to the two
premises of the rule Parallel), then applying the rule Parallel, and conclud-
ing by applying Lemma 2.5.5. This concludes the proof of convertible(C)
for all 𝐶, and thus the proof of Theorem 2.5.3.

Summary. We have demonstrated how the axiomatic semantics from
Section 2.3.3 helps us solve Challenge 3, by allowing us to prove general
lemmas about patterns that are common in front-end translations in a
simple and straightforward manner, and to prove the soundness of a
concrete front-end translation for a parallel programming language with
multiple features not present in the IVL (e.g., loops, dynamic memory
allocation and deallocation).

2.6. Related Work

Semantics of SL-based IVLs. There are two recent formalizations [71,
74] of subsets of Viper [16]. However, each of them exposes implemen-
tation details of a Viper back-end, which does not allow the semantics
to be connected to diverse back-ends and also not easily to front-ends.
In particular, in work not presented in this thesis [74], we use a total
heap representation reflecting the Viper VCG back-end that translates to
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Boogie (as discussed in Section 2.4.2), and Zimmerman et al. [71] reflect
Viper’s symbolic execution back-end.

GIL [68], which is the intermediate language of Gillian [30, 63], is
parametric in its (1) state model, which must be provided as a PCM
(supporting SL but not IDF states in contrast to CoreIVL), (2) memory

actions operating on the state model, and (3) core predicates describing
atomic assertions on the memory such as a SL points-to assertion. For
each state instantiation, tool developers targeting GIL must specify
produce and consume actions for each core predicate, which correspond to
inhale and exhale operations in CoreIVL. Together with instantiated
parameters, Fragoso Santos et al. [30] provide an operational semantics
for the symbolic execution of GIL. Since the instantiated state effectively
reflects the symbolic state on which the symbolic execution tool operates,
a GIL instantiation essentially represents the back-end semantics. This
is in contrast to our CoreIVL, which allows abstracting over multiple
back-ends.

In work not presented in this thesis [73], we define an alternative semantics
of a parametric verification language similar to CoreIVL for the purpose
of showing formal results on method call inlining and loop unrolling in
automated SL verifiers. This alternative semantics is meant to capture
IVL back-ends with their heuristics. That is, an instantiation reflects a single

back-end. As a result, in contrast to CoreIVL, this alternative semantics
has no angelic nondeterminism. Moreover, the notion of separation
algebra used in this work to represent states does not support IDF.

Proofs connecting a front-end with an IVL. Summers and Müller
[158] and Wolf et al. [159] reason about the correctness of translations
into a SL-based IVL by providing proof sketches for mapping a correct
Viper program to a proof for Hoare triples in the RSL weak memory
logic [160] and the TaDa logic [161], respectively. However, the reasoning
is done via proof sketches on paper, which explore only the high-level
reasoning principles and thus avoid many of the complexities involved
in a fully formal proof. Neither of these works formally reasons about
the underlying Viper semantics; they describe the behavior of Viper
encodings informally.

Maksimović et al. [68] briefly describe a parametric soundness framework
for GIL (the intermediate language of Gillian [30, 63]). They show that
if certain conditions hold on the instantiations of the GIL parameters,
then the resulting symbolic execution is sound w.r.t. a concretization
function on symbolic states. However, they do not provide an IVL
semantics like CoreIVL that abstracts uniformly over multiple back-ends.
Additionally, since GIL does not support concurrency [30, 63], their
soundness framework cannot reason about the encoding of front-end
languages such as ParImp described in Section 2.5. Lööw et al. [69]
present a formal compositional symbolic execution engine inspired by
Gillian. In contrast to our work, they focus on supporting both over-
approximating and under-approximating reasoning, and do not model
an IVL, but only apply their framework to a simple front-end language
with a fixed memory model.

Interestingly, [162] generate SL proofs for automatically synthesized
heap-manipulating programs, by converting synthesis proof trees into
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verification proof trees, which is analogous to how we convert proof trees
from CoreIVL’s axiomatic semantics to the front-end’s separation logic
in Section 2.5.

There is also work proving the soundness of front-end translations to
IVLs not based on SL [74, 77, 163–165]. However, in contrast to our
setting, the corresponding translations do not reflect rules in a front-end
program logic. As a result, the soundness proofs work naturally at the
level of an operational semantics for the front-end and IVL. Examples
include translations from the Dminor data processing language to the
Bemol IVL [164], from C to the WhyCert IVL (inspired by the Why3
IVL) [77], and from Viper to Boogie [74] (in the case of the Viper-to-Boogie
translation, Viper is the front-end and Boogie is the target IVL).

Proofs connecting an IVL with a back-end. In work not presented
in this thesis [74], we show the soundness of the Viper back-end that
translates to Boogie. In this chapter, we show that the back-end spe-
cific semantics from this other work respects our more generic version
(Section 2.4.2). The work most closely related to the symbolic execution
back-end presented in Section 2.4.1 is Zimmerman et al. [71]’s formal-
ization of a variant of Viper’s symbolic execution back-end targeted at
gradual verification. Due to their focus on gradual verification, they
only target a simplified model of Viper that (unlike our symbolic execu-
tion) does not support fractional permissions. As a consequence, they
can use a simpler implementation that does not rely on continuation
passing style and they can ignore some of the complexities described
in Section 2.4.1 such as state consolidation. Moreover, they formalize
the symbolic execution via a derivation tree, while we implement it as
an Isabelle/HOL function. Jacobs et al. [67] prove a formalization of
VeriFast’s symbolic execution sound. Compared to our work, they do
not have a semantics that captures different verification algorithms, or
supports IDF or fractional permissions.

There is also work on non SL-based IVL back-end proofs. These back-ends
typically have simple state models and use different algorithms compared
to SL-based back-ends. For example, Parthasarathy et al. [75] generate
soundness proofs for Boogie’s VCG, and Vogels et al. [166] prove a VCG
for a similar IVL sound once and for all. Garchery [167] and Cohen and
Johnson-Freyd [76] validate certain logical transformations performed in
the Why3 IVL verifier.

Angelic non-determinism. Angelic non-determinism [168] has been
widely used from encoding partial programs [169], to representing
interaction between code written in multiple languages [154, 170], to
encoding specifications [168, 171]. However, to the best of our knowledge,
our work is the first to use angelic non-determinism to abstract over
different verification algorithms. Jacobs et al. [67] and Song et al. [171]
both also use angelism for exhale, but do not abstract over or formally
connect with diverse back-end algorithms, as we do. Instead, Jacobs et al.
[67] use angelism to represent a symbolic execution algorithm, while
Song et al. [171] use angelism to encode the transfer of resources in a
refinement calculus.
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Implicit dynamic frames (IDF). IDF was originally presented with
a fixed resource model (i.e., full ownership to a heap location) and
where the heap is represented as a total mapping from heap locations to
values [70]. Parkinson and Summers [87] formally showed the relationship
between IDF and SL by defining a logic based on total heaps and separate
permission masks that captures both. They also consider fixed resource
models of IDF and SL (i.e., fractional ownership to a heap location [81]).
Our work generalizes the notion of a separation algebra [85, 86] to capture
arbitrary resource models for IDF and SL in the same framework. In
particular, the algebra does not fix a particular state representation. This
enables, for instance, a partial heap instantiation for IDF that we use to
formalize Viper’s state model (Section 2.3.4).

In work published after this chapter, Spies et al. [172] integrate IDF into
Iris [31, 41], a framework for higher-order concurrent SL. To do so, they
extend the notion of resource algebras, at the core of Iris, to support unstable

resources, similar to how our novel notion of IDF algebra extends the
classical notion of separation algebra with unstable states. They also add
a notion of unstable core, which corresponds to our operator |_|.

SteelCore [49] is a framework with an extensible CSL to reason about
concurrent F* [14] programs. The extensibility of the framework is in par-
ticular demonstrated by allowing IDF-style preconditions of the restricted
form 𝑃 ∗ 𝑏 (compared to the more general IDF assertions supported in
our work), where 𝑃 is an SL assertion, and 𝑏 is a heap-dependent boolean
expression framed by 𝑃 (and similarly for postconditions).

Other approaches. In this chapter, we showed how one can formally
establish the soundness of translational SL verifiers, but there are other
approaches to building automated SL verifiers and establishing their
soundness, as discussed in Chapter 1. Steel [48] is an SL-based proof-
oriented programming language in F*. Steel programs are automatically
proved correct using a type checker that is proved sound against SteelCore;
the type checker uses an SMT solver to discharge proof obligations.

Keuchel et al. [47] (building on the ideas of Jacobs et al. [67]) show how to
build a verified symbolic execution based on a specification monad that
allows expressing angelic and demonic non-determinism and assume
and assert statements. They formalize (in Coq) two (structurally identical)
versions of the symbolic execution algorithm: a deeply embedded version
that allows execution and a shallow embedded version to prove soundness
of the former. However, both versions represent the same algorithm;
they do not consider different back-ends (like the verification condition
generation back-end in Section 2.4.2).

Sammler et al. [37] propose an approach to building sound verifiers that
requires writing the verifier in a domain specific language called Lithium.
Verifiers in Lithium can be automatically executed inside the Coq proof
assistant and produce a foundational proof of correctness. Lithium-based
verifiers are not translational, but work directly on the source-language
program.





Fractional Predicates 3.
Two plus two is four

Minus one that’s three, quick maths

Big Shaq, Man’s Not Hot

The previous chapter introduced a general formal framework for es-
tablishing the soundness of translational verifiers based on separation
logic (SL). At the core of this framework is CoreIVL, a generic language
that can be instantiated with various SL-based intermediate verification
languages. CoreIVL operates at the level of semantic assertions, that is,
functions from states to Booleans.

In this chapter, we focus on the semantics of SL assertions themselves.
We present a semantics for a language of SL assertions as supported by
automated verifiers, encompassing key features such as magic wands
and fractional predicates. Notably, we highlight a fundamental mismatch
between the treatment of fractional predicates in theoretical work and
their implementation in automated verifiers. To bridge this gap, we
introduce a novel semantics for SL assertions, called unbounded separation

logic, which permits states to temporarily hold more than full permission
to a heap location during assertion evaluation, and we show that this
semantics provides a formal justification for the rules employed by
existing automated verifiers.

3.1. Introduction

As we have seen in the previous chapter, the main connective of separation
logic is the separating conjunction ∗ (also called the star), which permits
splitting the resources held by a state: If 𝐴 and 𝐵 are SL assertions, the
assertion 𝐴 ∗ 𝐵 holds in a state 𝜎 iff the resources held in 𝜎 can be split
into two states 𝜎𝐴 and 𝜎𝐵, written 𝜎 = 𝜎𝐴 ⊕ 𝜎𝐵, such that 𝐴 holds in 𝜎𝐴
and 𝐵 holds in 𝜎𝐵. Intuitively, 𝜎𝐴⊕ 𝜎𝐵 represents the disjoint union of the
resources of both states. As an example, the assertion 𝑙1 ↦→ 𝑣1 ∗ 𝑙2 ↦→ 𝑣2
describes a state that (separately) owns the two heap locations 𝑙1 (with
value 𝑣1) and 𝑙2 (with value 𝑣2).

In all existing variants of SL, states are bounded: They cannot own a
location 𝑙 more than once. Consequently, a state 𝜎 can be split into
𝜎𝐴 ⊕ 𝜎𝐵 only if 𝜎𝐴 and 𝜎𝐵 own disjoint parts of the heap. Thus, the
assertion 𝑙1 ↦→ 𝑣1 ∗ 𝑙2 ↦→ 𝑣2 implies that 𝑙1 and 𝑙2 are not aliases. More
generally, the assertion 𝐴 ∗ 𝐵 implies that 𝐴 and 𝐵 describe disjoint parts
of the heap. Thanks to the boundedness of states, SL supports important
rules such as Frame and Parallel, which we presented in Section 2.5.

The rule Frame enables reasoning locally about a program statement 𝐶.
If 𝐶 executes safely in a state that satisfies 𝑃 and results in a state that
satisfies 𝑄, then it will also execute safely in a state that satisfies 𝑃 ∗ 𝑅,
and it will result in a state that satisfies 𝑄 ∗ 𝑅 (provided that 𝑅 does
not mention variables modified by 𝐶). This rule is crucial to prove that
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properties of the uninvolved parts of the heap (described by 𝑅) are not
affected by executing 𝐶; they can be framed around 𝐶. Similarly, the rule
Parallel enables reasoning locally about each parallel thread of a parallel
composition, given that the two threads operate on disjoint parts of the
heap.

To reason about concurrent sharing and the absence of race conditions,
SL has been extended with fractional permissions [81, 82]. In this setting, a
state can own a fraction 𝑝 of a heap location 𝑙, written 𝑙

𝑝↦→ 𝑣, where 𝑝
is a positive rational number. Fractional ownership (𝑝 < 1) grants read
access to the location 𝑙, while exclusive ownership (𝑝 = 1) grants read
and write access. States are also bounded in this setting, in the sense
that they cannot own more than a fraction 1 of a heap location 𝑙. Two
states 𝜎𝐴 and 𝜎𝐵 can be combined iff their fractional ownerships of each
heap location 𝑙 sum to at most 1 and they agree on the values of the heap
locations owned by both. Combined with the rule Parallel, fractional
permissions are particularly suitable for reasoning about concurrent
threads that read the same heap locations. Consider an example with
two concurrent threads. Exclusive ownership of 𝑙 can be split into half
ownership for each thread, which enables both threads to read 𝑙, and
exclusive ownership of 𝑙 (and thus write access) can be regained after
the two threads have finished executing.

3.1.1. Fractional Predicates

SL supports predicates
1 more general than the points-to predicate, to

enable reasoning about arbitrarily large data structures and at a higher
level of abstraction. Ownership of arbitrarily large data structures, such as
binary trees or linked lists, can for example be described with inductively-

defined predicates. Moreover, partial data structures can be expressed
with the separating implication connective −∗ (also called magic wand or
wand): The predicate 𝐴 −∗ 𝐵 describes resources which, combined with
any state in which 𝐴 holds, results in a state in which 𝐵 holds. It can
intuitively typically be seen as expressing the difference in resources
between 𝐵 and 𝐴: If 𝐵 specifies an entire data structure, and 𝐴 specifies
a part of this data structure, then the wand 𝐴 −∗ 𝐵 can express ownership
of 𝐵 where 𝐴 has been removed. Specifying partial data structures with
wands has proved useful, for example to track the ongoing iteration
over a data structure [173, 174] (where the left-hand side of the wand
represents the part of the data structure that remains to be traversed), or
to formally reason about borrowing references in the Rust programming
language [59]. Magic wands have also been used to abstractly specify
protocols on client calls to an API [175–177], such as the protocol that
governs Java iterators. We discuss magic wands (and their use cases) in
detail in Chapter 4.

Given the importance of these general predicates, it is not surprising that
the concept of fractional ownership has been generalized to predicates: If
𝐴 is an arbitrary SL predicate and 𝜋 is a fraction, then 𝜋 · 𝐴 is a fractional

predicate that represents a fraction 𝜋 of 𝐴. Fractional predicates are
supported by automated SL verifiers and have been studied in theory.

Fractional predicates are supported by several automated SL verifiers,
including Chalice [152], VerCors [57], VeriFast [15], and Viper [16]. This
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support relies on the concept of syntactic multiplication: A fraction 𝜋 of
𝐴 ∗ 𝐵 is interpreted as a fraction 𝜋 of 𝐴 combined with a fraction 𝜋 of 𝐵,
i.e. 𝜋 · (𝐴 ∗ 𝐵) is interpreted as (𝜋 · 𝐴) ∗ (𝜋 · 𝐵). Using this distributivity
property, the multiplying fraction can be pushed inside the predicate
until it applies to points-to predicates, where 𝜋 · (𝑙 𝛼↦→ 𝑣) is interpreted
as 𝑙

𝜋·𝛼↦→ 𝑣.

In theory [83, 84], the fractional predicate 𝜋 · 𝐴 holds in a state 𝜎 iff
there exists a state 𝜎𝐴 such that 𝐴 holds in 𝜎𝐴 and 𝜎 corresponds to
𝜎𝐴 where all permission amounts have been multiplied by 𝜋, which we
write 𝜎 = 𝜋⊗ 𝜎𝐴. We refer to this definition as the semantic multiplication.
As an example, if tree(𝑥) represents exclusive ownership of all nodes of a
binary tree rooted in x, then 0.5 · tree(𝑥) represents half ownership of all
nodes of this binary tree.

While the semantic and syntactic multiplications look similar, it turns
out that they give two distinct meanings to fractional predicates! Indeed,
while the semantic entailment 𝜋 · (𝐴 ∗𝐵) |= (𝜋 ·𝐴) ∗ (𝜋 ·𝐵) holds with both
types of multiplication, the dual entailment (𝜋 · 𝐴) ∗ (𝜋 · 𝐵) |= 𝜋 · (𝐴 ∗ 𝐵),
which is direct for the syntactic multiplication, does not hold with the
semantic multiplication. The reason is that 𝜋 · (𝐴 ∗ 𝐵), interpreted with
semantic multiplication, might require stronger non-aliasing guarantees
than the ones provided by (𝜋 · 𝐴) ∗ (𝜋 · 𝐵), as shown by the following
example:

Example 3.1.1 Mismatch between the semantic and the syntactic
multiplication.
0.5·(x.f ↦→ 𝑣)∗0.5·(y.f ↦→ 𝑣) does not entail 0.5·(x.f ↦→ 𝑣 ∗y.f ↦→ 𝑣)
if interpreted with the semantic multiplication. Indeed, 0.5 · (x.f ↦→
𝑣) ∗ 0.5 · (y.f ↦→ 𝑣) holds in a state 𝜎 with exclusive ownership
of x.f (with value 𝑣) and in which x and y are aliases. However,
0.5 · (x.f ↦→ 𝑣 ∗ y.f ↦→ 𝑣) does not hold in 𝜎, otherwise it would imply
(by definition of the semantic multiplication) the existence of a state
that exclusively owns x.f twice, which is not possible since states are
bounded.

Current support for fractional predicates in automated verifiers, based
on syntactic multiplication, has never been fully formalized. Worse still,
as we show in this chapter, the support in these tools is not aligned with
the formal models considered in theoretical papers on the same topic.
Therefore, it is unclear whether the rules they apply, e.g., to recombine
two fractions of a recursively-defined predicate (as we explain next),
are sound. In this chapter, we show how to give a fully formal model
subsuming the cases supported in practical tools, and going beyond
such support to formalize what it can mean to split and recombine
more-general predicates, such as magic wands.

3.1.2. Distributivity, Factorizability, and Combinability

As prior work highlights [83, 84], three key properties are needed when
reasoning with fractional predicates, which we term distributivity, factor-

izability, and combinability
2. We will illustrate shortly on an example why

these three properties are necessary. The distributivity property holds for
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method processTree(x: Ref) {
{𝜋 · tree(𝑥)}
if (x != null) {

{𝜋 · tree(𝑥) ∗ 𝑥 ≠ null}
{(𝜋2 · tree(𝑥) ∗ 𝑥 ≠ null) ∗ (𝜋2 · tree(𝑥)) ∗ 𝑥 ≠ null)}

{ 𝜋
2 · tree(𝑥) ∗ 𝑥 ≠ null} { 𝜋

2 · tree(𝑥) ∗ 𝑥 ≠ null}

{∃𝑥𝑙 , 𝑥𝑟 . 𝑥.𝑑
𝜋
2↦→ _ ∗ 𝑥.𝑙

𝜋
2↦→ 𝑥𝑙 ∗ 𝑥.𝑟

𝜋
2↦→ 𝑥𝑟 ∗ (𝜋2 · tree(𝑥𝑙)) ∗ (𝜋2 · tree(𝑥𝑟 ))} {∃𝑥𝑙 , 𝑥𝑟 . 𝑥.𝑑

𝜋
2↦→ _ ∗ . . .}

print(x.d)
processTree(x.l)
processTree(x.r)

print(x.d)
processTree(x.l)
processTree(x.r)

{∃𝑥𝑙 , 𝑥𝑟 . 𝑥.𝑑
𝜋
2↦→ _ ∗ 𝑥.𝑙

𝜋
2↦→ 𝑥𝑙 ∗ 𝑥.𝑟

𝜋
2↦→ 𝑥𝑟 ∗ (𝜋2 · tree(𝑥𝑙)) ∗ (𝜋2 · tree(𝑥𝑟 ))} {∃𝑥𝑙 , 𝑥𝑟 . 𝑥.𝑑

𝜋
2↦→ _ ∗ . . .}

{ 𝜋
2 · tree(𝑥)} { 𝜋

2 · tree(𝑥)}

{ 𝜋
2 · tree(𝑥) ∗ 𝜋

2 · tree(𝑥)}
}
{𝜋 · tree(𝑥)}

}
Figure 3.1.: A simple concurrent program that shows why distributivity, factorizability, and combinability are needed when reasoning with
fractional resources. The SL predicate tree(𝑥) is recursively-defined as 𝑥 ≠ null ⇒ ∃𝑥𝑙 , 𝑥𝑟 . 𝑥.𝑑 ↦→ _∗𝑥.𝑙 ↦→ 𝑥𝑙 ∗𝑥.𝑟 ↦→ 𝑥𝑟 ∗ tree(𝑥𝑙)∗ tree(𝑥𝑟 ).
A proof outline is shown in blue. In SL with semantic multiplication, factorizability does not hold for separating conjunctions and, thus,
the entailments at the end of each parallel branch are not valid! With syntactic multiplication, distributivity holds for the separating
conjunction by definition, but it has not been shown that combinability holds: it is unclear whether the proof outline is correct. It is

correct in the semantics we present in this chapter.
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a SL connective iff multiplication by any fraction can be distributed over
it.3 Distributivity holds e.g., for the separating conjunction both with
semantic multiplication (𝛼 · (𝐴 ∗ 𝐵) entails (𝛼 · 𝐴) ∗ (𝛼 · 𝐵)) and syntactic
multiplication (by definition). However, as we show in Section 3.2, dis-
tributivity does not hold for the magic wand with semantic multiplication.
Factorizability is the dual property: it holds for a SL connective iff it is
always possible to factor a common fraction out over it. As explained
above, factorizability does not hold for the separating conjunction with
semantic multiplication, i.e., (𝛼 · 𝐴) ∗ (𝛼 · 𝐵) does not always entail
𝛼 · (𝐴 ∗ 𝐵). However, factorizability holds for the separating conjunction
with syntactic multiplication by definition. Finally, the combinability prop-
erty holds for an assertion 𝐴 iff two fractions of this assertion can always
be combined, i.e., (𝛼 · 𝐴) ∗ (𝛽 · 𝐴) entails (𝛼 + 𝛽) · 𝐴. In this case, we
say that the predicate 𝐴 is combinable. As we show in Section 3.3, not all
predicates are combinable. In particular, even if 𝐴 and 𝐵 are combinable,
the magic wand 𝐴 −∗ 𝐵 is in general not combinable when interpreted
with semantic multiplication.

To illustrate why these three properties matter when reasoning with
fractional resources, consider the simple concurrent program in Figure 3.1,
taken from Le and Hobor [83]. This program manipulates the inductively-
defined predicate tree(𝑥) = (𝑥 ≠ null ⇒ ∃𝑥𝑙 , 𝑥𝑟 . 𝑥.𝑑 ↦→ _ ∗ 𝑥.𝑙 ↦→
𝑥𝑙 ∗ 𝑥.𝑟 ↦→ 𝑥𝑟 ∗ tree(𝑥𝑙) ∗ tree(𝑥𝑟)), which expresses ownership of a binary
tree stored on the heap: Either 𝑥 is null (which corresponds to an empty
tree), or we have ownership of its fields x.d (data of the node), x.l
(pointer to x’s left subtree), and x.r (pointer to x’s right subtree), and we
own the trees rooted in x.l and x.r. The precondition and postcondition
of the method processTree is 𝜋 · tree(𝑥) (where 𝜋 is a ghost parameter
omitted from processTree’s signature for brevity), which expresses
that processTree only needs a read access to the tree rooted in x, and
guarantees the absence of data races. If 𝑥 is not null, processTree forks
two threads, and both threads print the data of the node (x.d), before
recursively calling processTree on the left and right subtrees of x.
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We show in blue a proof outline for this program, which relies on
the aforementioned three key properties: distributivity, factorizability,
and combinability. This proof outline, explained next, is invalid when
interpreted with the semantic multiplication, and yet it is successfully
verified by tools that implement the syntactic multiplication, such as
VeriFast and Viper. If x is not null, we split 𝜋 · tree(𝑥) into (𝜋2 · tree(𝑥)) ∗
(𝜋2 · tree(𝑥)) to give reading permission to each thread, using the rule
Parallel. Inside each thread we unfold the definition of tree(𝑥) and use the
distributivity property to distribute the fraction 𝜋 over the separating
conjunction, which, conjoined with the knowledge that 𝑥 ≠ null, yields

∃𝑥𝑙 , 𝑥𝑟 . 𝑥.𝑑
𝜋
2↦→ _ ∗ 𝑥.𝑙

𝜋
2↦→ 𝑥𝑙 ∗ 𝑥.𝑟

𝜋
2↦→ 𝑥𝑟 ∗ (𝜋2 · tree(𝑥𝑙)) ∗ (𝜋2 · tree(𝑥𝑟)).

This is enough to justify read access to x.d and to recursively call
processTree on both subtrees (with the ghost parameter 𝜋

2 ). After the
two recursive calls, we use the factorizability property to recompose the
𝜋
2 ownership of tree(𝑥) from the 𝜋

2 ownership of its fields and subtrees.
Note that as explained above, this step is invalid with the semantic
multiplication! Finally, after the two threads have finished executing,
we use the combinability property to recombine the two 𝜋

2 fractions
of tree(𝑥) into 𝜋 · tree(𝑥). Note that to justify this final step, we need to
know that tree(𝑥) is combinable. This proof outline illustrates a typical
pattern: Distributivity is necessary when we unfold a fractional resource,
while factorizability is necessary to fold back the fractional resource, and
combinability is necessary to recombine fractions of a resource that was
shared between threads.

This example demonstrates the importance of distributivity, factoriz-
ability, and combinability, yet traditional separation logics do not fully
support them. In SL semantics based on semantic multiplication, dis-
tributivity does not hold for magic wands, factorizability does not hold
for separating conjunctions, and combinability does not hold for magic
wands in general (as we show later). Hence, the entailments at the end of
the parallel branches in our example are actually not valid, as was already
pointed out by Le and Hobor [83]. By contrast, tools that implement
syntactic multiplication happily verify the program, but it has never been
shown whether combinability actually holds in this setting and, hence,
whether the last entailment is valid.

3.1.3. State of the Art

Several approaches have been proposed to deal with the limitations of
the semantic multiplication.

Factorizability for the separating conjunction. According to Le and
Hobor [83], the issue is that predicates such as x.f

𝑝↦→ _ ∗ y.f 𝑝↦→ _,
where 𝑝 is a fractional permission, do not necessarily imply that x and
y are not aliased (for example when 𝑝 = 0.5). They thus use a more
complex permission model, the binary tree share model [86], which satisfies
this disjointness property, and define a multiplication over binary tree
shares. Going back to Example 3.1.1, if we replace 1

2 by any binary tree
share 𝜏, then we can prove that 𝜏 · (x.f ↦→ 𝑣) ∗ 𝜏 · (y.f ↦→ 𝑣) entails
𝜏 · (x.f ↦→ 𝑣 ∗ y.f ↦→ 𝑣). More generally, using the disjointness property,
they prove that if 𝐴 and 𝐵 are 𝜏-uniform for some binary tree share
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𝜏 (meaning that any state that satisfies 𝐴 or 𝐵 must have either no
permission or exactly 𝜏 permission to each and every heap location),
then the factorizability entailment (𝜋 ·𝐴) ∗ (𝜋 · 𝐵) |= 𝜋 · (𝐴 ∗ 𝐵) holds. For
example, x.f

𝜏↦→ 𝑣 ∗ y.f 𝜏′↦→ 𝑣 is 𝜏-uniform if 𝜏′ = 𝜏 and not otherwise.
As well as restricting to 𝜏-uniform predicates, their approach is limited
by the complex permission model needed: the notion of multiplication is
neither commutative nor left-distributive, and it does not have inverses,
which for example prevents factorizability from holding for implications
(i.e., (𝜋 · 𝑃) ⇒ (𝜋 · 𝑄) does not necessarily entail 𝜋 · (𝑃 ⇒ 𝑄)).

Brotherston et al. [84] retain fractional permissions, but add new variants
of the two main SL connectives. Their assertions include the usual (weak)
star ∗, the usual (weak) wand −∗ (adjunct of the weak star), a strong star ⃝∗ ,
and (its adjunct) a strong wand−⃝∗ 4. While the weak star ∗behaves as usual,
the strong star ⃝∗ requires strict non-aliasing, e.g., x.f

0.5↦→ 𝑣⃝∗ x.f
0.5↦→ 𝑣

is unsatisfiable. They then prove valid the factorizability entailment
(𝜋 · 𝐴) ⃝∗ (𝜋 · 𝐵) |= 𝜋 · (𝐴⃝∗ 𝐵). To solve the issue in Figure 3.1, they
thus redefine the tree(𝑥) predicate with the strong star. They also prove a
strong frame rule for the strong star, which is quite limited, since it can be
applied only with a program statement 𝐶 that does not receive resources.
Moreover, while their strong star satisfies factorizability, their strong
wand does not satisfy distributivity.

Combinability. Le and Hobor [83] prove that combinability holds for
precise predicates [11]. An assertion 𝐴 is precise iff, for any state 𝜎, 𝐴
holds in at most one state 𝜎′ smaller than 𝜎. They provide formal rules for
proving predicates precise, as well as an induction principle to prove that
an inductively-defined predicate is precise, based on a well-founded order
of heaps decreasing by at least a constant positive permission amount.
As an example, to prove that tree(𝑥) is precise (and, thus, combinable),
they can assume that tree(𝑥𝑙) and tree(𝑥𝑟) are precise, as long as they can
prove that tree(𝑥𝑙) and tree(𝑥𝑟) represent heaps smaller than tree(𝑥) by
at least a constant positive permission amount, e.g., 1. However, their
approach does not capture predicates that are combinable but not precise,
which are common in practice, and their induction principle is limited
(it cannot be applied for example to inductively-defined predicates with
existentially-quantified permission amounts).

Brotherston et al. [84] add nominal labels to their assertion language,
to track that two fractional predicates have the same origin, and thus
can be recombined. At any time in a proof, one can conjoin the current
assertion 𝐴 with a fresh label 𝑙. Using this label, one can later in the
program use the following entailment to recombine two fractions of 𝐴:
𝛼 · (𝑙 ∧ 𝐴) ∗ 𝛽 · (𝑙 ∧ 𝐴) |= (𝛼 + 𝛽) · (𝑙 ∧ 𝐴). They prove the specification
{𝑙 ∧ 𝜋 · tree(𝑥)} processTree(x) {𝑙 ∧ 𝜋 · tree(𝑥)} for some label 𝑙 for the
example in Figure 3.1. To prove such preconditions, they also introduce a
jump modality @ in their assertion language: intuitively, @𝑙𝐴 means that
𝐴 holds in the heap labelled by 𝑙. While this solves the combinability
problem for fractions of an assertion that provably have the same origin,
it incurs a significant cost in terms of annotation: their proof outline
for the simple method processTree (Figure 3.1) requires managing 10
different labels.
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3.1.4. Approach and Contributions

In this chapter, we present a novel assertion semantics for a separation
logic that formally justifies the rules for fractional predicates implemented
in automated SL verifiers. Our logic solves the technical problems ex-
plained above: Distributivity holds for the magic wand, factorizability
holds for the separating conjunction, and the wand 𝐴 −∗ 𝐵 preserves
combinability (is combinable if 𝐵 is combinable).

The key idea of our logic is to allow unbounded states (states that can have
more than a full permission to a heap location) in the underlying assertion

semantics. Bounds on the held permissions are re-introduced in Hoare
triples at statement boundaries, which is sufficient to retain SL’s powerful
reasoning principles, such as the rules Frame and Parallel. In the following,
we will refer to our logic as unbounded separation logic (unbounded logic for
short) and to standard SL as the bounded logic.

We make the following contributions:

▶ We present and formalize a novel separation logic that formally
justifies the rules for fractional predicates implemented in modern
automated SL verifiers. We prove that it guarantees distributivity
and factorizability for all commonly-used SL connectives including
the star and the magic wand. We show that reimposing bound-
edness in Hoare triples is sufficient to justify the rules Frame and
Parallel (Section 3.2).

▶ We show that the existing approach of characterizing combinability
indirectly via preciseness is limited in general, and prove that
commonly-used SL connectives are combinable by defining and
reasoning about the property directly. In particular, we prove that,
unlike in the bounded logic, the magic wand is combinable5 in the
unbounded logic (Section 3.3).

▶ We provide a powerful and novel induction principle for reasoning
about (co-)inductively-defined predicates in our logic. In particular,
this induction principle allows simple justifications that a particular
(co-)inductively-defined predicate is combinable (Section 3.4).

▶ We show how our unbounded logic can serve as a formal foundation
to (1) justify and (2) extend the support of fractional resources in
automated SL verifiers (such as Chalice, VerCors, VeriFast, and
Viper). Using our formal model of syntactic multiplication, we
show how to support fractional magic wands, whose support does
not exist in any tool, to our knowledge. Moreover, we identify a
syntactic criterion on a (potentially recursive) predicate’s definition
sufficient to ensure that this predicate is combinable (Section 3.5).

After presenting these technical contributions, we illustrate the advan-
tages of the unbounded logic on two examples of heap-manipulating
concurrent programs, one of them from the literature (Section 3.6), and
we discuss related work in Section 3.7.

All technical results presented in this chapter have been formalized
and proven in Isabelle/HOL [33], and our formalization is publicly
available [130, 131].
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3.2. Unbounded Separation Logic

In this section, we present and formally define an unbounded version
of SL. The key idea, which we explain in Section 3.2.1 and formalize
in Section 3.2.2 and Section 3.2.3, is to allow unbounded states (states
that can own a heap location more than once) in the assertion semantics.
We show in Section 3.2.4 the distributivity and factorizability rules for
our unbounded logic. In particular, distributivity holds for the magic
wand and factorizability holds for the separating conjunction, which
is not the case for traditional, bounded separation logic. Finally, we
show in Section 3.2.5 that reimposing boundedness in triples is sufficient
to preserve key technical results of CSL, such as the rules Frame and
Parallel.

3.2.1. Key Idea: 1+1 = 2

As explained in Section 3.1, one key limitation of reasoning with fractional
predicates in (bounded) SL is that factorizing over the star is in general
unsound, i.e., the entailment 𝜋 · 𝐴 ∗ 𝜋 · 𝐵 |= 𝜋 · (𝐴 ∗ 𝐵) generally does
not hold. As shown with Example 3.1.1 ( 1

2 · (x.f 1↦→ 𝑣) ∗ 1
2 · (y.f 1↦→

𝑣) ̸|= 1
2 · (x.f 1↦→ 𝑣 ∗ y.f 1↦→ 𝑣)), this entailment fails because of potential

aliasing between x and y. The key reason is that states are bounded, and
thus the addition of two fractional permissions is a partial operation: If
a state 𝜎1 (resp. 𝜎2) has 𝑝1 (resp. 𝑝2) ownership of the location 𝑙, then
𝜎1 and 𝜎2 can be combined only if 𝑝1 + 𝑝2 ≤ 1. In this sense, 1 + 1 (for
example) is undefined. On the left-hand side of this simple example, we
add half of a full (1) permission of x.f to half of a full permission of
y.f. If x and y are aliases, this corresponds to a permission amount of
1
2 · 1 + 1

2 · 1 = 1. Since 1
2 + 1

2 ≤ 1, the addition is defined, and thus the
left-hand side is satisfiable. On the other hand, the right-hand side is
unsatisfiable when x and y are aliases, because the addition is performed
before the multiplication. In other words, to satisfy the right-hand side
when x and y are the same, a state needs 1

2 · (1+ 1) permission to x.f. But
1
2 · (1 + 1) is undefined, as 1 + 1 is undefined as a permission amount.

As explained in Section 3.1.3, Brotherston et al. [84] solve this issue by
strengthening the left-hand side with the strong star ⃝∗ . In other words,
they replace 1

2 · (x.f
1↦→ 𝑣) ∗ 1

2 · (y.f
1↦→ 𝑣) with 1

2 · (x.f
1↦→ 𝑣)⃝∗ 1

2 · (y.f
1↦→

𝑣). This new left-hand side is stronger because, by definition of ⃝∗ , it
enforces that x and y are non-aliases, and thus implies the right-hand
side 1

2 · (x.f 1↦→ 𝑣⃝∗ y.f
1↦→ 𝑣).

In our new unbounded logic, we go the other way, and make the
entailment valid by weakening the right-hand side. Concretely, we allow
1 + 1 to equal 2, which makes the right-hand side of Example 3.1.1
satisfiable, and the entailment valid. We achieve this by considering
unbounded states, i.e., states that can have more than a full permission
to a heap location. Going back to the example and proof outline from

Figure 3.1, the entailment ∃𝑥𝑙 , 𝑥𝑟 . 𝑥.𝑑
𝜋
2↦→ _ ∗ 𝑥.𝑙

𝜋
2↦→ 𝑥𝑙 ∗ 𝑥.𝑟

𝜋
2↦→ 𝑥𝑟 ∗

(𝜋2 · tree(𝑥𝑙)) ∗ (𝜋2 · tree(𝑥𝑟)) |= 𝜋
2 · (∃𝑥𝑙 , 𝑥𝑟 . 𝑥.𝑑 ↦→ _ ∗ 𝑥.𝑙 ↦→ 𝑥𝑙 ∗ 𝑥.𝑟 ↦→

𝑥𝑟 ∗ tree(𝑥𝑙) ∗ tree(𝑥𝑟)) used in the proof is now valid!
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Figure 3.2.: Illustration of the difference
between the bounded and unbounded
logics. In any assertion semantics that
enjoys factorizability, 1

2 · tree(𝑥) may rep-
resent a directed acyclic graph instead
of a tree because the upper bound on
the permissions held does not prevent
sharing (here, of x.l.r and x.r.l). In un-
bounded states, this loss of non-aliasing
information occurs even for the full
tree(𝑥).

[82]: Bornat et al. (2005), Permission Ac-

counting in Separation Logic

Loss of non-aliasing information. Considering unbounded states in
the assertion semantics solves the issue of factorizability for the star, but
this comes at a cost: As observed by Bornat et al. [82], any assertion
semantics that enjoys factorizability weakens the meaning of 𝜋 · tree(𝑥):
For example, 1

2 · tree(𝑥) no longer describes only binary trees, but also
admits DAGs (directed acyclic graphs). Figure 3.2 shows an illustration
of a state in which 1

2 · tree(𝑥) holds, even though the central node can be
reached from x via two distinct paths, x.l.r and x.r.l.

This loss of non-aliasing information caused by factorizability occurs in
traditional bounded states (like the one depicted in Figure 3.2) if the sum
of the fractional permissions for each heap location does not exceed a
full permission. Since unbounded states do not impose an upper bound
on permissions, non-aliasing information is lost even for larger fractions:
Even the full tree(𝑥) admits DAGs; e.g., consider a variation of Figure 3.2,
where each fractional permission is multiplied by 2.

However, a crucial insight of our work is that this loss of non-aliasing
information is not an issue in practice. As we will discuss shortly, we
re-impose boundedness in a separation logic at statement boundaries. That
is, even in the unbounded logic, tree(𝑥) denotes a tree before and after
each statement. This is sufficient to retain the key rules Frame and Parallel
of CSL (as we show in Section 3.2.5), which are by far the most important
proof steps that relies on non-aliasing information. As an example, if
we split the tree into its left and right subtrees and call a method on the
right subtree, we still know that the left subtree will remain unchanged.
When the call returns and the subtrees are re-combined, execution is
at a statement boundary, and we regain all non-aliasing properties of a
tree.

In the rare case that non-aliasing information is needed explicitly (e.g.,
to prove x.l.r != x.r.l), it can be obtained via suitable functional
specifications. For instance, the tree predicate could be extended to take
the set of nodes as an argument and to express that the nodes in the
left and in the right subtree are disjoint. We note that many concurrent
programs with shared data structures have been formalized and proven
correct in the automated SL verifiers Chalice, VerCors, VeriFast, and
Viper, even though these verifiers also “suffer” from this loss of non-
aliasing information because they use syntactic multiplication and, thus,
have factorizability. This empirically supports the claim that explicit
non-aliasing information is not crucial for proofs of operations that
manipulate data structures to which fractional predicates are held.
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3.2.2. State Model and Multiplication

In order to capture different state models and different flavours of SL (such
as implicit dynamic frames [70] as seen in Chapter 2), our unbounded
logic is parameterized by a partial commutative monoid (Σ,⊕) [85, 86]:

Definition 3.2.1 Partial commutative monoid.
A partial commutative monoid (or PCM) is a pair (Σ,⊕) where Σ is a set

of states and ⊕ is a partial addition that is commutative and associative.

For two states 𝜎, 𝜎′ ∈ Σ, we write 𝜎#𝜎′
to express that 𝜎 ⊕ 𝜎′

is defined, and

𝜎′ ⪰ 𝜎 to express that 𝜎′
is greater than 𝜎 in the ⊕-induced order (i.e., iff

∃𝑟 ∈ Σ. 𝜎′ = 𝜎 ⊕ 𝑟).

As an example, we can represent heaps with fractional permissions as
partial functions from a set of heap locations 𝐿 to a set of pairs of a value
(from the set 𝑉) and a permission amount (from ℚ+), i.e., Σ can be the
set of functions of type 𝐿⇀ 𝑉 ×ℚ+. Crucially, note that the permission
amounts are not upper-bounded. Two states 𝜎 and 𝜎′ are compatible, i.e.,
𝜎#𝜎′, iff they agree on the values they both define, and their combination
𝜎 ⊕ 𝜎′ is the union of their values and the additions of the permission
amounts for each heap location. Thus, a state 𝜎′ is greater than a state 𝜎
iff 𝜎′ contains the same value and has at least as much permission as 𝜎
for each heap location where 𝜎 is defined.

Relation to the IDF algebra

If (Σ,⊕, |_|, stable, stabilize) is an IDF algebra (according to Defini-
tion 2.3.1), then (Σ,⊕) is a PCM. However, the two should be instanti-
ated differently: The PCM (from Definition 3.2.1) should be instantiated
with an unbounded state model (e.g., 𝐿⇀ 𝑉 ×ℚ+), whereas the IDF
algebra should be instantiated with a bounded version of this state
model (e.g., 𝐿⇀ 𝑉 × (ℚ ∩ (0, 1])).6 6: The instantiation described here is

specific to SL with rational permissions.
For IDF with real permissions (as pre-
sented in Section 2.3.1), we instantiate
the unbounded state model for the PCM
as 𝐿⇀ 𝑉 ×ℝ≥0, and the bounded state
model for the IDF algebra as ΣIDF ≜
(𝐿⇀ 𝑉 × [0, 1]).

The unbounded state model is used only to interpret the syntactic

assertions in the unbounded logic (including inductive and coinduc-
tive predicates), as we will see in Section 3.2.3. We then use this
interpretation to obtain the semantic assertions required by CoreIVL
(Section 2.2.1), which are restricted to the bounded states.

To express multiplications, our unbounded logic is also parameterized
by a semifield of scalars:

Definition 3.2.2 Semifield of scalars.
A semifield of scalars is a tuple (𝑆,+, ·, 1), which is a semifield with a

multiplicative inverse and without a neutral element for the addition. More

precisely, for all 𝛼, 𝛽,𝜋 ∈ 𝑆, we require (𝑆,+, ·, 1) to satisfy the following

axioms:

𝛼 · 1 = 𝛼 𝛼 · 𝛼−1 = 1 𝛼 + 𝛽 = 𝛽 + 𝛼 𝛼 · 𝛽 = 𝛽 · 𝛼

(𝛼 · 𝛽) · 𝜋 = 𝛼 · (𝛽 · 𝜋) 𝜋 · (𝛼 + 𝛽) = (𝜋 · 𝛼) + (𝜋 · 𝛽)

Every scalar is required to have a multiplicative inverse, which is crucial
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to get some properties, e.g., to factorize a fraction out of an implication.
As an example, the set of positive rational numbers ℚ+ and set of positive
reals ℝ+ are semifields of scalars. We also require that we can multiply
states by scalars with a multiplication operation ⊗:

Definition 3.2.3 Left module.
A left 𝑆-module Σ is a tuple (Σ,⊕, 𝑆,+, ·, 1,⊗) where (Σ,⊕) is a PCM,

(𝑆,+, ·, 1) is a semifield of scalars, and ⊗ is a total multiplication from

𝑆 × Σ to Σ. More precisely, for all 𝛼, 𝛽 ∈ 𝑆 and 𝜎, 𝜎′ ∈ Σ, we require

(Σ,⊕, 𝑆,+, ·, 1,⊗) to satisfy the the following axioms:

1 ⊗ 𝜎 = 𝜎 𝛼 ⊗ (𝛽 ⊗ 𝜎) = (𝛼 · 𝛽) ⊗ 𝜎

𝛼 ⊗ (𝜎 ⊕ 𝜎′) = (𝛼 ⊗ 𝜎) ⊕ (𝛼 ⊗ 𝜎′) (𝛼 + 𝛽) ⊗ 𝜎 = (𝛼 ⊗ 𝜎) ⊕ (𝛽 ⊗ 𝜎)

In our example, if 𝜎 is a partial function from 𝐿 to 𝑉 ×ℚ+, and 𝜋 is an
element of ℚ+, then 𝜋 ⊗ 𝜎 can be defined as multiplying location-wise
the permission amounts of 𝜎 by 𝜋, and leaving the values unchanged.

Finally, we require a predicate bounded on Σ, where bounded(𝜎) means
that 𝜎 is a bounded state. The predicate bounded must be (downward)
monotonic, i.e., all states smaller than a bounded state must also be
bounded. In our example, a state is bounded iff it has at most 1 permission
to each heap location.

3.2.3. Assertions

To capture different permission models with our unbounded logic,
we consider, in our assertion language, atomic semantic assertions (i.e.,
functions from Σ to Booleans) to abstract over simple SL or IDF assertions
that do not contain connectives, such as the usual SL points-to assertion
x.f

𝑝↦→ 𝑣 or IDF accessibility predicate acc(x.f, p). In this chapter7,
we consider the following syntax for assertions, where 𝐴 ranges over
syntactic assertions, 𝑥 ranges over variable names, and B ranges over
atomic semantic assertions:

𝐴FB | 𝐴 ∗ 𝐴 | 𝐴 −∗ 𝐴 | 𝜋 · 𝐴 | 𝜀 · 𝐴 | 𝐴⇒ 𝐴

|𝐴 ∧ 𝐴 | 𝐴 ∨ 𝐴 | ∃𝑥. 𝐴 | ∀𝑥. 𝐴 | P | ⌈𝐴⌉

The meaning of SL assertions is defined in Figure 3.3. Most connectives are
defined in the usual SL8 (∗, −∗) or logical (∧, ∨, ∃, ∀, ⇒) way. The wildcard

assertion 𝜀 · 𝐴 represents an unknown (existentially-quantified) fraction
of 𝐴 (recall that scalars are required to have a multiplicative inverse and
thus they cannot be zero). Wildcard assertions are ideal to represent
read-only duplicable permissions [152]; as an example, 𝜀 · (x.f ↦→ 𝑣),
represents some non-zero permission of x.f (which should contain the
value 𝑣).9 Note that, to avoid orthogonal issues such as capture-avoidance
and clashes between free and bound names, we use a total store, and
thus allow the existential and universal quantifiers to "overwrite" values
in the store. For example, the assertion 𝑥 = 5 ∧ (∃𝑥. 𝑥 = 7) is satisfiable,
because the existential quantifier "overwrites" the value of the variable 𝑥
in the store.
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𝜎, 𝑠 ,Δ |= B ≜B(𝜎)
𝜎, 𝑠 ,Δ |= 𝐴 ∗ 𝐵 ≜(∃𝑎, 𝑏. 𝜎 = 𝑎 ⊕ 𝑏 and 𝑎, 𝑠,Δ |= 𝐴 and 𝑏, 𝑠,Δ |= 𝐵)
𝜎, 𝑠 ,Δ |= 𝐴 −∗ 𝐵 ≜(∀𝑎. (𝑎, 𝑠,Δ |= 𝐴 and 𝜎#𝑎) =⇒ 𝜎 ⊕ 𝑎, 𝑠,Δ |= 𝐵)
𝜎, 𝑠 ,Δ |= 𝜋 · 𝐴 ≜(∃𝑎. 𝑎, 𝑠,Δ |= 𝐴 and 𝜎 = 𝜋 ⊗ 𝑎)
𝜎, 𝑠 ,Δ |= 𝜀 · 𝐴 ≜(∃𝑎,𝜋. 𝑎, 𝑠 ,Δ |= 𝐴 and 𝜎 = 𝜋 ⊗ 𝑎)
𝜎, 𝑠 ,Δ |= 𝐴⇒ 𝐵≜(𝜎, 𝑠 ,Δ |= 𝐴 =⇒ 𝜎, 𝑠 ,Δ |= 𝐵)
𝜎, 𝑠 ,Δ |= 𝐴 ∧ 𝐵 ≜(𝜎, 𝑠 ,Δ |= 𝐴 and 𝜎, 𝑠 ,Δ |= 𝐵)
𝜎, 𝑠 ,Δ |= 𝐴 ∨ 𝐵 ≜(𝜎, 𝑠 ,Δ |= 𝐴 or 𝜎, 𝑠 ,Δ |= 𝐵)
𝜎, 𝑠 ,Δ |= ∃𝑥. 𝐴 ≜(∃𝑣. 𝜎, 𝑠(𝑥 ≔ 𝑣),Δ |= 𝐴)
𝜎, 𝑠 ,Δ |= ∀𝑥. 𝐴 ≜(∀𝑣. 𝜎, 𝑠(𝑥 ≔ 𝑣),Δ |= 𝐴)
𝜎, 𝑠 ,Δ |= P ≜𝜎 ∈ Δ(𝑠)
𝜎, 𝑠 ,Δ |= ⌈𝐴⌉ ≜(bounded(𝜎) =⇒ 𝜎, 𝑠 ,Δ |= 𝐴)

Figure 3.3.: Meaning of unbounded SL
assertions. 𝜎 ∈ Σ is an unbounded state,
𝑠 is a store of local variables (mapping
variable names to values), and Δ is an
interpretation (mapping a store to a set
of states from Σ).

For simplicity of our formalization, we incorporate recursively-defined
predicates (discussed in Section 3.4) via a single syntactic predicate
symbol P. This is not a mathematical limitation (we can encode multiple
predicates in a single one with a dedicated argument to “select” the right
predicate definition). The symbol P represents instances of our (only)
predicate; the interpretation context Δ provides the meaning of this
predicate: it defines the set of states which correspond to the predicate
instance being held. Again for simplicity of our formalization (avoiding
a definition for capture-avoiding substitution), parameterization of our
predicate symbol is implicit: we treat the argument names in a predicate’s
definition as (reserved) variables in our usual store 𝑠, and parameterize
Δ with such a store from which it can “read off” the values of (only) these
parameters. We then encode an instance of a predicate such as P(𝑒) via
the assertion ∃𝑥. 𝑥 = 𝑒 ∧ P.

As an example (revisited in Section 3.4) assume that Δ𝑡 represents the
predicate tree, and the name of the argument of 𝑃 is x. ThenΔ𝑡(𝑠) depends
only on the value of 𝑠(𝑥): Δ𝑡(𝑠) represents the set of states that own a tree
rooted in 𝑠(x). An instance e.g., tree(𝑥𝑙) is represented as∃𝑥. 𝑥 = 𝑥𝑙 ∗P. We
explain how the interpretation context Δ is constructed in Section 3.4.

Finally, we include a bounding operator (⌈_⌉) in our language: The
bounded assertion ⌈𝐴⌉ trivially holds in unbounded states, and in
all bounded states that satisfy 𝐴. This is used to express the usual magic
wand in our unbounded logic.

3.2.4. Distributivity and factorizability

We can now prove that all SL connectives satisfy both distributivity and
factorizability in our unbounded logic, in contrast to traditional bounded
SL. We write 𝐴 |=Δ 𝐵 to express that 𝐴 semantically entails 𝐵 for all
possible stores and for the interpretation context Δ, i.e., (𝐴 |=Δ 𝐵) ≜
(∀𝜎, 𝑠. 𝜎, 𝑠 ,Δ |= 𝐴 ⇒ 𝜎, 𝑠 ,Δ |= 𝐵). We write 𝐴 ≡Δ 𝐵 iff 𝐴 |=Δ 𝐵 and
𝐵 |=Δ 𝐴.

We formalize the distributivity and factorizability properties for our
assertion language via a set of rules (Figure 3.4). All rules describe
equivalences in our logic, except the rules Split and Combine. As explained
in Section 3.1, the dual entailment, (𝛼 ·𝐴) ∗ (𝛽 ·𝐴) |=Δ (𝛼+𝛽) ·𝐴, holds for
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DotDot
𝛽 · (𝛼 · 𝐴) ≡Δ (𝛼 · 𝛽) · 𝐴

DotFull
1 · 𝐴 ≡Δ 𝐴

DotStar
𝜋 · (𝐴 ∗ 𝐵) ≡Δ (𝜋 · 𝐴) ∗ (𝜋 · 𝐵)

DotWand
𝜋 · (𝐴 −∗ 𝐵) ≡Δ (𝜋 · 𝐴) −∗ (𝜋 · 𝐵)

DotImp
𝜋 · (𝐴⇒ 𝐵) ≡Δ (𝜋 · 𝐴) ⇒ (𝜋 · 𝐵)

DotPos
𝐴 |=Δ 𝐵 ⇐⇒ 𝜋 · 𝐴 |=Δ 𝜋 · 𝐵

DotExists
𝜋 · (∃𝑥. 𝐴) ≡Δ ∃𝑥. (𝜋 · 𝐴)

DotForall
𝜋 · (∀𝑥. 𝐴) ≡Δ ∀𝑥. (𝜋 · 𝐴)

DotAnd
𝜋 · (𝐴 ∧ 𝐵) ≡Δ (𝜋 · 𝐴) ∧ (𝜋 · 𝐵)

DotOr
𝜋 · (𝐴 ∨ 𝐵) ≡Δ (𝜋 · 𝐴) ∨ (𝜋 · 𝐵)

DotWild
𝜋 · (𝜀 · 𝐴) ≡Δ 𝜀 · 𝐴 ≡Δ 𝜀 · (𝜋 · 𝐴)

Split
(𝛼 + 𝛽) · 𝐴 |=Δ (𝛼 · 𝐴) ∗ (𝛽 · 𝐴)

Combine
combinableΔ(𝐴)

(𝛼 · 𝐴) ∗ (𝛽 · 𝐴) |=Δ (𝛼 + 𝛽) · 𝐴

DotPure
pure(𝐴)

𝜋 · 𝐴 ≡Δ 𝐴

Figure 3.4.: Distributivity and factorization rules in the unbounded logic. An assertion 𝐴 is pure, written pure(𝐴), iff it does not depend
on the heap and the interpretation context, i.e., ∀𝜎, 𝜎′, 𝑠 ,Δ,Δ′. (𝜎, 𝑠 ,Δ |= 𝐴↔ 𝜎′, 𝑠 ,Δ′ |= 𝐴).

[83]: Le et al. (2018), Logical Reasoning for

Disjoint Permissions

10: As we will see in Chapter 4, there can
be more than one way to achieve (1), even
when the right-hand side of the magic
wand is precise.

combinable assertions only, as shown by the rule Combine, and as we discuss
in Section 3.3. We proved the following theorem in Isabelle/HOL:

Theorem 3.2.1 Distributivity and factorizability in the unbounded
logic.
All rules shown in Figure 3.4 hold in the unbounded logic.

The rules DotImp, and DotPos are notable, since they rely on the key
property that the scalars we consider have a multiplicative inverse. In
contrast, the tree-permissions from Le and Hobor [83] cannot be inverted,
and thus they obtain only one direction for these rules.

Comparison to bounded SL. The rules DotStar and DotWand do not
hold in general in the bounded version of SL. As discussed in Section 3.1,
the rule DotStar does not hold because (𝜋 · 𝐴) ∗ (𝜋 · 𝐵) |=Δ 𝜋 · (𝐴 ∗ 𝐵) is
not true in general. Similarly, the rule DotWand does not hold, because
𝜋 · (𝐴 −∗ 𝐵) |=Δ (𝜋 · 𝐴) −∗ (𝜋 · 𝐵) is invalid in general. Next, we discuss
magic wands in the bounded and unbounded logics in more detail.

A magic wand 𝐴−∗ 𝐵 holds in a state 𝜎 iff 𝐵 holds in all states of the form
𝜎 ⊕ 𝜎𝐴, where 𝜎𝐴 is a state compatible with 𝜎 and in which 𝐴 holds.
Therefore, one can satisfy a wand in at least

10 two ways: (1) by including
enough resources in 𝜎 such that combining these resources with the ones
specified by 𝐴 results in the resources required by 𝐵, or (2) by ensuring
that any state 𝜎𝐴 in which 𝐴 holds is incompatible with 𝜎. The latter
can be achieved in the bounded logic by including enough resources in
𝜎 such that they cannot be combined (in a bounded state) with those
already specified by 𝐴.

Example 3.2.1 Distributivity does not hold for magic wands in the
bounded logic.
Consider the magic wand

𝑊1 ≜ x.f
0.5↦→ _ −∗ (x.f 0.5↦→ _ ∗ y.g ↦→ _)
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𝑊1 holds in a state 𝜎 in the bounded logic if (1) 𝜎 holds full permission
to y.g, or (2) 𝜎 holds more than half (e.g., full) permission to x.f. In
the latter case, 𝜎 combined with any state satisfying the left-hand side
of the wand results in a state that holds more than full permission to
x.f, which is inconsistent in the bounded logic.

To see why distributivity does not hold for the magic wand in the
bounded logic, consider the fractional wand 0.5 ·𝑊1. According to the
semantics of fractional predicates (line 3 in Figure 3.3) and strategy (2)
above, 0.5 ·𝑊1 holds in a state 𝜎 that holds half permission to x.f (and
no permission to y.g). However, this state does not satisfy the wand

0.5 · (x.f 0.5↦→ _) −∗ 0.5 · (x.f 0.5↦→ _ ∗ y.g ↦→ _)

= x.f
0.25↦→ _ −∗ (x.f 0.25↦→ _ ∗ y.g 0.5↦→ _)

because it is not necessarily inconsistent with states 𝜎𝐴 that satisfy its
left-hand side and because it does not hold the half permission to y.g

required by the right-hand side: distributivity does not hold.

In contrast, the unbounded logic offers only strategy (1) to satisfy a
wand because states that have more than full permission are no longer
necessarily inconsistent. This has three important consequences: First,
distributivity (DotWand) holds for𝑊1 and for wands in general. Second, it
makes wands combinable, as we show in Section 3.3. Third, unbounded
states lead to a stronger meaning for wands compared to the bounded
logic as they must be satisfied by following strategy (1).

The stronger meaning of wands in our unbounded logic is not restrictive
for many practical purposes. For example the wands used to specify
partial data structures during an ongoing traversal or to model borrowing
in Rust need to hold according to strategy (1) since proofs use them
to obtain the resources on their right-hand sides. Nonetheless, if the
bounded version of a wand is really needed it can be expressed in our
unbounded logic using our bounding operator: 𝐴 −∗ 𝐵 in the bounded
logic corresponds to 𝐴 −∗ ⌈𝐵⌉ in our logic, since ⌈𝐵⌉ trivially holds in
unbounded states. Thus, proofs that require the bounded version of
magic wands can still be expressed in our logic.

3.2.5. Reimposing Boundedness in CSL Triples

Considering unbounded states in the assertion semantics might at first
glance look surprising or even dangerous. After all, non-aliasing is a key
component of separation logic, and it is lost with unbounded states: For
example, the SL entailment x.f ↦→ _ ∗ y.f ↦→ _ |=Δ x ≠ y does not hold
in the unbounded logic.

Nonetheless, we show that our unbounded logic retains non-aliasing
reasoning and key technical results such as the rules Frame and Parallel,
by adapting the definition of validity of CSL triples (Definition 2.5.1) to
only consider bounded states in the definition, and proving in Isabelle
that all the CSL rules from Figure 2.10 are still sound with this adapted
definition in our unbounded setting.
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11: Note that our ViperCore instantiation
of CoreIVL Section 2.3.4 works slightly
differently than what we present here.
In our ViperCore instantiation, as ex-
plained previously, we first interpret all
assertions in the unbounded logic, and
then restrict them to bounded states. Def-
inition 2.5.1 with assertions restricted to
bounded states results in a definition
similar to Definition 3.2.4.

Definition 3.2.4 Validity of CSL triples in the unbounded logic.
Let Σ ≜ (𝐿⇀ 𝑉 ×ℝ≥0). Given a natural number 𝑛, a ParImp command 𝐶

(as defined in Section 2.5), a store of logical variables 𝑠 (i.e., a partial mapping

from variable names in Var to values in Val), an unbounded state 𝜔 ∈ Σ, and

a set of unbounded states with stores 𝑄 ⊆ Σ × (Var ⇀ Val), we define the

predicate safe𝑛(𝐶, 𝑠, 𝜔, 𝑄) exactly as in Definition 2.5.1:

safe0(𝐶, 𝑠, 𝜔, 𝑄) always holds.

safe𝑛+1(𝐶, 𝑠, 𝜔, 𝑄) holds iff the following conditions hold:

1. If 𝐶 = skip then (𝑠, 𝜔) ∈ 𝑄
2. accesses(𝐶, 𝑠) ⊆ readDom(𝜔) and writes(𝐶, 𝑠) ⊆ writeDom(𝜔)
3. For all heaps ℎ and IDF states 𝜔 𝑓 , if 𝜔#𝜔 𝑓 , 𝜔 ⊕ 𝜔 𝑓 ⇝ ℎ, and

stable(𝜔 𝑓 ), then ⟨𝐶, (𝑠, ℎ)⟩ ↛ ⊥
4. For all heaps ℎ, IDF states 𝜔 𝑓 , commands 𝐶′

, stores 𝑠′, and heaps ℎ′, if

𝜔#𝜔 𝑓 , 𝜔 ⊕ 𝜔 𝑓 ⇝ ℎ, stable(𝜔 𝑓 ), and ⟨𝐶, (𝑠, ℎ)⟩ → ⟨𝐶′, (𝑠′, ℎ′)⟩,
then there exists another state 𝜔′

such that 𝜔′#𝜔 𝑓 , 𝜔′ ⊕ 𝜔 𝑓 ⇝ ℎ′,
stable(𝜔′), and safe𝑛(𝐶′, 𝑠′, 𝜔′, 𝑄).

Using this predicate, we define the validity of CSL triples in the unbounded

logic as follows:

Δ |=CSL [𝑃] 𝐶 [𝑄]
≜
(
∀(𝑠, 𝜔) ∈ 𝑃. stable(𝜔) ∧ bounded(𝜔) ⇒ (∀𝑛. safe𝑛(𝐶, 𝑠, 𝜔, 𝑄))

)
We have highlighted in blue the difference with Definition 2.5.1: CSL
triples only consider bounded initial states 𝜔.11 Importantly, all states
from Σ appearing in this definition (𝜔, 𝜔′, and 𝜔 𝑓 ) are actually bounded.
Indeed, 𝜔 ⊕ 𝜔 𝑓 ⇝ ℎ (resp. 𝜔′ ⊕ 𝜔 𝑓 ⇝ ℎ′) implies that 𝜔 ⊕ 𝜔 𝑓 (resp.
𝜔′⊕ 𝜔 𝑓 ) is bounded (recall that 𝜔 ⇝ ℎ is defined as dom(𝜔) = dom(ℎ) ∧
(∀𝑙 ∈ dom(𝜔).𝜔(𝑙) = (ℎ(𝑙), 1))). Moreover, boundedness is downward-
closed, which in turn implies that 𝜔 (resp. 𝜔′) and 𝜔 𝑓 are bounded.

Imaginary separation logic states

Analogously to imaginary numbers, unbounded states and unstable
states can be considered imaginary SL states. As imaginary numbers
were invented to serve as intermediate steps towards the real solutions
of cubic equations of the form 𝑥3 = 𝑎𝑥 + 𝑏, unbounded and unstable
states serve as intermediate steps to give a meaning to assertions that
will be used in CSL triples, but the validity of CSL triples considers
only real SL states (i.e., states that are both stable and bounded).12 12: As shown by Definition 3.2.4, SL

states (e.g., with fractional permissions)
𝜔 can themselves be considered imagi-

nary states at a different level, as they
give rise to real program states (partial
heaps) ℎ when combined with another
state 𝜎 𝑓 such that 𝜔 ⊕ 𝜎 𝑓 ⇝ ℎ.

Moreover, as complex numbers give rise to real numbers when their
imaginary parts cancel out, unbounded states give rise to bounded
states when multiplied by a scalar smaller than 1, and unstable states
give rise to stable states when combined with states that own the
corresponding permissions.

We have proven in Isabelle versions of Theorem 2.5.2 and Theorem 2.5.1
adapted to our unbounded setting, i.e., we have proven that all rules from
Figure 2.10 are sound in this setting, including the key rules Frame and
Parallel, and that this definition of validity is adequate. In contrast, the
general frame rule does not hold with the strong star ⃝∗ from Brotherston
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[84]: Brotherston et al. (2020), Reasoning

over Permissions Regions in Concurrent Sep-

aration Logic

13: We have proven in Isabelle/HOL that
the two definitions are equivalent.

et al. [84], as it is restricted to program statements 𝐶 that do not receive
any resources (e.g., by acquiring a lock or receiving a message in a
concurrent program).

We have also proven the following stronger consequence rule, which
allows strengthening preconditions and weakening postconditions based
on bounded entailments:

Proposition 3.2.2 Bounded consequence rule.
Assume that

1. Δ |=CSL [𝑃] 𝐶 [𝑄] holds,

2. for all bounded states 𝜔, 𝜔 ∈ 𝑃′ ⇒ 𝜔 ∈ 𝑃, and

3. for all bounded states 𝜔, 𝜔 ∈ 𝑄 ⇒ 𝜔 ∈ 𝑄′
,

then Δ |=CSL [𝑃′] 𝐶 [𝑄′] holds.

This bounded consequence rule is useful to derive non-aliasing facts. For
example, while the entailment x.f ↦→ _ ∗ y.f ↦→ _ |=Δ x ≠ y does not
hold in the unbounded setting, all bounded states satisfying x.f ↦→
_ ∗ y.f ↦→ _ also satisfy x ≠ y, and thus one can use this rule to
"weaken" the postcondition x.f ↦→ _ ∗ y.f ↦→ _ to the postcondition
x.f ↦→ _ ∗ y.f ↦→ _ ∗ x ≠ y.

3.3. Combinable Assertions

As motivated earlier, it is often useful to split some predicate (with the
rule Split from Figure 3.4) into two (or more) fractions, and to recombine
these fractions later. As illustrated by the example in Figure 3.1, splitting
is typically used to enable threads to concurrently read the same heap
data structure. Recombining the fractions is then crucial to get back
exclusive ownership, and thus to be able to modify the data structure.

However, combining fractions of the same predicate is not always sound,
i.e., the entailment (𝛼 · 𝐴) ∗ (𝛽 · 𝐴) |=Δ (𝛼 + 𝛽) · 𝐴 is in general not valid,
as shown by the following example.

Example 3.3.1 A non-combinable assertion.
Consider the disjunction 𝐴 ≜ (x.f ↦→ _ ∨ x.g ↦→ _). 𝐴 holds in a
state 𝜎 𝑓 (resp. 𝜎𝑔) with full ownership of x.f (resp. x.g) and no other
ownership. Thus, by definition, 0.5 · 𝐴 holds in 0.5 ⊗ 𝜎 𝑓 and 0.5 ⊗ 𝜎𝑔 .
However, 𝐴 does not hold in the state (0.5 ⊗ 𝜎 𝑓 ) ⊕ (0.5 ⊗ 𝜎𝑔), because
this state has only half ownership of both x.f and x.g, and thus it
satisfies neither disjunct of 𝐴.

The disjunction𝐴 is thus not combinable, in the following sense:

Definition 3.3.1 Combinable assertions.
An assertion 𝐴 is combinable with respect to an interpretation context Δ,

written combinableΔ(𝐴), iff for all scalars 𝛼 and 𝛽, (𝛼 · 𝐴) ∗ (𝛽 · 𝐴) |=Δ

(𝛼 + 𝛽) · 𝐴.
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combinableΔ(𝐴) combinableΔ(𝐵)
combinableΔ(𝐴 ∗ 𝐵)

combinableΔ(𝐵)
combinableΔ(𝐴 −∗ 𝐵)

combinableΔ(𝐴)
combinableΔ(𝜋 · 𝐴)

combinableΔ(𝐴)
combinableΔ(𝜀 · 𝐴)

pure(𝐴) combinableΔ(𝐵)
combinableΔ(𝐴⇒ 𝐵)

combinableΔ(𝐴) combinableΔ(𝐵)
combinableΔ(𝐴 ∧ 𝐵)

pure(𝐴) combinableΔ(𝐵)
combinableΔ(𝐴 ∨ 𝐵)

combinableΔ(𝐴) pure(𝐵)
combinableΔ(𝐴 ∨ 𝐵)

combinableΔ(𝐴) unambiguousΔ(𝐴, 𝑥)
combinableΔ(∃𝑥. 𝐴)

combinableΔ(𝐴)
combinableΔ(∀𝑥. 𝐴)

pure(𝐴)
combinableΔ(𝐴)

Figure 3.5.: Rules for reasoning about combinable (non-recursive) assertions in the unbounded logic.
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Informally, if we restrict13 𝛼 and 𝛽 such that 𝛼 + 𝛽 = 1, an assertion 𝐴
is combinable iff the set of states that satisfy 𝐴 is convex, in the sense
that for any two states 𝜎 and 𝜎′ satisfying 𝐴, the set of all combinations
(𝛼 ⊗ 𝜎) ⊕ ((1 − 𝛼) ⊗ 𝜎′) (for 0 < 𝛼 < 1) all also satisfy 𝐴. Intuitively, one
can think of the two states 𝜎 and 𝜎′ as the states satisfying the conjuncts
on the left-hand side of combinability, and their combinations as the
states satisfying the right-hand side. The set of combinations can be
thought of as a line segment between 𝜎 and 𝜎′.

As explained in Section 3.1.3, Le and Hobor [83] have proven that precise

assertions [11] are combinable. Informally, an assertion 𝐴 is precise iff,
for any heap 𝜎, 𝐴 holds in at most one heap smaller than 𝜎. In practice,
many useful assertions are combinable but not precise, which shows
that checking combinability indirectly via preciseness is too approximate.
As a simple example, consider wildcard assertions 𝜀 · 𝐴, introduced in
Section 3.2. Because wildcard assertions are ideal to represent read-only
duplicable permissions, they are pervasive in automatic SL verifiers such
as VeriFast [15] (see for example Jacobs and Piessens [178]) and Viper [16]
(see for example Summers and Müller [158]). Using our definition of
combinability, we can simply prove that a wildcard assertion 𝜀 · 𝐴 is
combinable if 𝐴 is combinable, and this property is effectively assumed
by both verifiers. However, wildcard assertions are not precise. Therefore,
we focus, in this work, on the combinability property itself instead of
using preciseness as a (strictly less useful) proxy. The rules in Figure 3.5
can be used to establish that a (non-recursive) assertion is combinable, as
we have proven in Isabelle:

Theorem 3.3.1 Soundness of the combinability rules.
All rules presented in Figure 3.5 hold in the unbounded logic.

As an example, to prove that 𝐴 ∗ 𝐵 is combinable, it suffices to prove
that 𝐴 and 𝐵 are combinable. The disjunction 𝐴 ∨ 𝐵 is combinable if
one disjunct is pure and the other disjunct is combinable. As shown
by Example 3.3.1, 𝐴 ∨ 𝐵 might not be combinable even if 𝐴 and 𝐵 are
combinable. The assertion ∃𝑣. 𝐴 is combinable if 𝐴 is combinable and

if 𝐴 is unambiguous in 𝑣. Intuitively, this means that, for a given state
𝜎, there is at most one value of 𝑣 such that 𝐴 holds in 𝜎, otherwise the
existential could act like a (potentially unbounded) disjunction. This rule
is crucial to prove that assertions such as ∃𝑣. x.f ↦→ 𝑣 ∗𝐴 are combinable,
provided that 𝐴 is combinable. Formally, given an interpretation Δ, an
assertion 𝐴 is unambiguous in 𝑣, written unambiguousΔ(𝐴, 𝑣), iff the
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14: The wand𝑊1 from Example 3.2.1 is
another example of a wand that is not
combinable.

following holds:

∀𝜎1 , 𝜎2 , 𝑠 , 𝑣1 , 𝑣2. 𝜎1#𝜎2∧𝜎1 , 𝑠(𝑣 := 𝑣1),Δ |= 𝐴∧𝜎2 , 𝑠(𝑣 := 𝑣2),Δ |= 𝐴⇒ 𝑣1 = 𝑣2

∃𝑣. x.f ↦→ 𝑣 is trivially unambiguous in 𝑣. Moreover, if𝐴 is unambiguous
in 𝑣, then𝐴∗𝐵 is also unambiguous in 𝑣. We can thus derive the following
useful rule:

combinableΔ(𝐴)

combinableΔ(∃𝑣. 𝑙
𝑝↦→ 𝑣 ∗ 𝐴)

The second rule of Figure 3.5 shows a key result: the magic wand is
combinable in the unbounded logic, whereas it is not in bounded SL, as
shown by the following example:14

Example 3.3.2 Magic wands are not combinable in the bounded logic.
Consider the wand

𝑊2 ≜
(
∃𝑣. 𝑥. 𝑓 ↦→ 𝑣 ∗ (𝑣 = 𝑦 ∨ 𝑣 = 𝑧) ∗ 𝑥. 𝑓 .𝑔 1/2↦→ _

)
−∗ 𝑦.𝑔 ↦→ _

𝑊2 can be satisfied in bounded SL by (at least) the two following
states:15 15: Any state with non-zero permission

to x.f would also trivially satisfy 𝑊2,
because it would be incompatible with
any state satisfying the left-hand side of
the wand.

1. A state 𝜎𝑦 with full permission to y.g.
2. A state 𝜎𝑧 with half permission to y.g and full permission to

z.g. Indeed, any state 𝜎𝑙 satisfying the left-hand side of𝑊2 and
compatible with 𝜎𝑧 must have 𝑥. 𝑓 = 𝑦 (since 𝑥. 𝑓 = 𝑧 would
imply that the combination 𝜎𝑙 ⊕ 𝜎𝑧 has 1.5 permission to x.f,
which contradicts boundedness), and thus the left-hand provides
half permission to y.g (via 𝑥. 𝑓 .𝑔

1/2↦→ _)), while the other half
permission to y.g comes from 𝜎𝑧 .

Consider now the state 𝜎 = 0.5⊗ 𝜎𝑦⊕ 0.5⊗ 𝜎𝑧 , which has 3
4 permission

to y.g and 1
2 permission to z.f. The state 𝜎 does not satisfy 𝑊2, as

it does not have enough permission to (1) satisfy the right-hand side
directly, or (2) to force 𝑥. 𝑓 = 𝑦 when combined with the left-hand side.

However, in the unbounded logic,𝑊2 can be satisfied only by satisfying
(1), which ensures that𝑊2 is combinable.

3.4. Combinable (Co)Inductive Predicates

The previous section provides rules to prove that non-recursive assertions
are combinable. For example, using the rules from Figure 3.5, it is easy to
prove that the assertion 𝑥 ≠ null ⇒ ∃𝑥𝑙 , 𝑥𝑟 . 𝑥.𝑑 ↦→ _ ∗ 𝑥.𝑙 ↦→ 𝑥𝑙 ∗ 𝑥.𝑟 ↦→
𝑥𝑟 is combinable. However, these rules are not sufficient on their own
to prove that (co)inductively-defined predicates are combinable, but
this property is required to prove practical examples. For instance, the
proof outline in Figure 3.1 is valid (in the unbounded logic) only if
tree(𝑥) is combinable. Recall that tree(𝑥) is defined inductively via the
following equation: tree(𝑥) = (𝑥 ≠ null ⇒ ∃𝑥𝑙 , 𝑥𝑟 . 𝑥.𝑑 ↦→ _ ∗ 𝑥.𝑙 ↦→
𝑥𝑙 ∗ 𝑥.𝑟 ↦→ 𝑥𝑟 ∗ tree(𝑥𝑙) ∗ tree(𝑥𝑟)). Our goal is to provide the tools and
formal foundations to prove by induction that predicates such as tree(𝑥)
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16: Affine assertions are sometimes
called intuitionistic.

[179]: Penninckx et al. (2015), Sound, Mod-

ular and Compositional Verification of the

Input/Output Behavior of Programs

are combinable: Assuming that tree(𝑥𝑙) and tree(𝑥𝑟) are combinable, it
would then be straightforward to prove that tree(𝑥) is also combinable,
using the recursive definition of tree(𝑥) and the rules from Figure 3.5.

In this section, we formalize the mathematics necessary to enable such
intuitive proofs, which turns out to be non-trivial for general SL assertions.
In Section 3.4.1, we formalize the meaning of (co)inductive predicates
in our assertion language via the concepts of least and greatest fixed
points of a recursive equation, and use Knaster-Tarski’s theorem to prove
that (under monotonicity conditions) these fixed points exist. We also
explain why the standard induction principle derived from this theorem
is not sufficient to prove that these fixed points are combinable. We then
define, in Section 3.4.2, a class of set-closure properties, which captures
properties such as combinability and affinity (an assertion 𝐴 is affine if it
is upward-closed)16. Moreover, we formalize and prove a novel, simple,
and powerful induction principle for set-closure properties and fixed
points: If a non-decreasing (defined in Section 3.4.1) function 𝑓 preserves
a set-closure property 𝑃, then the least and the greatest fixed point of 𝑓
satisfy 𝑃. This novel induction principle captures the intuition described
above. Proving this induction principle requires transfinite induction:
We show in Section 3.4.3 why Kleene’s fixed point theorem (which does
not require transfinite induction) is not sufficient to prove this induction
principle for some recursive predicate definitions that can be expressed
in our assertion language.

3.4.1. Preliminaries: Monotonic Functions and Existence
of Fixed Points

A recursive equation might have zero, some, or infinitely many fixed
points. For example, any interpretation for P is a fixed point of the re-
cursive equation P = P, and thus, fixed points of this simple recursive
equation are in general not combinable. Two types of fixed points are
typically used in SL: The least fixed point, and the greatest fixed point.
Predicates interpreted as a least (resp. greatest) fixed point are referred
to as inductive (resp. coinductive) predicates. Inductive predicates are
particularly suitable to describe finite data structures. As an example, the
least fixed point of the recursive equation for tree(𝑥) describes all finite
binary trees. On the other hand, coinductive predicates can describe
infinite data structures, and are useful to describe infinite sets of per-
missions, for instance, to specify the input/output behavior of reactive
programs [179].

The fixed points we are interested in are interpretation contexts, i.e., func-
tions mapping a store of local variables to the set of states satisfying
the predicate instance P (see Section 3.2.3). As an example, tree can be
seen as an interpretation context Δ𝑡 , which takes as input a store of local
variables (containing in particular a value for the variable x), and outputs
the set of states that satisfy tree(𝑥). Moreover, a recursive definition can
be described with an assertion, using the symbol P for recursive calls.
More precisely, given an assertion 𝐴 (which might contain the symbol P)
that represents the (potentially recursive) definition of our predicate, we
define the interpretation of our predicate as the least or greatest fixed
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Fixpoint Theorem and Its Applications.

point of the function 𝑓𝐴, which we define as follows:

𝑓𝐴 ≜ 𝜆Δ.𝜆𝑠. {𝜎 | 𝜎, 𝑠 ,Δ |= 𝐴}

The function 𝑓𝐴 takes an interpretation context as inputΔ and constructs a
new interpretation context, by constructing, for any local store 𝑠 (defining
values for the variables corresponding to predicate parameters), the
set of states that satisfy 𝐴 (recall that an interpretation context maps
a local store to a set of states), where the meaning of P is given by the
interpretation context Δ. As an example, we can define the interpretation
context Δ𝑡 for our tree predicate as the least fixed point of 𝑓𝐴, for 𝐴 ≜
(𝑥 ≠ null ⇒ ∃𝑥𝑙 , 𝑥𝑟 . 𝑥.𝑑 ↦→ _ ∗ 𝑥.𝑙 ↦→ 𝑥𝑙 ∗ 𝑥.𝑟 ↦→ 𝑥𝑟 ∗ P(𝑥𝑙) ∗ P(𝑥𝑟))).17

To formally define the meaning of the least and greatest fixed point of such a
function, we need to define an order on interpretation contexts. Informally,
an interpretation context Δ is smaller than another interpretation context
Δ′ iff Δ “semantically entails” Δ′. More precisely:

Definition 3.4.1 Interpretation context.
An interpretation context is a function mapping a local store of variables to

a set of states from Σ. An interpretation context Δ is smaller than another

interpretation context Δ′
, written Δ ⊑ Δ′

, iff ∀𝑠.Δ(𝑠) ⊆ Δ′(𝑠).

Lemma 3.4.1 Interpretation contexts form a complete lattice.
The set of interpretation contexts equipped with the partial order relation ⊑ is

a complete lattice. In particular, for a family of interpretation contexts 𝑆:

▶ The supremum (or join) of 𝑆, written ⊔𝑆, can be obtained as ⊔𝑆 ≜
𝜆𝑠. {𝜎 | ∃Δ ∈ 𝑆. 𝜎 ∈ Δ(𝑠)}.

▶ The infimum (or meet) of 𝑆, written ⊓𝑆, can be obtained as ⊓𝑆 ≜
𝜆𝑠. {𝜎 | ∀Δ ∈ 𝑆. 𝜎 ∈ Δ(𝑠)}.

A fixed point of a function 𝑓 is an interpretation Δ such that 𝑓 (Δ) = Δ.
The least (resp. greatest) fixed point of a function 𝑓 is a fixed point that is
smaller (resp. larger) than all other fixed points of 𝑓 , with respect to the
partial order ⊑. Knaster-Tarski’s theorem states that any non-decreasing

function 𝑓 has a least and a greatest fixed point [180].

Definition 3.4.2 Non-decreasing function.
A function 𝑓 is non-decreasing, written mono

+( 𝑓 ), iff ∀Δ,Δ′.Δ ⊑ Δ′ ⇒
𝑓 (Δ) ⊑ 𝑓 (Δ′).

We have proven in Isabelle/HOL that the function 𝑓𝐴 is non-decreasing
if P occurs only in positive positions in 𝐴.

Theorem 3.4.2 Knaster-Tarski fixed point construction.
Let LFP( 𝑓 ) ≜ ⊓{Δ | 𝑓 (Δ) ⊑ Δ} and GFP( 𝑓 ) ≜ ⊔{Δ | Δ ⊑ 𝑓 (Δ)}. If

mono
+( 𝑓 ), then LFP( 𝑓 ) is the least fixed point of 𝑓 and GFP( 𝑓 ) is the greatest

fixed point of 𝑓 .

In addition to the existence of a least (and a greatest) fixed point of a
function 𝑓 , this theorem gives us an induction principle for this fixed
point: If an interpretation Δ satisfies 𝑓 (Δ) ⊑ Δ, then it is greater than
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or equal to LFP( 𝑓 ), because LFP( 𝑓 ) is the infimum of the set of such
interpretations (a similar induction principle can be derived for GFP( 𝑓 )).
This induction principle allows one to prove properties about each
individual state of LFP( 𝑓 ), by choosing a relevant Δ. For example, let
Δ𝑃(𝑠) (for all 𝑠) be the set of all states that satisfy a property 𝑃 (e.g.,
owning x.f with value 5). If 𝑓 preserves the property 𝑃, i.e., 𝑓 (Δ𝑃) ⊆ Δ𝑃 ,
then LFP( 𝑓 ) ⊆ Δ𝑃 ; in other words, all states in LFP( 𝑓 )(𝑠) (for all 𝑠) satisfy
𝑃.

However, it does not appear possible to apply this induction principle
to the combinability property, since combinability is not a property
of individual states in a set of states (such as 𝑃 above), but rather of
(unboundedly large) subsets of such a set. Combinability concerns the
(infinite) space of all combinations of two states (similar to a convexity
property, as explained in Section 3.3).

3.4.2. An Induction Principle for (Co)Inductive Predicates
and Set-Closure Properties

Given a non-decreasing function 𝑓 , Theorem 3.4.2 expresses that 𝑓
has a least fixed point (LFP( 𝑓 )) and a greatest fixed point (GFP( 𝑓 )), and
provides induction principles to reason about these fixed points. However,
as explained above, these induction principles do not appear sufficient
to prove that these fixed points are combinable. On the other hand,
Cousot and Cousot [181] have proven that, if mono

+( 𝑓 ), then LFP( 𝑓 ) (resp.
GFP( 𝑓 )) can be expressed as the stationary limit of 𝑓 𝛼(Δ⊥) (resp. 𝑓 𝛼(Δ⊤)),
where 𝛼 ranges over ordinals, 𝑓 𝛼 is defined by transfinite recursion, and
Δ⊥ (resp. Δ⊤) is defined as the empty (resp. full) interpretation, as given
by the following definition.

Definition 3.4.3 Empty interpretation, full interpretation, transfinite
recursion.
The empty interpretation, written Δ⊥, maps all stores to the empty set ∅
(representing the assertion false), i.e.,Δ⊥ ≜ (𝜆𝑠.∅). The full interpretation,

written Δ⊤, maps all stores to the universal set Σ (representing the assertion

true), i.e., Δ⊤ ≜ (𝜆𝑠.Σ). Given a function 𝑓 , 𝑓 𝛼 (where 𝛼 is an ordinal) is

defined by transfinite recursion as follows:

▶ 𝑓 0 ≜ (𝜆Δ.Δ).
▶ For an ordinal 𝛼, 𝑓 𝛼+1 ≜

(
𝜆Δ. 𝑓 ( 𝑓 𝛼(Δ))

)
.

▶ For a limit ordinal 𝛾, 𝑓 𝛾 ≜
(
𝜆Δ.⊔{ 𝑓 𝛽(Δ) | 𝛽 < 𝛾}

)
.

We show in Section 3.4.3 why Kleene’s fixed point theorem cannot be
applied to prove that a fixed point of some recursive predicate definitions
in our assertion language is combinable, which is why we use ordinals and
transfinite induction. Using these constructive definitions of LFP( 𝑓 ) and
GFP( 𝑓 ), we can express our induction principle for set-closure properties,
which are defined as follows.

Definition 3.4.4 Set-closure property.
A predicate 𝑃 on interpretation contexts (i.e. a function from interpretation
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contexts to Booleans) is a set-closure property iff 𝑃 satisfies the following:

∃𝑀. ∀Δ. (𝑃(Δ) ⇐⇒ ∀𝑠. (∀𝑎, 𝑏 ∈ Δ(𝑠). 𝑀(𝑎, 𝑏) ⊆ Δ(𝑠)))
Intuitively, a set-closure property corresponds to being closed under
some operation 𝑀, which constructs (from two states) a set of states, as
shown by the following examples.

Example 3.4.1 Combinability is a set-closure property.
An assertion 𝐴 is combinable iff it is closed under the operation 𝑀 that
informally constructs the line segment between two states, or, more
formally, under the operation 𝑀(𝑎, 𝑏) ≜ {𝜎 | ∃𝑝, 𝑞. 𝑝 + 𝑞 = 1 ∧ 𝜎 =

𝑝 ⊗ 𝑎 ⊕ 𝑞 ⊗ 𝑏}; combinability is thus a set-closure property.

Example 3.4.2 Affinity is a set-closure property.
As another example, an assertion 𝐴 is affine iff it is upward-closed
(formally corresponding to the operation 𝑀(𝑎, 𝑏) ≜ {𝜎 | 𝜎 ⪰ 𝑎}),
which shows that the property of (an assertion) being affine is also a
set-closure property.

We have proven the following induction principle for set-closure proper-
ties in Isabelle/HOL.

Theorem 3.4.3 Induction principle for set-closure properties.
Let 𝑓 be a non-increasing function (i.e., mono

+( 𝑓 )) and 𝑃 a set-closure

property. If 𝑓 preserves 𝑃, i.e., ∀Δ. 𝑃(Δ) ⇒ 𝑃( 𝑓 (Δ)), then 𝑃(LFP( 𝑓 )) and

𝑃(GFP( 𝑓 )) hold.

Proof. Without loss of generality, we show the proof for the least fixed
point (the proof for the greatest fixed point is analogous). Let 𝑀 be such
that for all Δ, 𝑃(Δ) ⇐⇒ ∀𝑠. (∀𝑎, 𝑏 ∈ Δ(𝑠). 𝑀(𝑎, 𝑏) ⊆ Δ(𝑠)).

We proceed by fixpoint induction, i.e., transfinite induction over the
iterates 𝑓 𝛼(Δ⊥) for ordinals 𝛼:

Base case. 𝑃( 𝑓 0(Δ⊥)) ⇐⇒ 𝑃(Δ⊥) ⇐⇒ ∀𝑠. (∀𝑎, 𝑏 ∈ ∅. 𝑀(𝑎, 𝑏) ⊆ ∅),
which holds trivially.

Successor case. We have to prove that ∀Δ. 𝑃(Δ) ⇒ 𝑃( 𝑓 (Δ)), which is one
of our assumptions.

Limit case. Let𝐶 be a non-empty chain (i.e., a totally-ordered set) such that
∀Δ.Δ ∈ 𝐶 ⇒ 𝑃(Δ). We need to prove that 𝑃(⊔𝐶) holds, i.e., ∀𝑠. (∀𝑎, 𝑏 ∈
(⊔𝐶)(𝑠). 𝑀(𝑎, 𝑏) ⊆ (⊔𝐶)(𝑠)). Let 𝑠 be a store, and 𝑎, 𝑏 ∈ (⊔𝐶)(𝑠). By
definition of the supremum, there exist Δ𝑎 ,Δ𝑏 ∈ 𝐶 such that 𝑎 ∈ Δ𝑎(𝑠)
and 𝑏 ∈ Δ𝑏(𝑠). Since 𝐶 is a chain, we have either Δ𝑎 ⊑ Δ𝑏 or Δ𝑏 ⊑ Δ𝑎 .
Without loss of generality, let us assume that Δ𝑎 ⊑ Δ𝑏 . In this case, both
𝑎 and 𝑏 belong to Δ𝑏(𝑠), and since 𝑃(Δ𝑏) holds, we have 𝑀(𝑎, 𝑏) ⊆ Δ𝑏(𝑠).
Since Δ𝑏(𝑠) ⊆ (⊔𝐶)(𝑠) (by definition of the supremum), we have that
𝑀(𝑎, 𝑏) ⊆ (⊔𝐶)(𝑠), which concludes the cases.

This theorem justifies the intuitive induction described at the beginning
of this section when 𝑃 is the combinability property: To prove that tree(𝑥)
is combinable, we simply have to prove that the assertion 𝑥 ≠ null ⇒
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∃𝑥𝑙 , 𝑥𝑟 . 𝑥.𝑑 ↦→ _ ∗ 𝑥.𝑙 ↦→ 𝑥𝑙 ∗ 𝑥.𝑟 ↦→ 𝑥𝑟 ∗ tree(𝑥𝑙) ∗ tree(𝑥𝑟) is combinable
(corresponding to 𝑃( 𝑓 (Δ))), while assuming that tree(𝑦) is combinable
for all 𝑦 (corresponding to 𝑃(Δ)), which we can do using the rules from
Figure 3.5. Moreover, this theorem can be easily leveraged in the context
of automated SL verifiers, as we show in Section 3.5: If the assertion
language for defining predicates recursively is restricted in ways that are
standard in such tools, we directly get that all (co)inductive predicates
are combinable.

3.4.3. Kleene’s Fixed Point Theorem is too Restrictive for
SL

Some readers might wonder why we used ordinals and transfinite
induction to prove Theorem 3.4.3, instead of (the simpler) Kleene’s fixed
point theorem. The reason is that Kleene’s theorem forces a stronger
assumption on 𝑓 , namely Scott-continuity. The theorem states that, if a
function 𝑓 is Scott-continuous, then its least fixed point can be computed as
the supremum of 𝑓 𝑛(Δ⊥), where 𝑛 ranges over natural numbers, andΔ⊥ is
the empty interpretation. Unfortunately, the rich connectives commonly-
employed in separation logics easily violate this requirement. Using the
universal quantifier or the magic wand in our recursive definition 𝐴 is
enough to make 𝑓𝐴 not Scott-continuous. Worse, using the existential
quantifier or the separating conjunction in𝐴 is enough for 𝑓𝐴 to not satisfy
the dual property of Scott-continuity, which is required to prove that
GFP( 𝑓𝐴) is the infimum of 𝑓𝐴𝑛(Δ⊤) (where Δ⊤ is the full interpretation).
The following example illustrates the problem.

Example 3.4.3 A recursive SL definition that is not Scott-continuous.
Consider the recursive definition𝐴 ≜ 𝜀·(x.g ↦→ _)−∗(x.g ↦→ _∨0.5·𝐴),
interpreted in an affine manner.18 18: By “interpreted in an affine manner”,

we mean that the assertion 𝐴 holds in
any state that satisfies at least the magic
wand, i.e., 𝐴 holds in any state that owns
the magic wand and possibly other re-
sources. In linear SL (also called classical),
this interpretation can be obtained by
considering 𝐴 ∗ true instead of 𝐴, where
the left conjunct captures the wand, and
the right conjunct captures the other re-
sources.

Recall that 𝜀 · (x.g ↦→ _) represents
an unspecified positive permission amount. Let 𝑓𝐴 denote the function
associated with this recursive definition, and Δ𝑝 an interpretation
context such that, for all stores 𝑠, a state 𝜎 is in Δ𝑝(𝑠) iff 𝜎 has at least 𝑝
permission to x.g.

𝑓𝐴 is not Scott-continuous, and thus Kleene’s theorem does not apply.
To see why, let us nonetheless compute 𝑓 𝑛(Δ⊥). Starting from the empty
interpretation Δ⊥, we get 𝑓𝐴(Δ⊥) = Δ1: We need 1 permission of x.g to
prove the right-hand side of the wand (x.g ↦→ _ ∨ 0.5 · 𝐴) = x.g ↦→ _.
Then, 𝑓𝐴2(Δ⊥) = 𝑓𝐴(Δ1) = Δ0.5, since, in this case, we can prove the
disjunct 0.5 · 𝐴 to prove the right-hand side. Similarly, 𝑓𝐴3(Δ⊥) =

𝑓𝐴(Δ0.5) = Δ0.25. By induction, we get 𝑓𝐴𝑛+1(Δ⊥) = Δ 1
2𝑛

.

We can now apply Kleene’s formula to obtain a potential least fixed
point: The supremum of 𝑓 𝑛(Δ⊥) is Δ>0, where a state is in Δ>0(𝑠) (for
all 𝑠) iff it has non-zero permission to x.g. However, Δ>0 is not a fixed
point of 𝑓𝐴, since 𝑓𝐴(Δ>0) = Δ⊤ (the full interpretation). Indeed, in
this case, the wand is always trivially satisfied, since the left-hand side
implies the right-hand side.

This example shows that Kleene’s theorem is too restrictive to justify the
existence of a least fixed point for some recursive SL predicate definitions.
The situation is similar for Kleene’s dual theorem (existence of a greatest
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fixed point), because of the existential quantifier and the separating
conjunction, as shown by the following example:

Example 3.4.4 A recursive SL definition that is not dual Scott-continu-
ous.
The greatest fixed point of the recursive equation 𝐴 ≜ x.g

0.5↦→
_ ∗ 𝜀 · (x.g ↦→ _) ∗ 0.5 · 𝐴 is Δ⊥. However, Kleene’s dual formula
for the greatest fixed point (i.e., the infimum of 𝑓 𝑛(Δ⊤)) yields Δ1,
which is not a fixed point of this equation, because 𝑓𝐴(Δ1) = Δ⊥.

The richer mathematical foundations we provide in this section are
needed to enable direct proofs of combinability over general recursively-
defined SL predicates.

3.5. Formal Foundations for Fractional
Predicates and Magic Wands in Automatic
SL Verifiers

Fractional predicates are supported by several automated SL verifiers,
such as VerCors [57], VeriFast [15], and Viper [16]. As explained in
Section 3.1, this support relies on the concept of syntactic multiplication.
For example, the semantics of fractional predicates in VeriFast is explicitly
defined as follows: “applying a coefficient 𝑓 to a user-defined predicate
is equivalent to multiplying the coefficient of each chunk mentioned in
the predicate’s body by 𝑓 ” [15]. VerCors and Viper perform a similar
syntactic multiplication when unfolding (exchanging a predicate instance
with its definition, also called opening) or folding (the reverse operation,
also called closing) a fractional predicate.

However, as shown by Example 3.1.1, there is a mismatch between the
syntactic and the semantic multiplication in the bounded logic. Consider
𝑃(𝑥, 𝑦) ≜ (x.g ↦→ _ ∗ y.g ↦→ _). While 0.5 · 𝑃(𝑥, 𝑥) is equivalent to false
in bounded SL if interpreted with the semantic multiplication, the three
verifiers allow the user to obtain this fractional predicate instance in
exchange for full permission of x.g; this behavior is compatible with the
semantics of fractional predicates in our novel unbounded logic.

In this section, we show that our unbounded logic can serve as a formal
foundation for fractional predicates in automated SL verifiers, since
it gives a meaning to the syntactic multiplication performed by these
verifiers, and justifies that fractions of the same predicate can be soundly
recombined (under some restrictions). Moreover, using the unbounded
logic as a formal foundation enables sound extensions of these verifiers,
for example to handle fractional magic wands (which, to our knowledge,
no verifier supports yet).

In Section 3.5.1, we define a syntactic multiplication over assertions, and
show that it is equivalent to the semantic one in the unbounded logic.
From this, we derive rules for fractional magic wands, which could easily
be automated in VerCors and Viper. We then define, in Section 3.5.2,
a simple syntactic restriction on recursive predicate definitions, which
ensures the existence of a least and a greatest fixed point. This allows
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𝜋 ⊙ (𝐴 ∗ 𝐵) ≜ (𝜋 ⊙ 𝐴) ∗ (𝜋 ⊙ 𝐵)
𝜋 ⊙ (𝐴 −∗ 𝐵) ≜ (𝜋 ⊙ 𝐴) −∗ (𝜋 ⊙ 𝐵)
𝜋 ⊙ (𝛼 · 𝐴) ≜ (𝜋 ∗ 𝛼) ⊙ 𝐴

𝜋 ⊙ (𝜀 · 𝐴) ≜ 𝜀 · 𝐴
𝜋 ⊙ (𝐴⇒ 𝐵) ≜ (𝜋 ⊙ 𝐴) ⇒ (𝜋 ⊙ 𝐵)

𝜋 ⊙ (𝐴 ∧ 𝐵) ≜ (𝜋 ⊙ 𝐴) ∧ (𝜋 ⊙ 𝐵)
𝜋 ⊙ (𝐴 ∨ 𝐵) ≜ (𝜋 ⊙ 𝐴) ∨ (𝜋 ⊙ 𝐵)
𝜋 ⊙ (∃𝑥. 𝐴) ≜ ∃𝑥. (𝜋 ⊙ 𝐴)
𝜋 ⊙ (∀𝑥. 𝐴) ≜ ∀𝑥. (𝜋 ⊙ 𝐴)
𝜋 ⊙ 𝐴 ≜ 𝜋 · 𝐴 (otherwise)

Figure 3.6.: Definition of the syntactic
multiplication over assertions.

Fold
correctRec⊤(𝐴)

𝜋 ⊙ 𝐴 |=
FP(𝐴) 𝜋 · P

Unfold
correctRec⊤(𝐴)

𝜋 · P |=
FP(𝐴) 𝜋 ⊙ 𝐴

CombineFractions
comb(𝐴) correctRec⊤(𝐴)
𝛼 · P ∗ 𝛽 · P |=

FP(𝐴) (𝛼 + 𝛽) · P

PackageWand
𝐹 ∗ (𝜋 ⊙ 𝐴) |=Δ 𝜋 ⊙ 𝐵

𝐹 |=Δ 𝜋 · (𝐴 −∗ 𝐵)

ApplyWand
(𝜋 ⊙ 𝐴) ∗ 𝜋 · (𝐴 −∗ 𝐵) |=Δ 𝜋 ⊙ 𝐵

Figure 3.7.: Rules for automated SL veri-
fiers. The rules Fold, Unfold, and Com-
bineFractions, justify what existing ver-
ifiers do. The rules PackageWand and
ApplyWand show how existing verifiers
could be extended to support fractional

magic wands.
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Verifier

us to derive fold and unfold rules for fractional predicates, based on
the syntactic multiplication, which formally justifies what VerCors,
VeriFast, and Viper actually do. Finally, we define, in Section 3.5.3, a
syntactic restriction on the definition of a predicate, which ensures that
this predicate is combinable, using the results from Section 3.3 and
Section 3.4.

3.5.1. Syntactic Multiplication and Fractional Magic
Wands

Figure 3.6 shows the definition of the syntactic multiplication over
assertions, which we write 𝜋 ⊙ 𝐴 for a scalar 𝜋 and an assertion 𝐴.
The idea of this syntactic multiplication, which corresponds to what
the three verifiers do, is straightforward: We push the multiplication
inside, until we reach semantic assertions Bor predicate P. The following
theorem follows from the distributivity and factorization rules shown in
Figure 3.4.

Theorem 3.5.1 Equivalence of the syntactic and semantic multiplication
in the unbounded logic.
In the unbounded logic, 𝜋 · 𝐴 ≡Δ 𝜋 ⊙ 𝐴.

This result justifies the syntactic multiplication performed by the verifiers.
Moreover, it can also be leveraged to improve the support for magic
wands in automated SL verifiers. Both VerCors and Viper support magic
wands [78, 79], via two operations package and apply, as we will see in
Chapter 4. Packaging a wand𝐴−∗𝐵 amounts to exchanging resources that
satisfy the wand with an instance of the wand. Applying a wand 𝐴 −∗ 𝐵
boils down to giving up an instance of the wand 𝐴 −∗ 𝐵 and resources
that satisfy 𝐴, in exchange for resources that satisfy 𝐵. However, neither
VerCors nor Viper support packaging and applying fractions of wands.
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correctRec𝑏(B) ≜ ⊤
correctRec𝑏(𝐴 ∗ 𝐵) ≜ correctRec(𝐴) ∧ correctRec𝑏(𝐵)
correctRec𝑏(𝐴 −∗ 𝐵) ≜ correctRec¬𝑏(𝐴) ∧ correctRec𝑏(𝐵)
correctRec𝑏(𝜋 · 𝐴) ≜ correctRec𝑏(𝐴)
correctRec𝑏(𝜀 · 𝐴) ≜ correctRec𝑏(𝐴)
correctRec𝑏(𝐴⇒ 𝐵) ≜ correctRec¬𝑏(𝐴) ∧ correctRec𝑏(𝐵)
correctRec𝑏(𝐴 ∧ 𝐵) ≜ correctRec𝑏(𝐴) ∧ correctRec𝑏(𝐵)
correctRec𝑏(𝐴 ∨ 𝐵) ≜ correctRec𝑏(𝐴) ∧ correctRec𝑏(𝐵)
correctRec𝑏(∃𝑥. 𝐴) ≜ correctRec𝑏(𝐴)
correctRec𝑏(∀𝑥. 𝐴) ≜ correctRec𝑏(𝐴)
correctRec𝑏(P) ≜ 𝑏

correctRec𝑏(⌈𝐴⌉) ≜ correctRec𝑏(𝐴)

comb(B) ≜ B is combinable
comb(𝐴 ∗ 𝐵) ≜ comb(𝐴) ∧ comb(𝐵)
comb(𝐴 −∗ 𝐵) ≜ comb(𝐵)
comb(𝜋 · 𝐴) ≜ comb(𝐴)
comb(𝜀 · 𝐴) ≜ comb(𝐴)
comb(𝐴⇒ 𝐵) ≜ pure(𝐴) ∧ comb(𝐵)
comb(𝐴 ∧ 𝐵) ≜ comb(𝐴) ∧ comb(𝐵)
comb(𝐴 ∨ 𝐵) ≜ (comb(𝐴) ∧ pure(𝐵)) ∨ (pure(𝐴) ∧ comb(𝐵))
comb(∃𝑥. 𝐴) ≜ comb(𝐴) ∧ unambiguous(𝐴, 𝑥)
comb(∀𝑥. 𝐴) ≜ comb(𝐴)
comb(P) ≜ ⊤
comb(⌈𝐴⌉) ≜ ⊥

Figure 3.8.: Syntactic conditions to ensure the existence of a least and greatest fixed point (on the left), and to ensure that an assertion is
combinable (on the right). Intuitively, correctRec⊤(𝐴) (resp. correctRec⊥(𝐴)) holds iff recursive calls (i.e., P in 𝐴) appear in positive (resp.
negative) positions.

19: Viper used to allow magic wands in-
side predicate definitions in both positive
and negative positions, but this is now
disallowed due to early findings of this
work, namely the fact that magic wands
are not combinable in the bounded logic.

The rules PackageWand and ApplyWand presented in Figure 3.7 show
how existing verifiers could be extended to support fractional magic

wands.

Proposition 3.5.2 Rules for applying and packaging fractional wands.
The rules PackageWand and ApplyWand from Figure 3.7 are sound in the

unbounded logic.

The rule PackageWand states that it is sound to give up the resources
specified by 𝐹, which satisfy 𝜋 ⊙ 𝐵 when combined with 𝜋 ⊙ 𝐴, in
exchange for a fraction 𝜋 of the wand 𝐴 −∗ 𝐵. On the other hand, the rule
ApplyWand states that it is sound to give up a fraction 𝜋 of a wand 𝐴 −∗ 𝐵
and resources that satisfy 𝜋 ⊙ 𝐴, in exchange for resources that satisfy
𝜋 ⊙ 𝐵. Since these two rules rely on the syntactic multiplication, they
could be easily added to VerCors and Viper, which have algorithms to
compute 𝐹, as we discuss in the next chapter.

3.5.2. Folding and Unfolding Fractions of
Recursively-Defined Predicates

To formally justify the way VeriFast, VerCors, and Viper handle recursively-
defined predicates, we need to ensure the existence of a fixed point for all
predicate definitions accepted by these tools. Indeed, the three verifiers
assume that an instance of a recursively-defined predicate is a fixed-point
of its recursive definition. All three verifiers enforce recursive calls to
appear in positive positions when 𝐴 is a recursive predicate definition,
since (1) none supports implications whose left-hand side are not pure
(i.e., specify resources, including predicate instances), and (2) VerCors
and Viper19 do not allow magic wands inside predicate definitions; again,
our work presents foundations for extending this support.

We write correctRec⊤(𝐴) iff recursive calls to P in 𝐴 happen in positive
positions only. The formal definition of correctRec⊤ is shown on the left of
Figure 3.8. To avoid duplicating rules, we write FP to refer indiscriminately
to either LFP or GFP. We have proved in Isabelle/HOL the following
lemma:
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20: Note that, unlike existing verifiers,
we do not forbid disjunctions as long
as one of the two disjuncts is pure. Our
version is however not more expressive,
as any disjunction with a pure disjunct
can be rewritten as an implication with a
pure left-hand side, by negating the pure
disjunct.

Lemma 3.5.3 Correct fixed point interpretation.
If correctRec⊤(𝐴) holds, then ∀𝜎, 𝑠. 𝜎, 𝑠 , FP( 𝑓𝐴) |= 𝐴⇐⇒ 𝜎 ∈ FP( 𝑓𝐴)(𝑠).

Combining this result with Theorem 3.5.1, we can now prove the following
result, which justifies the way VerCors, VeriFast, and Viper handle
folding and unfolding fractions of predicates:

Proposition 3.5.4 Rules for folding and unfolding fractional predicates.
The rules Fold and Unfold from Figure 3.7 are sound in the unbounded logic.

The rule Fold allows one to give up resources that satisfy 𝜋 ⊙ 𝐴 in
exchange for a fraction 𝜋 of the predicate instance P, which is defined
(co)inductively by the equation P = 𝐴. The rule Unfold permits the
reverse operation: to exchange a fraction 𝜋 of the predicate instance P
with resources that satisfy 𝜋 ⊙ 𝐴.

3.5.3. Combinability

Finally, we want to leverage results from Section 3.3 and Section 3.4 to
prove that the rules used by VerCors, VeriFast, and Viper to combine
fractions of predicates are valid in the unbounded logic. Both VerCors
and Viper automatically combine fractions of the same predicate in-
stance, which is currently sound (1) because of their restricted assertion
languages and (2) because they forbid magic wands inside predicate
definitions. Indeed, VerCors and Viper allow disjunctions, existentially-
quantified assertions, and negations only of pure assertions. As explained
in Section 3.3, the magic wand interpreted in the bounded logic is not
combinable in general, and thus allowing wands inside predicate defi-
nitions and combining fractions of such a predicate instance would be
unsound. Note that restriction (2) could be removed by interpreting
wands in the unbounded logic.

In contrast, it is possible to write VeriFast predicates that are not combin-
able, e.g., using existential quantifiers. VeriFast thus performs a syntactic
analysis on a predicate definition to detect whether this predicate is com-
binable, and, if it is, VeriFast emits a lemma that permits combining two
fractions of this predicate, which is formally justified by our unbounded
logic.

To formally justify the behaviors of the three verifiers, we define in
Figure 3.8 (on the right) a syntactic condition for an assertion 𝐴, comb(𝐴),
which ensures that the assertion 𝐴 is combinable. The predicate comb

forbids semantic assertions that are not combinable, as well as implica-
tions with an impure left-hand side.20 Moreover, unambiguous(𝐴, 𝑥) can
be conservatively checked syntactically, using the fact that ∃𝑣. x.f ↦→ 𝑣

is trivially unambiguous in 𝑣, and the entailment unambiguous(𝐴, 𝑥) =⇒
unambiguous(𝐴∗𝐵, 𝑥) for all𝐴, 𝐵, and 𝑥. This is, in essence, what VeriFast
does.

Finally, note that comb(P) always holds. This way, we can leverage the
induction principle from Section 3.4 (Theorem 3.4.3) to prove that pred-
icates (co)inductively-defined with the recursive equation P = 𝐴 such
that comb(𝐴) holds are combinable. In particular, we have proven in
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Isabelle/HOL the following result, which is used by the three verifiers in
some form:

Proposition 3.5.5 Rule for combining fractions of the same predicates.
The rule CombineFractions from Figure 3.7 is sound in the unbounded logic.

3.6. Examples

The example from Figure 3.1 is one illustration of the power and the
simplicity of the unbounded logic; with our logic such direct concurrent-
separation-logic proofs just work, without additional connectives and with
essentially no restriction on the assertions involved in the specifications.
The entailments inside the two parallel branches are justified by the
rules Unfold and Fold, and the last entailment (𝜋2 · tree(𝑥) ∗ 𝜋

2 · tree(𝑥)
entails 𝜋 · tree(𝑥)) is justified by the rule Combinability (since the recursive
definition of tree(𝑥) satisfies the syntactic condition comb defined in
Figure 3.8).

In this section, we further illustrate the flexibility and the simplicity
of the unbounded logic on two additional examples. The first example
motivates the need for factorizability for the magic wand, while the
second example, taken from Brotherston et al. [84], shows that the
unbounded logic provides an easy and intuitive way to reason about
cross-thread data transfer.

3.6.1. Concurrently Reading a Subtree and a Tree

Consider the concurrent method readBoth in Figure 3.9, which takes as
input a reference x and an integer key. In this simple example, we start
with a fraction 𝜋 of a tree rooted in x. We then sequentially look for a
subtree of x that matches key, using the method find, where find is
specified as follows [84, 182]

{𝛼 · tree(𝑥)} find(x, key) {𝜆𝑦. 𝛼 · (tree(𝑦) ∗ (tree(𝑦) −∗ tree(𝑥)))}

method readBoth(x: Ref, key: Int) {
{𝜋 · tree(𝑥)}
s := find(x, key)
{𝜋 · (tree(𝑠) ∗ (tree(𝑠) −∗ tree(𝑥)))}
{ 𝜋

2 · (tree(𝑠) ∗ (tree(𝑠) −∗ tree(𝑥))) ∗ 𝜋
2 · (tree(𝑠) ∗ (tree(𝑠) −∗ tree(𝑥)))}

{ 𝜋
2 · (tree(𝑠) ∗ (tree(𝑠) −∗ tree(𝑥)))} { 𝜋

2 · (tree(𝑠) ∗ (tree(𝑠) −∗ tree(𝑥)))}
{ 𝜋

2 · tree(𝑠) ∗ 𝜋
2 · (tree(𝑠) −∗ tree(𝑥))} { 𝜋

2 · tree(𝑠) ∗ 𝜋
2 · (tree(𝑠) −∗ tree(𝑥))}

readTree(𝑠) readTree(𝑠)

{ 𝜋
2 · tree(𝑠) ∗ 𝜋

2 · (tree(𝑠) −∗ tree(𝑥))} { 𝜋
2 · tree(𝑠) ∗ 𝜋

2 · (tree(𝑠) −∗ tree(𝑥))}
{ 𝜋

2 · tree(𝑥)} { 𝜋
2 · tree(𝑥)}

readTree(x) readTree(x)

{ 𝜋
2 · tree(𝑥)} { 𝜋

2 · tree(𝑥)}

{ 𝜋
2 · tree(𝑥) ∗ 𝜋

2 · tree(𝑥)}
{𝜋 · tree(𝑥)}

}

Figure 3.9.: A simple concurrent program that looks for a subtree of x that matches key, and then concurrently reads from both the tree
rooted in x and in the subtree.
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where 𝑦 is bound to the return variable. tree(𝑦) −∗ tree(𝑥) intuitively
expresses the ownership of all nodes of tree(𝑥), except the nodes from its
subtree tree(𝑦). Combined with the subtree tree(𝑦), this magic wand gives
us a simple way to get back the ownership of the entire tree, tree(𝑥).

Method readBoth then forks two threads, and each thread performs
some action that first requires read access to the subtree s, and then
read access to the whole tree x. Thus, the method readTree requires
some fractional ownership of the tree it reads, i.e., it is specified as
{𝛼 · tree(𝑦)} readTree(y) {𝛼 · tree(𝑦)}. In this specification, 𝛼 can be
thought of as a ghost parameter; the method can be called for any
(non-zero) fractional amount 𝛼. Finally, method readBoth joins the two
threads, and returns the fractional ownership of tree(𝑥) it started with.

Proving that method readBoth satisfies its specification is straightforward
in our unbounded logic. After the call to find, we split the fraction 𝜋 of
tree(𝑠) ∗ (tree(𝑠) −∗ tree(𝑥)) into two fractions 𝜋

2 , and we give one fraction
to each thread, using the rule Parallel. In each thread, we then distribute
the fraction 𝜋

2 over the star, to justify the call readTree(s).

After this call, we need to justify that we can read the tree rooted in
x, which we achieve by first distributing the fraction

𝜋
2 over the wand

tree(𝑠) −∗ tree(𝑥), and then by applying the wand. Crucially, note that this
step is invalid in the bounded logic, since the distributivity property does
not hold for the wand! Moreover, this step would also be invalid with
the weak or the strong wand from Brotherston et al. [84], and even if we
used the binary tree share model from Le and Hobor [83]. Finally, since
we (syntactically) know that tree(𝑥) is combinable, we recombine the two
fractions 𝜋

2 of tree(𝑥) after the threads have finished executing, which
concludes the proof.

3.6.2. Cross-thread Data Transfer

We also illustrate our unbounded logic on an example from Brotherston
et al. [84], which involves message-passing concurrency, with simplified
Hoare rules [183–186]: Given a channel 𝑐, a message number 𝑖, and an
associated message invariant 𝑅𝑐

𝑖
, the rule to send message 𝑖 via channel

𝑐 is {𝑅𝑐
𝑖
(𝑥)} send(c, x) {emp}, whereas the rule to receive this message

is {emp} y := receive(c) {𝑅𝑐
𝑖
(𝑦)}.

The method transfer first creates a binary tree by calling the method
makeTree(), and then forks two threads. The first thread calls the same
method find as in the previous example, to find a subtree rooted in s

that matches the key, and sends the reference s to the second thread via
the channel ch. The second thread receives reference s, and then modifies
the tree rooted in s by calling modify, which thus requires exclusive
ownership of the tree rooted in s. After the modification, the second
thread notifies the first one, and both terminate. Finally, the tree rooted
in x is deleted (alternatively, full access could be returned, but this code
is from Brotherston et al. [84]).

To verify method transfer, we need to transmit from the first to the
second thread the knowledge that s is a node that belongs to the tree
rooted in x. It is standard to express such information about heap values
by adding a second parameter to the predicate tree, representing a
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method transfer(key: Int) {
{emp}
x := makeTree()
{tree(𝑥, 𝜏𝑥)}
{ 1

2 · tree(𝑥, 𝜏𝑥) ∗ 1
2 · tree(𝑥, 𝜏𝑥)}

{ 1
2 · tree(𝑥, 𝜏𝑥)} { 1

2 · tree(𝑥, 𝜏𝑥)}
s := find(x, key)

{ 1
2 · (tree(𝑠, 𝜏𝑠 ) ∗ (tree(𝑠, 𝜏𝑠 ) −∗ tree(𝑥, 𝜏𝑥))) ∗ sub(𝑠, 𝜏𝑥)}

{( 1
2 · tree(𝑠, 𝜏𝑠 ) ∗ sub(𝑠, 𝜏𝑥)) ∗ 1

2 · (tree(𝑠, 𝜏𝑠 ) −∗ tree(𝑥, 𝜏𝑥))} { 1
2 · tree(𝑥, 𝜏𝑥)}

send(ch, s) s := receive(ch)

{ 1
2 · (tree(𝑠, 𝜏𝑠 ) −∗ tree(𝑥, 𝜏𝑥))} {( 1

2 · tree(𝑠, 𝜏𝑠 ) ∗ sub(𝑠, 𝜏𝑥)) ∗ 1
2 · tree(𝑥, 𝜏𝑥)}

{tree(𝑠, 𝜏𝑠 ) ∗ ( 1
2 · tree(𝑠, 𝜏𝑠 ) −∗ 1

2 · tree(𝑥, 𝜏𝑥))}
modify(s)

{tree(𝑠, 𝜏𝑠 ) ∗ ( 1
2 · tree(𝑠, 𝜏𝑠 ) −∗ 1

2 · tree(𝑥, 𝜏𝑥))}
{ 1

2 · (tree(𝑠, 𝜏𝑠 ) −∗ tree(𝑥, 𝜏𝑥))} { 1
2 · tree(𝑠, 𝜏𝑠 ) ∗ 1

2 · tree(𝑥, 𝜏𝑥)}
receive(ch) send(ch, ())

{ 1
2 · tree(𝑠, 𝜏𝑠 ) ∗ 1

2 · (tree(𝑠, 𝜏𝑠 ) −∗ tree(𝑥, 𝜏𝑥))} { 1
2 · tree(𝑥, 𝜏𝑥)}

{ 1
2 · tree(𝑥, 𝜏𝑥)} { 1

2 · tree(𝑥, 𝜏𝑥)}

{ 1
2 · tree(𝑥, 𝜏𝑥) ∗ 1

2 · tree(𝑥, 𝜏𝑥)}
{tree(𝑥, 𝜏𝑥)}
deleteTree(x)
{emp}

}

Figure 3.10.: Cross-thread data transfer from Brotherston et al. [84]. find is specified as in the previous example. modify(s) requires
exclusive ownership of the tree rooted in s. The first message invariant is 0.5 · tree(𝑠, 𝜏𝑠 ) ∗ sub(𝑠, 𝜏𝑥), and the second message invariant is
0.5 · tree(𝑠, 𝜏𝑠 ).

[84]: Brotherston et al. (2020), Reasoning

over Permissions Regions in Concurrent Sep-

aration Logic

mathematical abstraction of the tree structure; for a tree rooted at x, we
will write 𝜏𝑥 for the corresponding mathematical tree. We require our
tree abstraction to include the reference identities of each node. The pure
function sub(𝑠, 𝜏𝑥), which is then easy to write inductively over these
mathematical trees, expresses that the reference s belongs to the tree
𝜏𝑥 .

The second thread needs this piece of knowledge to prove that 1
2 ·tree(𝑥, 𝜏𝑥)

can be decomposed into 1
2 · tree(𝑠, 𝜏𝑠)∗( 1

2 · tree(𝑠, 𝜏𝑠)−∗ 1
2 · tree(𝑥, 𝜏𝑥)) (using

a simple inductive lemma), in order to prove it has exclusive ownership of
tree(𝑠, 𝜏𝑠). Therefore, our first message invariant is 1

2 ·tree(𝑠, 𝜏𝑠)∗sub(𝑠, 𝜏𝑥).
After the second thread has received the first message, it can use the
aforementioned entailment to justify exclusive ownership of tree(𝑥, 𝜏𝑥),
and thus call modify. After this call, the second thread applies the magic
wand to get back half ownership of both tree(𝑥, 𝜏𝑥) and tree(𝑠, 𝜏𝑠), and it
sends 1

2 · tree(𝑠, 𝜏𝑠) via the channel; hence our second message invariant
is 1

2 · tree(𝑠, 𝜏𝑠). The first thread then receives 1
2 · tree(𝑠, 𝜏𝑠), and uses the

distributivity of the magic wand to get back half ownership of tree(𝑥, 𝜏𝑥).
Finally, the two threads terminate, and method transfer deletes the
tree.

Comparison. In contrast to the approach from Brotherston et al. [84],
our unbounded logic requires us to add a mathematical tree abstraction
to the predicate tree, transfer the knowledge that s points to a node
in 𝜏𝑥 , and prove a simple inductive lemma about tree decomposition.
These kinds of reasoning steps are standard in separation logic proofs
and required anyway to prove richer functional specifications such as
sortedness. Instead, Brotherston et al. use custom assertion labels and a
jump modality in their logic. The first thread transmits the information
that the tree rooted in x has not been modified since the beginning of the



3. Fractional Predicates 81

[81]: Boyland (2003), Checking Interference

with Fractional Permissions

[82]: Bornat et al. (2005), Permission Ac-

counting in Separation Logic

[82]: Bornat et al. (2005), Permission Ac-

counting in Separation Logic

[187]: Parkinson (2005), Local Reasoning

for Java

[86]: Dockins et al. (2009), A Fresh Look at

Separation Algebras and Share Accounting

[83]: Le et al. (2018), Logical Reasoning for

Disjoint Permissions

[84]: Brotherston et al. (2020), Reasoning

over Permissions Regions in Concurrent Sep-

aration Logic

[188]: Boyland (2010), Semantics of Frac-

tional Permissions with Nesting

[83]: Le et al. (2018), Logical Reasoning for

Disjoint Permissions

[84]: Brotherston et al. (2020), Reasoning

over Permissions Regions in Concurrent Sep-

aration Logic

method using the label 𝑙0 introduced in the precondition of transfer,
via the following invariant for the first message:

0.5 · (𝑙1 ∧ tree(𝑠)) ∧
(
@0.5
𝑙0

0.5 · ((𝑙1 ∧ tree(𝑠)) ⃝∗ (𝑙2 ∧ (tree(𝑠) −⃝∗ tree(𝑥))))
)

The left conjunct specifies half of the ownership of the tree rooted in s,
while the right conjunct contains some knowledge about the initial heap
(labelled with 𝑙0).

Our unbounded logic has the advantage that the message invariants
are more concise and do not require non-standard connectives in spec-
ifications; our first message invariant is 1

2 · tree(𝑠, 𝜏𝑠) ∗ sub(𝑠, 𝜏𝑥). This
advantage is even better illustrated with the second message invariant,
which they specify as

0.5 · (𝑙0 ∧ tree(𝑠)) ∧ 𝑙2 ⊥ 𝑙3 ∧
(
@0.5
𝑙2

0.5 · ((𝑙3 ∧ tree(𝑠)) −⃝∗ (𝑙4 ∧ tree(𝑥)))
)

where 𝑙2 ⊥ 𝑙3 is another clever but non-standard construct which ex-
presses that the heaps represented by 𝑙2 and 𝑙3 are disjoint. By contrast,
our second message invariant is simply 1

2 · tree(𝑠, 𝜏𝑠).

3.7. Related Work

Multiplication with permissions. SL has been extended with different
permission models, including fractional permissions [81, 82], counting
permissions [82], named permissions [187], and binary tree shares [86].
Although these interoperate well with simple points-to predicates, when
considering general fractional predicates, none of them provides the key
properties of distributivity, factorizability and combinability. Some of the
weaknesses have been previously identified [83, 84], but as we discuss in
detail in Section 3.1.3 and Section 3.6.2, the alternatives presented there
introduce new complexities to specifications without providing these
three properties for their logics in general.

More-general fractional ownership was (to our knowledge) first explored
by Boyland [188], who defines the concept of nesting. Nesting enables a
heap location 𝑙 to own some fraction 𝜋 of a resource 𝐴; owning a fraction
𝛼 of the location 𝑙 then results in owning a fraction 𝛼 · 𝜋 of 𝐴. Moreover,
Boyland permits fractions above 1 in intermediate fractional heaps to get
the useful equality 𝜎 = 𝜋 ⊗ ( 1

𝜋 ⊗ 𝜎). However, his work is fundamentally
incompatible with SL, because nesting is a static notion in the type system,
and because logical and SL connectives such as negations, disjunctions,
unrestricted existentials, and magic wands interpreted in the usual way
would lead to unsoundness in his framework.

Combinability. As explained in Section 3.1.3, Le and Hobor [83] handle
combinability indirectly via preciseness. However, as explained in Sec-
tion 3.3, preciseness is too restrictive and, for example, does not capture
wildcard assertions. Brotherston et al. [84] add labels and jump modalities
to the assertion language, which solves the issue of combinability when
it can be proven that the two fractions of a resource have the same origin.
However, these additional features substantially complicate proofs in the
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logic. By contrast, our approach provides simple syntactic rules to prove
that an assertion is combinable.

Restricted definitions of magic wands. Boyland [188] defines a connec-
tive −+, which is a syntactic connective similar to the magic wand, and
which satisfies the analogous combinable property. However, the connec-
tive −+ is much more restricted than a magic wand: e.g., (𝑎 = 𝑏)−+(𝑏 = 𝑎)
cannot be proven. Chang and Rival [189] also define a restricted version
𝐴 =∗ 𝐵 of the magic wand, which is defined inductively and where 𝐴
and 𝐵 must be inductive predicates. Intuitively, 𝐴 =∗ 𝐵 holds in a state
𝜎 if one can obtain 𝐴 via a finite unfolding of predicate instances in 𝐵
such that resources other than 𝐴 obtained via the unfolding hold in 𝜎.
This restricted wand may satisfy combinability in general (although we
have not proved this), but is not as expressive as the general magic wand
supported by our work, in particular for expressing arbitrary method
contracts.

Fixed points. Le and Hobor [83] provide an induction principle for
heaps with fractional permissions, based on the well-founded order
of heaps that decrease by at least a fixed positive permission amount.
This induction principle is strictly weaker than the one we present in
Section 3.4, since the latter can deal, for example, with recursive predicate
instances on the right-hand side of magic wands or wildcard assertions
(which may represent arbitrary small permission amounts). Moreover,
Section 3.5 shows how to leverage our induction principle to ensure
combinability from a simple syntactic condition.

To give a semantics to abstract predicates, Parkinson and Bierman [190]
indirectly construct a semantic predicate environment from an abstract
one, by generating a fixed point for a function step. As in Section 3.4, it
turns out that this step function is monotonic but not Scott-continuous,
and thus Kleene’s fixed-point theorem cannot be applied.

Step-indexing [191] ensures the monotonicity of recursive definitions
by guarding recursive calls with a later modality, which is useful for
example to deal with recursive types [192]. Step-indexing has been
integrated into SL to reason about impredicative protocols [193], and is
at the core of Iris [31], a framework for higher-order concurrent SL. It
would be interesting to explore how multiplication and the paradigm
of unbounded logic presented here can be integrated into a framework
such as Iris.
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There was a lot more to magic, as Harry quickly

found out, than waving your wand and saying a

few funny words.

J.K. Rowling,
Harry Potter and the Philosopher’s Stone

“We. The scientists. The line of Francis Bacon and the blood of the Enlightenment.

Muggles didn’t just sit around crying about not having wands, we have our own

powers now, with or without magic. If all your powers fail then we will all have lost

something very precious, because your magic is the only hint we have as to how the

universe must really work - but you won’t be left scratching at the ground. Your

houses will still be cool in summer and warm in winter, there will still be doctors and

medicine. Science can keep you alive if magic fails. It’d be a tragedy, but not literally

the end of all the light in the world. Just saying.”

Draco had backed up several feet and his face was full of mixed fear and disbelief.

“What in the name of Merlin are you talking about, Potter?”

Eliezer Yudkowsky,
Harry Potter and the Methods of Rationality

The previous chapter introduced a syntax for SL assertions as supported
by existing verifiers, along with a novel semantics that justifies the
soundness of the rules these verifiers use for fractional predicates.

In this chapter, we focus on the magic wand connective −∗ (also known as
separating implication), and its treatment in existing verifiers. We show
that, before our work, all support for magic wands in automated verifiers
was either manual or unsound. To address this, we introduce a novel
formal foundation for automating magic wands, called package logic. This
logic captures the broad design space of sound verification algorithms
for magic wands, and serves as the basis for our implementation of a
sound and automated verification algorithm for magic wands in Viper.

4.1. Introduction

Intuitively, a magic wand 𝐴 −∗ 𝐵 can be used to express the difference
between the heap locations that 𝐵 and 𝐴 provide permission to access.
The magic wand is useful, for instance, to specify partial data structures,
where 𝐵 specifies the entire data structure and 𝐴 specifies a part that is
missing [173, 174]. As we saw in the previous chapter (Figure 3.3), the
wand 𝐴 −∗ 𝐵 holds in a state 𝜎𝑤 , if and only if for any program state 𝜎𝐴
in which 𝐴 holds and that is compatible with 𝜎𝑤 , 𝐵 holds in the state
obtained by combining the heaps of 𝜎𝐴 and 𝜎𝑤 . Thus, if 𝐴 ∗ (𝐴−∗𝐵) holds
in a state, then so does 𝐵, analogously to the modus ponens inference rule
in propositional logic.
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The magic wand has been shown to enable or greatly simplify proofs in
many different cases [59, 173–176, 182, 194, 195]. For instance, Yang [194]
uses the magic wand to prove the correctness of the Schorr-Waite graph
marking algorithm. Dodds et al. [195] employ the wand to specify syn-
chronization barriers for deterministic parallelism. Examples using magic
wands to specify partial data structures include tracking ongoing traver-
sals of a data structure [173, 174], where the left-hand side of the wand
specifies the part of the data structure yet to be traversed, or for specify-
ing protocols that enforce orderly modification of data structures [175–
177] (e.g., the protocol governing Java iterators). More recently, wands
have been used for formal reasoning about borrowed references in the
Rust programming language, which employs an ownership type sys-
tem to ensure memory safety [59]. Magic wands concisely represent
the remainder of a data structure from which a borrowed reference was
taken, as well as reflecting back modifications to the part accessible via
the reference. Consider for example a struct Point (represented by a
SL predicate Point) with two fields x and y of type i32 (represented
by the SL predicate i32). A Rust method that takes as input a Point p
and returns a borrow of its field x is specified with the postcondition
int32(x) ∗ (int32(x) −∗ Point(p)), thus enabling the caller to regain
ownership of the entire data structure Point(p).

Given the usefulness of magic wands, it is important for automated SL
verifiers to provide automatic support for wands. However, reasoning
about a magic wand requires reasoning about all states in which the
left-hand side holds, which is challenging. It has been shown that a
separation logic even without the separating conjunction (but with the
magic wand) is as expressive as a variant of second-order logic and, thus,
undecidable [196].

Two different approaches [78, 79] that provide partially-automated sup-
port are implemented in the verifiers Viper [16] and VerCors [57].1
However, the approach implemented in VerCors [78] incurs significant
annotation overhead, and the approach in Viper [79] suffers from a
fundamental, previously undiscovered flaw that renders the approach
unsound. Both approaches require hints, in the form of user-provided
package operations to direct the verifier’s proof search. Packaging a wand
𝐴 −∗ 𝐵 expresses that the verifier should prove and subsequently record
𝐴 −∗ 𝐵. To package 𝐴 −∗ 𝐵 the verifier must split the current state into two
compatible states 𝜎′ and 𝜎𝑤 such that 𝐴 −∗ 𝐵 holds in 𝜎𝑤 . We call 𝜎𝑤 a
footprint of the wand. After successfully packaging a wand, the verifier
must disallow changes to 𝜎𝑤 to preserve the wand’s validity: the verifier
packages the footprint into the wand.

The key challenge for supporting magic wands in automated verifiers
is to define a package algorithm that packages a wand. In VerCors’s
package algorithm [78], a user must manually specify a footprint for
the wand and the algorithm checks whether the wand holds in the
specified footprint. This leads to a lot of annotation overhead. Viper’s
current package algorithm [79] reduces this overhead significantly by
automatically inferring a suitable footprint. Unfortunately, as we show
in this chapter, Viper’s current algorithm has a fundamental flaw that
causes the algorithm to infer an incorrect footprint in certain cases, which
may lead to unsound reasoning. We will explain the fundamental flaw
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in Section 4.2; it illustrates the subtlety of supporting this important
connective.

Approach and Contributions

In this chapter, we present a formal foundation for sound package
algorithms, and we implement a novel such algorithm based on these
foundations. Our algorithm requires the same annotation overhead
as the prior, flawed Viper algorithm, which is (to our knowledge) the
most automatic existing approach. We introduce a formal framework
expressed via a novel package logic that defines the design space for
package algorithms. The soundness of a package algorithm can be
justified by showing that the algorithm finds a proof in our package
logic. The design space for package algorithms is large since there are
various aspects that affect how one expresses the algorithm including
(1) which footprint an algorithm infers or checks (there are often multiple
options, as we show in Section 4.3), (2) the state model (which differs
between different SL verifiers), and (3) restricted definitions of wands
(for instance, to ensure each wand has a unique minimal footprint).
Our package logic deals with (1) by capturing all sound derivations for
the same wand. To deal with (2) and (3), our logic is parametric along
multiple dimensions. For instance, we only assume the state model to be
an IDF algebra (Definition 2.3.1).

Our logic also supports parameters to restrict the allowed footprints
for wands in systematic ways. Such restrictions are useful, for instance,
to ensure that magic wands are combinable (as defined in Section 3.3).
In this chapter, we introduce a novel restriction of magic wands that
ensures they are combinable,2 and we develop a corresponding second
package algorithm, again based on the formal framework provided by
our package logic.

We make the following contributions:

▶ We formalize a package logic that can be used as a basis for a wide
range of package algorithms (Section 4.3). The logic has multiple
parameters including: an IDF algebra (Definition 2.3.1) to model
the states and a parameter to restrict the definition of a wand in a
systematic way. We formally prove the logic sound and complete
for any instantiation of the parameters in Isabelle/HOL. [132]

▶ We develop a novel, restricted definition of a wand (Section 4.4),
prove in Isabelle/HOL that this wand is combinable [133]3, and
show how the generalized version of our package logic can be used
to package combinable wands.

▶ We implement sound package algorithms for both the standard
and the combinable wand in the Viper verifier and justify their
soundness directly via our package logic (Section 4.5). We evaluate
both algorithms on the Viper test suite. Our evaluation shows
that (1) our algorithms perform similarly well to prior work and
correctly reject examples where prior work is unsound, and (2)
our combinable wand definition is expressive enough for most
examples.

Our Isabelle formalization and the implementation of our new package
algorithm are publicly available [132–134].
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1 method leftLeaf(x: Ref) returns (y: Ref)
2 requires tree(x)
3 ensures tree(x)
4 {
5 y := x
6 package tree(x) −∗ tree(x)
7 while (y.left != null)
8 invariant tree(y) ∗ (tree(y) −∗ tree(x))
9 {

10 y := y.left
11 package tree(y) −∗ tree(x)
12 // { hints for package}
13 }
14 apply tree(y) −∗ tree(x)
15 }

Figure 4.1.: A simple example of a
tree traversal using wands. The code
on the left finds the leftmost leaf of
a binary tree and includes specifica-
tions to prove memory safety. The pred-
icate tree(𝑥) is defined inductively as
acc(𝑥.val) ∗ acc(𝑥.left) ∗ acc(𝑥.right) ∗
(𝑥.left ≠ null ⇒ tree(𝑥.left)) ∗ (𝑥.right ≠

null ⇒ tree(𝑥.right)).The loop invariant
uses a wand to summarize the permis-
sions of the input tree excluding the tree
not yet traversed. The blue operations
are ghost operations to guide the verifier;
we omit those specific to predicates. The
package requires further hints in exist-
ing approaches, which we present in the
extended version of this chapter [198].
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4.2. Motivation

4.2.1. A Typical Example Using Magic Wands

Figure 4.1 shows a simplified version of an example from the VerifyThis
competition [199]. The methodleftLeaf iteratively computes the leftmost
leaf of a binary tree (the package and apply operations, shown in
blue, will be explained in Section 4.2.2). The pre- and postconditions of
leftLeaf are both tree(𝑥), where tree(𝑥) is defined recursively as tree(𝑥) ≜
(acc(𝑥.val) ∗ acc(𝑥.left) ∗ acc(𝑥.right) ∗ (𝑥.left ≠ null ⇒ tree(𝑥.left)) ∗
(𝑥.right ≠ null ⇒ tree(𝑥.right))).4 Proving this specification amounts to
proving that leftLeaf is memory-safe and that the permissions to the
input tree are preserved, enabling further calls on the same tree, for
example to modify or delete the tree afterwards.

The key challenge when verifying leftLeaf is specifying an appropriate
loop invariant. The loop invariant must track the permissions to the
subtree rooted at y that still needs to be traversed, since otherwise
dereferencing y.left in the loop body is not allowed. Additionally,
the invariant must track all of the remaining permissions in the input
tree rooted at x (the permissions to the nodes already traversed and
others unreachable from y), since otherwise the postcondition cannot
be satisfied. The former can be easily expressed with tree(𝑦). The latter
can be elegantly achieved with a magic wand tree(𝑦) −∗ tree(𝑥). This wand
promises tree(𝑥) if one combines the wand with tree(𝑦). That is, the wand
represents (at least) the difference between the permissions making up
the two trees. Using SL’s modus-ponens-like inference rule ApplyWand
(directed by the apply operation on line 14, explained next), one can
show that the loop invariant entails the postcondition.

4.2.2. Wand Ghost Operations

Automated SL verifiers such as Gillian [30], VeriFast [15], VerCors,
and Viper generally represent permissions owned by a program state in
two ways: by recording predicate instances (such as tree(𝑥) in Figure 4.1)
and direct permissions to heap locations. Magic wand instances provide
a third way to represent permissions and are recorded analogously.
Verifiers that support them require two wand-specific ghost operations,
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which instruct the verifiers when to prove a wand and when to apply a
recorded wand instance using SL’s modus-ponens-like rule.

A package ghost operation, which corresponds to the rule PackageWand
from Section 3.5.1 with 𝜋 = 1, expresses that a verifier should prove a
new wand instance in the current state and report an error if the proof
attempt fails. To prove a new wand instance, the verifier must split the
current state into two states 𝜎′ and 𝜎𝑤 such that the wand holds in the
footprint state 𝜎𝑤 ; on success, permissions in the footprint are effectively
exchanged for the resulting magic wand instance. We call a procedure
that selects a footprint by splitting the current state a package algorithm.
On lines 6 and 11 of Figure 4.1, new wands are packaged to establish and
preserve the invariant, respectively.

The apply ghost operation, which corresponds to the modus-ponens-like
rule ApplyWand from Section 3.5.1 with 𝜋 = 1, applies a wand 𝐴 −∗ 𝐵 if the
verifier records a wand instance of 𝐴 −∗ 𝐵 and 𝐴 holds in the current
state (and otherwise fails), exchanging these for the assertion 𝐵. The
apply operation is directly justified by the wand’s semantics: Combining
a wand’s footprint with any state in which 𝐴 holds is guaranteed to yield
a state in which 𝐵 holds. For the apply operation on line 14 of Figure 4.1,
the verifier removes the applied wand instance and tree(𝑦), in exchange
for the predicate instance tree(𝑥).

4.2.3. The Footprint Inference Attempt (FIA)

Package algorithms differ in how a footprint for the specified magic wand
is selected. In VerCors [57], the user must manually provide the footprint
and the algorithm checks whether the specified footprint is correct. In
Viper’s current approach [79], a footprint is inferred. We explain and
compare to the latter approach since it is the more automatic of the two;
hereafter, we refer to its package algorithm as the Footprint Inference Attempt

(FIA). Inferring a correct footprint is challenging due to the complexity
of the wand connective. In particular, we have discovered that, in certain
cases, the FIA infers incorrect footprints, leading to unsound reasoning.5
The goal of this subsection is to understand the FIA’s key ideas, which
our solution will build on, and why it is unsound.

In general, there may be multiple valid footprints for a magic wand 𝐴−∗𝐵.
The FIA attempts to infer a footprint which is as close as possible to the
difference between the permissions required by 𝐵 and 𝐴, taking as few
permissions as possible while aiming for a footprint compatible with 𝐴
(so that the resulting wand can be later applied) [79]. That is, the FIA
includes only permissions in the footprint it infers that are specified by 𝐵
and not guaranteed by 𝐴.

For a wand 𝐴 −∗ 𝐵, the FIA constructs an arbitrary state 𝜎𝐴 that satisfies
𝐴 (representing 𝜎𝐴 symbolically). Then, the FIA tries to construct a state
𝜎𝐵 in which 𝐵 holds by taking permissions (and copying corresponding
heap values) from 𝜎𝐴 if possible and the current state otherwise. If
this algorithm succeeds, the (implicit) inferred footprint consists of the
permissions that were taken from the current state. The FIA constructs
𝜎𝐵 by iterating over the permissions and logical constraints in 𝐵. For
each permission, the FIA checks whether 𝜎𝐴 owns the permission. If so,
the FIA adds the permission to 𝜎𝐵 and removes the permission from 𝜎𝐴.
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Otherwise, the FIA removes the permission from the current state or
fails if the current state does not have the permission. For each logical
constraint, the FIA checks that the constraint holds in 𝜎𝐵 as constructed
so far.

Unsoundness of the FIA. We have discovered that for some wands
𝐴−∗ 𝐵, the FIA determines an incorrect footprint for the magic wand. This
unsoundness can arise when the FIA performs a case split on the content
of the arbitrary state 𝜎𝐴 satisfying 𝐴. In such situations, the FIA infers
a footprint for each case separately, making use of properties that hold
in that case. For certain wands, this leads to different footprints being
selected for each case, while none of the inferred footprints can be used
to justify 𝐵 in all cases, i.e., for all states 𝜎𝐴 that satisfy 𝐴. As a result, the
packaged wand does not hold in any of the inferred footprints, which
can make verification unsound, as we illustrate below.

Example 4.2.1 Example showing the unsoundness of the FIA.
The wand

𝑤 ≜ acc(𝑥. 𝑓 ) ∗ (𝑥. 𝑓 = 𝑦 ∨ 𝑥. 𝑓 = 𝑧) −∗ acc(𝑥. 𝑓 ) ∗ acc(𝑥. 𝑓 .𝑔)

illustrates the problem. For this wand, every state 𝜎𝐴 satisfying the left-
hand side must have permission to x.f, and x.f must either point to y

or z. If x.f points to y in 𝜎𝐴, then to justify the right-hand side’s second
conjunct, the footprint must contain permission to y.g. Analogously,
if x.f points to z in 𝜎𝐴, then the footprint must contain permission to
z.g. The wand’s semantics requires a footprint to justify the wand’s
right-hand side for all states in which the left-hand side holds, and
thus, a correct footprint must be able to justify both cases. Hence, the
footprint must have permission to both y.g and z.g. However, the FIA’s
inferred footprint is in effect the disjunction of these two permissions.

Packaging the above wand𝑤 using the FIA leads to unsound reasoning.
After the incorrect package described above in a state with permission
to x.f, y.g, and z.g, the assertion acc(𝑥. 𝑓 ) ∗ (acc(𝑦.𝑔) ∨ acc(𝑧.𝑔)) ∗𝑤
can be proved since the FIA removes permission to either y.g or z.g
from the current state, but not both. However, this assertion does
not actually hold! According to the semantics of wands, 𝑤’s footprint
must include permission to x.f or permission to both y.g and z.g,
which implies that the assertion acc(𝑥. 𝑓 ) ∗ (acc(𝑦.𝑔) ∨ acc(𝑧.𝑔)) ∗ 𝑤
is equivalent to false.

The unsoundness of the FIA shows the subtlety and challenge of devel-
oping sound package algorithms. Algorithms that soundly infer a single
footprint for all states in which the wand’s left-hand side holds must be
more involved than the FIA. Ensuring their soundness requires a formal

framework to construct them and justify their correctness. We introduce
such a framework in the next section.
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4.3. Specialized Package Logic

In this section and the next, we present a new logical framework that
defines the design space for (sound) package algorithms. The core of this
framework is our package logic, which defines the space of potential algo-
rithmic choices of a footprint for a particular magic wand. Successfully
packaging a wand in a given state is (as we will show) equivalent to find-
ing a derivation in our package logic, and any sound package algorithm
must correspond to a proof search in our logic. In particular, we provide
soundness (Theorem 4.3.1) and completeness (Theorem 4.3.2) results for
our logic. We define a specific package algorithm with this logic at its
foundation, inspired by the FIA package algorithm [79] (described in
Section 4.2.3) but amending its unsoundness, resulting in (to the best
of our knowledge) the first sound and automated package algorithm.
This section focuses on the package logic specialized for the standard
semantics of magic wands. The general version of the package logic will
be presented in Section 4.4.

All definitions and results in this section and the next have been fully
mechanized [132] in Isabelle/HOL. Our mechanized definitions are
parametric with the underlying verification logic in various senses: the
underlying IDF algebra is a parameter, the syntax of assertions is defined
in a way which allows simple extension with different base cases and
connectives, and the semantics of magic wands itself can be restricted if
only particular kinds of footprint are desired in practice (as we will see
in Section 4.4).

4.3.1. Footprint Selection Strategies

As we explained in Section 4.1, there is a wide design space for package
algorithms; in particular, many potential strategies for finding a magic
wand’s footprint exist and none is clearly optimal. Recall that a footprint
is a state, and thus consists of permissions to certain heap locations as
well as storing their corresponding values; for simplicity we identify a
footprint by the permissions it contains.

Example 4.3.1 A magic wand with incomparable footprints.
Consider the following magic wand

acc(𝑥.𝑏, 1/2) −∗ acc(𝑥.𝑏, 1/2) ∗ (𝑥.𝑏 ⇒ acc(𝑥. 𝑓 ))

Suppose this magic wand is to be packaged in a state where full
permissions to both x.b and x.f are held, and the value of x.b is
currently false. Two valid potential footprints are:

1. Full permission to x.f. This is sufficient to guarantee the right-
hand side will hold regardless of the value that x.b has by the
time the wand is applied.

2. Half permission to x.b. By including this permission, the fact
that x.b is currently false is also included, and thus permission
to x.f is not needed.

There is no clear reason to prefer one choice over the other: different
package algorithms (or manual choices) might choose either. Our package
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6: This largest state, which always ex-
ists and is unique, can be constructed
as follows: Take any state 𝜎 such that
𝜎2 = 𝜎1 ⊕ 𝜎. Then 𝜎𝑟 ≜ 𝜎 ⊕ |𝜎2|.

[198]: Dardinier et al. (2022), Sound Au-

tomation of Magic Wands (Extended Ver-

sion)

logic allows either choice along with any of many less optimal choices,
such as taking both permissions. On the other hand, as motivated earlier
in Section 4.3.1, our package logic must (and does) enforce that a single
valid footprint is chosen for a wand that works for each and every
potential state satisfying its left-hand side.

4.3.2. Package Logic: Preliminaries

To capture different state models and flavours of separation logic, our
package logic is parameterized by the IDF algebra (Definition 2.3.1)
presented in Chapter 2. Recall that we write ⪰ for the induced partial
order of the resulting partial commutative monoid, and 𝜎1#𝜎2 iff 𝜎1 ⊕ 𝜎2
is defined (i.e., 𝜎1 and 𝜎2 are compatible). Finally, if 𝜎2 ⪰ 𝜎1, we define the
subtraction 𝜎2 ⊖ 𝜎1 to be the ⪰-largest state 𝜎𝑟 such that 𝜎2 = 𝜎1 ⊕ 𝜎𝑟 .6

We define our package logic for an assertion language with the following
grammar:

𝐴F 𝐴 ∗ 𝐴 | B⇒ 𝐴 | B

where 𝐴 ranges over assertions and Bover semantic assertions.

To allow our package logic to be applied to a variety of underlying
assertion logics (including the one from Section 3.2.3), we distinguish only
the two most-relevant connectives for our package logic: the separating
conjunction and an implication (for expressing conditional assertions).
To support additional constructs of the assertion logic, the third type of
assertion we consider is a semantic assertion, i.e., a function from Σ to
Booleans. This third type can be instantiated to represent logical assertions
that do not match the first two cases. In particular, assertions such as
x.f = 5, acc(x.f), recursively-defined predicates (such as tree(x))
or magic wands can be represented as semantic assertions. This core
assertion language can also be easily extended with native support for
e.g., the logical conjunction and disjunction connectives; we explain in
the extended version of this chapter [198] how to extend the rules of the
logic accordingly.

4.3.3. The Package Logic

We define our package logic to prescribe the design space of algorithms
for deciding how, in an initial state 𝜎0, to select a valid footprint (or fail)
for a magic wand 𝐴−∗𝐵. The aim is to infer states 𝜎𝑤 and 𝜎1 that partition
𝜎0 (i.e., 𝜎0 = 𝜎1 ⊕ 𝜎𝑤) such that 𝜎𝑤 is a valid footprint for 𝐴 −∗ 𝐵 (when
combined with any compatible state satisfying 𝐴, the resulting state
satisfies 𝐵). In particular, all permissions (and logical facts) required by
the assertion 𝐵 must either come from the footprint or be guaranteed to
be provided by any compatible state satisfying 𝐴.

Recall from Section 4.2.3 that the mistake underlying the FIA approach
ultimately resulted from allowing multiple different footprints to be
selected conditionally on a state satisfying𝐴, rather than a single footprint
which works for all such states. Our package logic addresses this concern
by defining judgements in terms of the set of all states satisfying 𝐴;
whenever any of these tracked states is insufficient to provide a permission
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required by 𝐵, our logic will force this permission to be added in general

to the wand’s footprint (taken from the current state).

Definition 4.3.1 Witness sets and contexts.
A witness set 𝑆 is a set of pairs of states (𝜎𝐴 , 𝜎𝐵); conceptually, the first

represents the state available for trying to prove 𝐵 in addition to the current

state; this is initially a state satisfying the wand’s left-hand side 𝐴. The second

represents the state assembled (so-far) to attempt to satisfy the right-hand side

𝐵. We write 𝑆1
for the set of first elements of all pairs in a witness set 𝑆.

A context Δ is a pair (𝜎, 𝑆) of a state and a witness set; here, 𝜎 represents

the (as-yet unused remainder of the) current state in which the wand is being

packaged.

The basic idea behind a derivation in our logic is to show how to assemble
a witness set in which all second elements are states satisfying 𝐵, via
some combinations of: (1) moving a part of the first element of a pair in
the witness set into the second, and (2) moving a part of the outer state
𝜎 into all first elements of the pairs (this becomes a part of the wand’s
footprint). The actual judgements of the logic are a little more complex,
to correctly record any hypotheses (called path conditions) that result from
deconstructing conditional assertions in 𝐵.

Definition 4.3.2 Configurations and reductions.
A configuration represents a current objective in our package logic: the part

of the wand’s right-hand side still to be satisfied as well as the current state

of a footprint computation. A configuration is a triple ⟨𝐵, pc, (𝜎, 𝑆)⟩, where

𝐵 is an assertion, pc is a path condition (a function from Σ to Booleans),

and (𝜎, 𝑆) is a context. Conceptually, 𝐵 is the assertion still to be satisfied, pc

represents hypotheses we are currently working under, and the context (𝜎, 𝑆)
tracks the current state and witness set, as described above.

A reduction is a judgement ⟨𝐵, pc, (𝜎0 , 𝑆0)⟩ ⇝ (𝜎1 , 𝑆1), representing

the achievement of the objective described via the configuration on the left,

resulting in the final context on the right; 𝜎1 is the new version of the

outer state (and becomes the new current state after the package operation);

whatever was removed from the initial outer state is implicitly the selected

footprint state 𝜎𝑤 . If a reduction is derivable in our package logic, this footprint

𝜎𝑤 guarantees that for all (𝜎𝐴 , 𝜎𝐵) ∈ 𝑆0, if (𝜎𝐴 ⊕ 𝜎𝐵)#𝜎𝑤 , then 𝜎𝐴 ⊕ 𝜎𝑤
satisfies pc ⇒ 𝐵. The condition (𝜎𝐴⊕ 𝜎𝐵)#𝜎𝑤 ensures that the pair (𝜎𝐴 , 𝜎𝐵)
actually corresponds to a state in which the wand can be applied given the

chosen footprint 𝜎𝑤 , as we explain later. The package logic defines the steps

an algorithm may take to achieve this goal.

We represent packaging a wand 𝐴 −∗ 𝐵 in state 𝜎0 by the derivation of a
reduction

⟨𝐵,𝜆𝜎.⊤, (𝜎0 , 𝑆
𝜎0
𝐴
)⟩ ⇝ (𝜎1 , 𝑆1)

for some state 𝜎1 and witness set 𝑆1, where

𝑆
𝜎0
𝐴

≜ {(𝜎𝐴 , stabilize(|𝜎𝐴|)) | 𝜎𝐴 |= 𝐴 ∧ 𝜎𝐴#stabilize(|𝜎0|)}

The path condition is initially true, as we are not yet under any hypotheses.
The initial witness set, 𝑆𝜎0

𝐴
, contains all pairs of a state 𝜎𝐴 that satisfies 𝐴
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Implication
⟨𝐴,𝜆𝜎. pc(𝜎) ∧ 𝑏(𝜎),Δ⟩ ⇝ Δ′

⟨𝑏 ⇒ 𝐴, pc,Δ⟩ ⇝ Δ′ Star
⟨𝐴1 , pc,Δ0⟩ ⇝ Δ1 ⟨𝐴2 , pc,Δ1⟩ ⇝ Δ2

⟨𝐴1 ∗ 𝐴2 , pc,Δ0⟩ ⇝ Δ2

AtomS

∀(𝜎𝐴 , 𝜎𝐵) ∈ 𝑆. pc(𝜎𝐴) =⇒ 𝜎𝐴 ⪰ choice(𝜎𝐴 , 𝜎𝐵) ∧ B(choice(𝜎𝐴 , 𝜎𝐵))
𝑆⊤ = {(𝜎𝐴 ⊖ choice(𝜎𝐴 , 𝜎𝐵), 𝜎𝐵 ⊕ choice(𝜎𝐴 , 𝜎𝐵))|(𝜎𝐴 , 𝜎𝐵) ∈ 𝑆 ∧ pc(𝜎𝐴)}

𝑆⊥ = {(𝜎𝐴 , 𝜎𝐵)|(𝜎𝐴 , 𝜎𝐵) ∈ 𝑆 ∧ ¬pc(𝜎𝐴)}
⟨B, pc, (𝜎, 𝑆)⟩ ⇝ (𝜎, 𝑆⊤ ∪ 𝑆⊥)

ExtractS

𝜎0 = 𝜎1 ⊕ 𝜎𝑤
stable(𝜎𝑤) ⟨𝐴, pc, (𝜎1 , 𝑆1)⟩ ⇝ Δ 𝑆1 = {(𝜎𝐴 ⊕ 𝜎𝑤 , 𝜎𝐵)|(𝜎𝐴 , 𝜎𝐵) ∈ 𝑆0 ∧ (𝜎𝐴 ⊕ 𝜎𝐵)#𝜎𝑤}

⟨𝐴, pc, (𝜎0 , 𝑆0)⟩ ⇝ Δ

Figure 4.2.: Rules of the package logic, specialized to the standard semantics of magic wands.

7: The published version of this chap-
ter [141] used a slightly stronger IDF alge-
bra, which contained a neutral element
𝑒 (i.e., such that 𝑒 ⊕ 𝜎 = 𝜎 for all 𝜎), and
thus the initial witness set was defined as
{(𝜎𝐴 , 𝑒) | 𝜎𝐴 |= 𝐴}, where 𝑒 is a neutral
element of the IDF algebra (i.e., such that
𝑒 ⊕ 𝜎 = 𝜎 for all 𝜎).
8: If 𝐵 is affine (or intuitionistic), this can
be simplified to only the⪰-minimal states
that satisfy 𝐴. 𝐵 is affine iff for all states
𝜎 such that 𝐵 holds in 𝜎, then 𝐵 holds in
any state 𝜎′ such that 𝜎′ ⪰ 𝜎. In affine SL
(such as Iris [31]) or in IDF, all assertions
are affine.

9: The order in the premises is unim-
portant since 𝐴1 ∗ 𝐴2 and 𝐴2 ∗ 𝐴1 are
equivalent.

and the state stabilize(|𝜎𝐴|) (which is the smallest state compatible with
𝜎𝐴, as shown by the last axiom in Figure 2.6), 7 to which a successful
reduction will add permissions in order to satisfy 𝐵8.

An actual algorithm need not explicitly compute this (possibly infinite)
set, but can instead track it symbolically. If the algorithm finds a derivation
of this reduction, it has proven that the difference between 𝜎0 and 𝜎1 is a
valid footprint of the wand 𝐴−∗ 𝐵, since the logic is sound (Theorem 4.3.1
below).

Rules of the package logic. Figure 4.2 presents the four rules of our
logic, defining (via derivable reductions) how a configuration can be
reduced to a context. There is a rule for each type of assertion𝐵: Implication
for an implication, Star for a separating conjunction, and AtomS for a
semantic assertion. The logic also includes the rule ExtractS, which
represents a choice to extract permissions from the outer state and adds
them to all pairs of states in the witness set. In the following, we informally
write reducing an assertion to refer to the process of deriving (in the logic)
that the relevant configuration containing this assertion reduces to some
context.

To reduce an implication 𝑏 ⇒ 𝐴, the rule Implication conjoins the hy-
pothesis 𝑏 with the previous path condition, leaving 𝐴 to be reduced.
Informally, this expresses that satisfying pc ⇒ (𝑏 ⇒ 𝐴) is equivalent to
satisfying (pc ∧ 𝑏) ⇒ 𝐴.

For a separating conjunction 𝐴1 ∗𝐴2, the rule Star expresses that both 𝐴1
and 𝐴2 must be reduced, in order to reduce 𝐴1 ∗ 𝐴2; permissions used
in the reduction of the first conjunct must not be used again, which is
reflected by the threading-through of the intermediate context Δ1.9

The rule AtomS specifies how to prove that all states in 𝑆1 (where 𝑆 is the
witness set) satisfy the assertion pc ⇒ B. To understand the premises,
consider a pair (𝜎𝐴 , 𝜎𝐵) ∈ 𝑆. If 𝜎𝐴 does not satisfy the path condition (i.e.,
¬pc(𝜎𝐴)), then 𝜎𝐴 does not have to justify B, and thus the pair (𝜎𝐴 , 𝜎𝐵)
is left unchanged; this case corresponds to the set 𝑆⊥. Conversely, if 𝜎𝐴
satisfies the path condition (i.e., pc(𝜎𝐴)), then 𝜎𝐴 must satisfy B, and
the corresponding permissions must be transferred from 𝜎𝐴 to 𝜎𝐵. Since
some assertions may be satisfied in different ways, such as disjunctions,
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Star

Atom
. . .

⟨acc(𝑥. 𝑓 ), (𝜎0 , 𝑆0)⟩ ⇝ (𝜎0 , 𝑆1)
Extract

Atom
. . .

⟨acc(𝑥. 𝑓 .𝑔), (𝜎1 , 𝑆2)⟩ ⇝ (𝜎1 , 𝑆3) †
⟨acc(𝑥. 𝑓 .𝑔), (𝜎0 , 𝑆1)⟩ ⇝ (𝜎1 , 𝑆3)

⟨acc(𝑥. 𝑓 ) ∗ acc(𝑥. 𝑓 .𝑔), (𝜎0 , 𝑆0)⟩ ⇝ (𝜎1 , 𝑆3)

Figure 4.3.: Example of a (part of a) derivation in the package logic. This derivation shows how the rules from the package logic can be
used to package the wand from Example 4.3.1, acc(𝑥.𝑏, 1/2) −∗ acc(𝑥.𝑏, 1/2) ∗ (𝑥.𝑏 ⇒ acc(𝑥. 𝑓 )). We omit the path condition since it is
always the trivial condition (𝜆𝜎.⊤). Assume that the outer state 𝜎0 is the addition of 𝜎𝑦𝑧 , a state that contains permission to y.g and z.g,
and 𝜎1. 𝑆0 ≜ {(𝜎𝐴 , stabilize(|𝜎𝐴|)) | 𝜎𝐴 ∈ Σ ∧ 𝜎𝐴 |= acc(𝑥. 𝑓 ) ∗ (𝑥. 𝑓 = 𝑦 ∨ 𝑥. 𝑓 = 𝑧)} is the initial witness set. The derivation shows that
⟨acc(𝑥. 𝑓 ) ∗ 𝑎𝑐𝑐(𝑥. 𝑓 .𝑔), (𝜎0 , 𝑆0)⟩ ⇝ (𝜎1 , 𝑆3) is correct, and thus that 𝜎𝑦𝑧 is a correct footprint of the wand 𝑤 (since 𝜎0 = 𝜎1 ⊕ 𝜎𝑦𝑧 ).

10: Recall that in standard SL, all states
are stable.

the algorithm has a choice in how to satisfy B, which might be different
for each pair (𝜎𝐴 , 𝜎𝐵). This choice is represented by choice(𝜎𝐴 , 𝜎𝐵), which
must satisfy Band be smaller or equal to 𝜎𝐴. We update the witness set by
transferring choice(𝜎𝐴 , 𝜎𝐵) from 𝜎𝐴 to 𝜎𝐵. This second case corresponds
to the set 𝑆⊤. Note that the rule AtomS can be applied only if 𝜎𝐴 satisfies
B, for all pairs (𝜎𝐴 , 𝜎𝐵) ∈ 𝑆 such that pc(𝜎𝐴). If not, a package algorithm
must either first extract more permissions from the outer state with the
rule ExtractS, or fail.

Choice in the rule AtomS and angelism in the semantics of CoreIVL

Interestingly, our use of a choice function (choice) in the rule AtomS is
very similar to how we use a choice function S in the rule SeqOp from
Figure 2.7, to model angelism in the semantics of CoreIVL. The two
choice functions capture the fact that a potentially infinite number of
states must make individual choices: How to resolve angelic choices in
the rule SeqOp, and how to satisfy the assertion B in the rule AtomS.
Those choice functions also make it necessary to use the axiom of
choice to prove completeness of the corresponding derivation system
(Theorem 2.3.2 for the semantics of CoreIVL, and Theorem 4.3.2 for
the package logic).

The rule ExtractS (applicable at any step of a derivation), expresses that
we can extract permissions (the state 𝜎𝑤 , required to be stable10) from the
outer state 𝜎0, and combine them with the first element of each pair of
states in the witness set. Note that (𝜎𝐴 , 𝜎𝐵) is removed from the witness
set if 𝜎𝐴 ⊕ 𝜎𝐵 is not compatible with 𝜎𝑤 . In such cases, adding 𝜎𝑤 to 𝜎𝐴
would create a pair in the witness set representing a state in which the
wand cannot be applied. Consequently, there is no need to establish the
right-hand side of the wand for this pair and our logic correspondingly
removes it. Finally, the rule requires that we reduce the assertion 𝐴 in
the new context.

A package algorithm’s strategy is mostly reflected by how it uses the rule
ExtractS. To package the wand acc(𝑥.𝑏, 1/2) −∗ acc(𝑥.𝑏, 1/2) ∗ (𝑥.𝑏 ⇒
acc(𝑥. 𝑓 )) from Example 4.3.1 one algorithm might use this rule to extract
permission to x.f; another might use it to extract permission to x.b (if
x.b had value false in the original state).

Example 4.3.2 Example of a derivation in the package logic.
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Figure 4.3 illustrates how the rules of our package logic can be used to
package the wand from Section 4.3.1, acc(𝑥.𝑏, 1/2) −∗ acc(𝑥.𝑏, 1/2) ∗
(𝑥.𝑏 ⇒ acc(𝑥. 𝑓 )). This derivation, which reflects the package algo-
rithm that we will describe in Section 4.3.5, can be read from bottom
to top and from left to right. Using the rule Star, we split the assertion
into its two conjuncts, acc(𝑥. 𝑓 ) (on the left) and acc(𝑥. 𝑓 .𝑔) (on the
right). We then handle acc(𝑥. 𝑓 ) using the rule AtomS. acc(𝑥. 𝑓 ) holds
in the first element of each pair of 𝑆0, since any state that satisfies the
wand’s left-hand side owns x.f. Therefore, we use the rule AtomS with
a choice function that always chooses the relevant state with exactly full
permission to x.f. 𝑆1 is the updated witness set where this permission
to x.f has been transferred from the first to the second element of each
pair of states.

Next, we handle acc(𝑥. 𝑓 .𝑔). We cannot do this directly using the
rule AtomS from 𝑆1. We know that, for each (𝜎𝐴 , 𝜎𝐵) ∈ 𝑆1, x.f.g
evaluated in 𝜎𝐴 is either y or z, but 𝜎𝐴 owns neither y.g nor z.g. So,
we transfer the permissions to both y.g and z.g from the outer state 𝜎0
to all states of 𝑆1

1, using the rule ExtractS, which results in the context
(𝜎1 , 𝑆2); † represents the three other premises of the rule, namely
𝜎0 = 𝜎𝑦𝑧 ⊕ 𝜎1, stable(𝜎𝑦𝑧), and 𝑆2’s definition. Finally, we apply the
rule AtomS to prove ⟨acc(𝑥. 𝑓 .𝑔), (𝜎1 , 𝑆2)⟩ ⇝ (𝜎1 , 𝑆3), where the choice

function chooses for each pair the corresponding state that contains
full permission to x.f.g.

4.3.4. Soundness and Completeness

We write ⊢ ⟨𝐵, pc,Δ⟩ ⇝ Δ′ to express that a reduction can be derived in
the logic. As explained above, the goal of a package algorithm is to find a
derivation of ⟨𝐵,𝜆_.⊤, (𝜎, {(𝜎𝐴 , stabilize(|𝜎𝐴|)) | 𝜎𝐴 ∈ 𝑆𝐴})⟩ ⇝ (𝜎′, 𝑆′).
If it succeeds, then the difference between 𝜎′ and 𝜎 is a valid footprint of
𝐴 −∗ 𝐵, since our package logic is sound. In particular, we have proven
the following soundness result in Isabelle/HOL:

Theorem 4.3.1 Soundness of the package logic.
Let 𝑆𝜎

𝐴
≜ {(𝜎𝐴 , stabilize(|𝜎𝐴|)) | 𝜎𝐴 |= 𝐴 ∧ 𝜎𝐴#stabilize(|𝜎|)}, and 𝐵 be a

well-formed
11 11: Intuitively, an assertion 𝐴 is well-

formed iff 𝐴 is self-framing and all impli-
cations in 𝐴 have pure left-hand sides.

assertion. If

⊢ ⟨𝐵,𝜆_.⊤, (𝜎, 𝑆𝜎𝐴)⟩ ⇝ (𝜎′, 𝑆′)

and at least one of the following conditions holds:

1. 𝐵 is affine, or

2. for all (𝜎𝐴 , 𝜎𝐵) ∈ 𝑆′, 𝜎𝐴 contains no permission (i.e., 𝜎𝐴⊕ 𝜎𝐴 = 𝜎𝐴)

then there exists a stable state 𝜎𝑤 s.t. 𝜎 = 𝜎′ ⊕ 𝜎𝑤 and 𝜎𝑤 |= 𝐴 −∗ 𝐵.

The third premise shows that, in an affine SL or IDF setting, the correspon-
dence between a derivation in the logic and a valid footprint of a wand is
straightforward (case 1). However, in classical SL, one must additionally
check that all permissions in the witness set have been consumed (case
2).

We have also proved in Isabelle/HOL that our package logic is complete,
i.e., any valid footprint can be computed via a derivation in our package
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12: In the extended version of this chap-
ter [141], we present a more formal ver-
sion of our package algorithm, and also
show how it handles implications.

13: This novel definition of combinable

wands is different from the one based
on the unbounded logic from Chapter 3,
as we explain in Section 4.4.2. The un-

bounded wand from Chapter 3 can be sup-
ported by the specialized version of the
package logic presented in Section 4.3,
as the difference with the standard wand

is only in the state model, not in the
definition of validity.

logic:

Theorem 4.3.2 Completeness of the package logic.
Let 𝑆𝜎

𝐴
≜ {(𝜎𝐴 , stabilize(|𝜎𝐴|)) | 𝜎𝐴 |= 𝐴 ∧ 𝜎𝐴#stabilize(|𝜎|)}, and 𝐵 be a

well-formed assertion. If 𝜎𝑤 is a stable footprint of 𝐴 −∗ 𝐵, and 𝜎 = 𝜎′ ⊕ 𝜎𝑤 ,

then there exists a witness set 𝑆′ such that

⊢ ⟨𝐵,𝜆_.⊤, (𝜎, 𝑆𝜎𝐴) | 𝜎𝐴 |= 𝐴})⟩ ⇝ (𝜎′, 𝑆′)

4.3.5. A Sound Package Algorithm

We now describe an automatic package algorithm that corresponds to
a proof search strategy in our package logic, and which is thus sound.
To convey the main ideas, consider packaging a wand of the shape
𝐴 −∗ 𝐵1 ∗ . . . ∗ 𝐵𝑛 .12 Our algorithm traverses the assertion 𝐵1 ∗ . . . ∗ 𝐵𝑛
from left to right, similarly to the FIA approach; this traversal is justified
by repeated applications of the rule Star. Assume at some point during
this traversal that the current context is (𝜎0 , 𝑆). When we encounter the
assertion 𝐵𝑖 , we have two possible cases:

1. All states 𝜎𝐴 ∈ 𝑆1 satisfy 𝐵𝑖 , which means that the permissions
(or values) required by 𝐵𝑖 are provided by the left-hand side of
the wand. In this case, for each pair (𝜎𝐴 , 𝜎𝐵) ∈ 𝑆, we transfer
permissions (and the corresponding values) to satisfy 𝐵𝑖 from 𝜎𝐴
to 𝜎𝐵, using the rule AtomS. Note that the transferred permissions
might be different for each pair (𝜎𝐴 , 𝜎𝐵). This gives us a new witness
set 𝑆′, while the outer state 𝜎0 is left unchanged. We must then
handle the next assertion 𝐵𝑖+1 in the context (𝜎0 , 𝑆

′).
2. There is at least one pair (𝜎𝐴 , 𝜎𝐵) ∈ 𝑆 such that 𝐵𝑖 does not hold in

𝜎𝐴. In this case, the algorithm fails if combining the permissions
(and values) contained in the outer state with each 𝜎𝐴 ∈ 𝑆1 is not
sufficient to satisfy 𝐵𝑖 . Otherwise, we apply the rule ExtractS to
transfer permissions from the outer state 𝜎0 to each state 𝜎𝐴 in 𝑆1

such that 𝐵𝑖 holds in 𝜎𝐴. This gives us a new context (𝜎′
0 , 𝑆

′). We
can now apply the first case with the context (𝜎′

0 , 𝑆
′).

4.4. Generalized Package Logic

The previous section presented a version of our package logic specialized

to the standard semantics of magic wands. In this section, we present the
generalized version of the package logic, which allows packaging magic
wands with alternative semantics, for example to obtain wands that are
combinable (as defined in Section 3.3).

We first describe the generalization of the package logic (Section 4.4.1)
for a novel parametric definition of magic wands (which allows for
alternative semantics), and then introduce a novel definition of combinable

wands
13 (Section 4.4.2) that can be packaged using the generalized package

logic. We will see in Section 4.5 that the restriction combinable wands
impose is sufficiently weak for practical purposes, and that footprints of
combinable wands can be automatically inferred by package algorithms
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built on our package logic. All results in this section have been proven in
Isabelle/HOL.

4.4.1. Generalizing the Logic

The generalization of the package logic allows us to package parametric

magic wands𝐴−∗T𝐵, whose semantics transform the footprint via monotonic

transformers before combining it with states that satisfy 𝐴. We will show,
in Section 4.4.2, how to instantiate the parameter T to obtain combinable
wands.

Definition 4.4.1 Parametric magic wands.
A monotonic transformer 𝜏 is a function from Σ to Σ (i.e., from states

to states) that is monotonic and maps empty states to empty states, i.e., it

satisfies the following properties:

1. ∀𝜎. 𝜏(stabilize(|𝜎|)) = stabilize(|𝜎|)
2. ∀𝜎1 , 𝜎2. 𝜎2 ⪰ 𝜎1 =⇒ 𝜏(𝜎2) ⪰ 𝜏(𝜎1)

Given a family (T𝜎)𝜎∈Σ of monotonic transformer indexed by states, the

semantics of the parametric magic wand 𝐴 −∗T 𝐵 applies the transformer

T𝜎 to the footprint 𝜎𝐹 before combining it with a state 𝜎 that satisfies the

left-hand side 𝐴. Formally, a state 𝜎𝐹 satisfies the parametric magic wand

𝐴 −∗T 𝐵, written 𝜎𝐹 |= 𝐴 −∗T 𝐵, if and only if the following holds:

∀𝜎. 𝜎 |= 𝐴 ∧ 𝜎#T𝜎(𝜎𝐹) =⇒ 𝜎 ⊕ T𝜎(𝜎𝐹) |= 𝐵

Example 4.4.1 The standard wand is a parametric wand.
Let I be a family of identity transformers, i.e., for all 𝜎 and 𝜎𝐹 ,
I𝜎(𝜎𝐹) = 𝜎𝐹 . Note that I is trivially a monotonic transformer.

The parametric magic wand𝐴−∗I𝐵 is equivalent to the standard magic
wand 𝐴 −∗ 𝐵.

We will see another example of monotonic transformer in Section 4.4.2,
where we define a family R of monotonic transformers to ensure that
fractions of different footprints combine to valid footprints.

To obtain the generalized version of our package logic, which allows
packaging parametric wands, we first generalize witness sets and con-
figurations as follows, where the changes from the specialized package
logic are highlighted in blue:

Definition 4.4.2 Generalized witness sets and contexts.
A generalized witness set 𝑆 is a set of triples (𝜎𝐴 , 𝜎𝐵 , 𝜏), where 𝜎𝐴 and

𝜎𝐵 are states, and 𝜏 is a monotonic transformer.

A generalized context is a triple (𝜎, 𝜎𝐹 , 𝑆), where 𝜎 is a state, 𝜎𝐹 is the

footprint extracted so far, and 𝑆 is a generalized witness set.

Configurations and reductions in the generalized package logic use
generalized witness sets and contexts, but otherwise are left unchanged.
To package the generalized magic wand 𝐴 −∗T 𝐵, we need to find a
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Atom

∀(𝜎𝐴 , 𝜎𝐵 , 𝜏) ∈ 𝑆. pc(𝜎𝐴) =⇒ 𝜎𝐴 ⪰ choice(𝜎𝐴 , 𝜎𝐵 , 𝜏) ∧ B(choice(𝜎𝐴 , 𝜎𝐵 , 𝜏))
𝑆⊤ = {(𝜎𝐴 ⊖ choice(𝜎𝐴 , 𝜎𝐵 , 𝜏), 𝜎𝐵 ⊕ choice(𝜎𝐴 , 𝜎𝐵), 𝜏)|(𝜎𝐴 , 𝜎𝐵 , 𝜏) ∈ 𝑆 ∧ pc(𝜎𝐴)}

𝑆⊥ = {(𝜎𝐴 , 𝜎𝐵 , 𝜏)|(𝜎𝐴 , 𝜎𝐵 , 𝜏) ∈ 𝑆 ∧ ¬pc(𝜎𝐴)}
⟨B, pc, (𝜎, 𝜎𝐹 , 𝑆)⟩ ⇝ (𝜎, 𝜎𝐹 , 𝑆⊤ ∪ 𝑆⊥)

Extract

𝜎0 = 𝜎1 ⊕ 𝜎𝐸 stable(𝜎𝐸) ⟨𝐴, pc, (𝜎1 , 𝜎𝐹 ⊕ 𝜎𝐸 , 𝑆1)⟩ ⇝ Δ

𝑆1 = {(𝜎𝐴 ⊕ (𝜏(𝜎𝐹 ⊕ 𝜎𝐸) ⊖ 𝜏(𝜎𝐹)), 𝜎𝐵 , 𝜏)|(𝜎𝐴 , 𝜎𝐵 , 𝜏) ∈ 𝑆0 ∧ (𝜎𝐴 ⊕ 𝜎𝐵)#𝜎𝐸}
⟨𝐴, pc, (𝜎0 , 𝜎𝐹 , 𝑆1)⟩ ⇝ Δ

Figure 4.4.: Rules of the generalized package logic. The changes from the specialized package logic are highlighted in blue. The rules for
implication and separating conjunctions (Implication and Star) are unchanged from the specialized package logic.

14: Since 𝜎𝐸1 is extracted from the outer
state 𝜎, we have 𝜎𝐸1 ⪰ stabilize(|𝜎|),
and thus 𝜏(𝜎𝐸1 ) ⪰ 𝜏(stabilize(|𝜎|)) =

stabilize(|𝜎|) by monotonicity of 𝜏,
which implies 𝜏(𝜎𝐸1 )⊖𝜏(stabilize(|𝜎|)) =
𝜏(𝜎𝐸1 ).

derivation, in the generalized package logic, of the following reduction:

⟨𝐵,⊤, (𝜎0 , stabilize(|𝜎0|), 𝑆𝜎0
𝐴
)⟩ ⇝ (𝜎1 , 𝜎𝐹 , 𝑆1)

where

𝑆
𝜎0
𝐴

≜ {(𝜎, stabilize(|𝜎|),T𝜎) | 𝜎 |= 𝐴 ∧ 𝜎#stabilize(|𝜎0|)}

and stabilize(|𝜎0|) and stabilize(|𝜎|) are units for the states 𝜎0 and 𝜎,
respectively.

We show in Figure 4.4 the generalized rules Atom and Extract (the rules
Implication and Star are unchanged from the specialized package logic).
The rule Atom is very similar to the rule AtomS from Figure 4.2, except
that it now uses generalized witness sets and contexts.

The generalized rule Extract is more involved: It now combines a trans-

formed version of 𝜎𝐸 (via the corresponding transformer) to elements
of the witness set (recall that 𝜎𝐸 represents the permissions we ex-
tract from the outer state). Crucially, we add (a) 𝜏(𝜎𝐹 ⊕ 𝜎𝐸) ⊖ 𝜏(𝜎𝐹)
instead of the simpler (b) 𝜏(𝜎𝐸) to 𝜎𝐴, because the footprint might be
extracted from the outer state 𝜎0 in a piecewise manner, with several
applications of the rule Extract, whereas the definition of the parametric
magic wand (Definition 4.4.1) requires the transformer to be applied
to the complete footprint. Consider for example extracting the footprint
𝜎𝐹 ≜ 𝜎𝐸1 ⊕ 𝜎𝐸2 from the outer state via two successive applications of
the rule Extract, first for 𝜎𝐸1 and then for 𝜎𝐸2 . Given an outer state 𝜎
and a triple (𝜎𝐴 , 𝜎𝐵 , 𝜏) from the initial witness set, we update the first
element to 𝜎𝐴 ⊕ (𝜏(𝜎𝐸1) ⊖ 𝜏(stabilize(|𝜎|))) = 𝜎𝐴 ⊕ 𝜏(𝜎𝐸1) via the first
rule application,14 and then to (𝜎𝐴 ⊕ 𝜏(𝜎𝐸1)) ⊕ (𝜏(𝜎𝐸1 ⊕ 𝜎𝐸2) ⊖ 𝜏(𝜎𝐸1)) =
𝜎𝐴 ⊕ 𝜏(𝜎𝐸1 ⊕ 𝜎𝐸2) via the second rule application. If we followed (b), we
would obtain 𝜎𝐴⊕ 𝜏(𝜎𝐸1)⊕ 𝜏(𝜎𝐸2) instead, which might be different from
𝜎𝐴 ⊕ 𝜏(𝜎𝐸1 ⊕ 𝜎𝐸2). This illustrates why we need to track the footprint
extracted so far in the generalized package logic. Finally, the current
footprint is updated to be 𝜎𝐹 ⊕ 𝜎𝐸.

We have proven in Isabelle/HOL that this generalized logic is sound and
complete for parametric wands:

Theorem 4.4.1 Soundness of the generalized package logic.
Let 𝑆

𝜎0
𝐴

≜ {(𝜎, stabilize(|𝜎|),T𝜎) | 𝜎 |= 𝐴 ∧ 𝜎#stabilize(|𝜎0|)}, 𝐵 be a
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well-formed assertion, and (T𝜎)𝜎∈Σ be a family of monotonic transformers. If

⊢ ⟨𝐵,⊤, (𝜎0 , stabilize(|𝜎0|), 𝑆𝜎0
𝐴
)⟩ ⇝ (𝜎1 , 𝜎𝐹 , 𝑆1)

for some witness set 𝑆1, and states 𝜎1 and 𝜎𝐹 , and at least one of the following

conditions holds:

1. 𝐵 is affine, or

2. for all (𝜎𝐴 , 𝜎𝐵) ∈ 𝑆1, 𝜎𝐴 contains no permission (i.e., 𝜎𝐴⊕ 𝜎𝐴 = 𝜎𝐴)

then 𝜎𝐹 is a stable footprint of 𝐴 −∗T 𝐵, and 𝜎0 = 𝜎1 ⊕ 𝜎𝐹 .

Theorem 4.4.2 Completeness of the generalized package logic.
Let 𝑆

𝜎0
𝐴

≜ {(𝜎, stabilize(|𝜎|),T𝜎) | 𝜎 |= 𝐴 ∧ 𝜎#stabilize(|𝜎0|)}, 𝐵 be a

well-formed assertion, and (T𝜎)𝜎∈Σ be a family of monotonic transformers.

If 𝜎𝐹 is a stable footprint of 𝐴 −∗T 𝐵, and 𝜎0 = 𝜎1 ⊕ 𝜎𝐹 , then there exists a

witness set 𝑆1 such that

⊢ ⟨𝐵,⊤, (𝜎0 , stabilize(|𝜎0|), 𝑆𝜎0
𝐴
)⟩ ⇝ (𝜎1 , 𝜎𝐹 , 𝑆1)

4.4.2. Using the Generalized Package Logic with
Combinable Wands

We now introduce a novel notion of combinable wand, written 𝐴 −∗𝑐 𝐵,
which can be expressed as a parametric magic wand, and thus can be
packaged using the generalized package logic. Unlike the standard wand

𝐴 −∗ 𝐵, the combinable wand 𝐴 −∗𝑐 𝐵 is combinable if 𝐵 is combinable
(Definition 3.3.1). Note that the novel definition of combinable wand we
present here is different from the one based on the unbounded logic
from Chapter 3, which we refer to as unbounded wand. Combinable
and unbounded wands strike a different trade-off: The unbounded
wand is in general more restrictive than the combinable wand, but
it additionally enjoys distributivity (as shown by the rule DotWand in
Figure 3.4). Moreover, the unbounded wand can be packaged using the
specialized package logic presented in Section 4.3, as the difference with
the standard wand is only in the state model, not in the definition of
validity. In contrast, the combinable wand differs from the standard wand
in the definition of validity, and thus requires the generalized package
logic presented in Section 4.4.1.

To explain the intuition behind combinable wands, let us first recall why
the standard wand 𝐴−∗𝐵 is not combinable in general, with the following
example:

Example 4.4.2 A simple non-combinable wand.
The wand

𝑊 ≜ acc(𝑥. 𝑓 , 1/2) −∗ acc(𝑥.𝑔)

is not combinable, because 0.5 ·𝑊 ∗ 0.5 ·𝑊 ̸|=𝑊 . To see this, consider
two states 𝜎𝐹 and 𝜎𝐺 , containing full permissions to only x.f and x.g,
respectively. Both states are valid footprints of𝑊 , i.e., 𝜎𝐹 |= 𝑤 (because
𝜎𝐹 is incompatible with all states that satisfy the left-hand side) and
𝜎𝐺 |=𝑊 (because 𝜎𝐺 entails the right-hand side). Thus, by definition
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(Figure 3.3), 0.5 ⊗ 𝜎𝐹 |= 0.5 ·𝑊 and 0.5 ⊗ 𝜎𝐺 |= 0.5 ·𝑊 . However,
0.5 ⊗ 𝜎𝐹 ⊕ 0.5 ⊗ 𝜎𝐺, i.e., a state with half permission to both x.f and
x.g, is not a valid footprint of𝑊 , and thus 0.5 ·𝑊 ∗ 0.5 ·𝑊 ̸|=𝑊 .

Intuitively, 𝑊 is not combinable because one of its footprints, 𝜎𝐹 , is
incompatible with the left-hand side of the wand, but becomes compatible
when the footprint is scaled down to a fraction. After scaling, the wand
no longer holds trivially, and the footprint does not necessarily establish
the right-hand side.

To make this intuition more precise, we introduce the notion of scalable

footprints:

Definition 4.4.3 Scalable footprints.
For a state 𝜎, we define scaled(𝜎) to be the set of copies of 𝜎 multiplied by any

fraction 0 < 𝛼 ≤ 1, i.e., scaled(𝜎) ≜ {𝛼 ⊗ 𝜎 | 0 < 𝛼 ≤ 1}.

A footprint 𝜎𝐸 is scalable w.r.t. a state 𝜎𝐴 iff either

1. 𝜎𝐴 is compatible with all states from scaled(𝜎𝐸), or

2. 𝜎𝐴 is compatible with no state in scaled(𝜎𝐸).

A footprint is scalable for a wand 𝐴 −∗ 𝐵 iff it is scalable w.r.t. all states

that satisfy A.

Intuitively, this means that the footprint does not “jump” between satis-
fying the wand trivially and having to satisfy the right-hand side. In the
above example, 𝜎𝐺 is a scalable footprint for 𝑤, but 𝜎𝐹 is not.

Making wands combinable. The previous paragraphs show that, even
if 𝐵 is combinable, the standard wand 𝐴−∗ 𝐵 is in general not combinable
because it can be satisfied by non-scalable footprints. Therefore, we define
the validity of combinable wands 𝐴 −∗𝑐 𝐵 to force footprints to be scalable,
in the following sense. A combinable wand accepts all scalable footprints,
and transforms (via a monotonic transformer) non-scalable footprints before
checking whether they actually satisfy the wand. We obtain the definition
of combinable wands by replacing a potential footprint 𝜎𝐹 with a (possibly
smaller) state R𝜎𝐴 (𝜎𝐹) that is scalable w.r.t. 𝜎𝐴. R𝜎𝐴 (𝜎𝐹) is defined as 𝜎𝐹
if no state in scaled(𝜎𝐹) is compatible with 𝜎𝐴; in that case, condition (2)
of scalable footprints holds for R𝜎𝐴 (𝜎𝐹) w.r.t. 𝜎𝐴. Otherwise, R𝜎𝐴 (𝜎𝐹) is
obtained by removing just enough permissions from 𝜎𝐹 to ensure that
all states in scaled(R𝜎𝐴 (𝜎𝐹)) are compatible with 𝜎𝐴, which ensures that
condition (1) holds for R𝜎𝐴 (𝜎𝐹) w.r.t. 𝜎𝐴.

To formally define R𝜎𝐴 (𝜎𝐹), we fix the IDF algebraΣIDF from Section 2.3.1,
whose states are pairs (𝜋, ℎ) of a (bounded) permission mask 𝜋, which
maps heap locations to fractional permissions, and a partial heap ℎ,
which maps heap locations to values.

Definition 4.4.4 Combinable wands.
Let 𝜎𝐴 ≜ (𝜋𝐴 , ℎ𝐴) and 𝜎𝐹 ≜ (𝜋𝐹 , ℎ𝐹) be states from ΣIDF, and let 𝜋′

𝐹
be the

permission mask such that ∀𝑙.𝜋′
𝐹
(𝑙) = min(𝜋𝐹(𝑙), 1−𝜋𝐴(𝑙)). The family of
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15: Formally, an assertion 𝐴 is binary

iff ∀(𝜋, ℎ) |= 𝐴. (bin(𝜋), ℎ) |= 𝐴, where
bin(𝜋) is the binary restriction of the per-
mission mask 𝜋, defined as bin(𝜋)(𝑙) ≜{

1 if 𝜋(𝑙) = 1
0 otherwise

.

monotonic transformers R is defined as follows:

R𝜎𝐴 (𝜎𝐹) ≜
{
𝜎𝐹 if ∀𝜎 ∈ scaled(𝜎𝐹).¬𝜎𝐴#𝜎
(𝜋′

𝐹
, ℎ𝐹) otherwise

The combinable wand 𝐴 −∗𝑐 𝐵 is then interpreted as a parametric magic

wand (Definition 4.4.1) with the family of monotonic transformers R, as

follows:

𝜎𝐹 |= 𝐴−∗𝑐 𝐵 ≜
(
∀𝜎𝐴. 𝜎𝐴 |= 𝐴 ∧ 𝜎𝐴#R𝜎𝐴 (𝜎𝐹) ⇒ 𝜎𝐴 ⊕ R𝜎𝐴 (𝜎𝐹) |= 𝐵

)
The following proposition (proved in Isabelle/HOL) shows some key
properties of combinable wands.

Proposition 4.4.3 Key properties of combinable wands.
Let 𝐵 be an affine assertion.

1. If 𝐵 is combinable, then 𝐴 −∗𝑐 𝐵 is combinable.

2. 𝐴 −∗𝑐 𝐵 |= 𝐴 −∗ 𝐵.

3. If 𝐴 is a binary assertion, then 𝐴 −∗𝑐 𝐵 and 𝐴 −∗ 𝐵 are equivalent.

Property 1 expresses that combinable wands constructed from combin-
able assertions are combinable, which enables verification methodologies
underlying tools such as VerCors and Viper to support flexible combina-
tions of wands and predicates (as motivated in Chapter 3). Property 2
implies that 𝐴 ∗ (𝐴 −∗𝑐 𝐵) |= 𝐵, that is, combinable wands can be applied
like standard wands. Property 3 states that combinable wands pose no
restrictions if the left-hand side is binary, that is, if it can be expressed
without fractional permissions15 For example, the predicate tree(𝑥) from
Figure 4.1 is binary, which implies that the wands tree(𝑦) −∗𝑐 tree(𝑥) and
tree(𝑦) −∗ tree(𝑥) are equivalent. This property is an important reason for
why combinable wands are expressive enough for practical purposes, as
we further evidence in Section 4.5.

Example 4.4.3 A combinable wand.
Consider again the standard wand𝑊 ≜ acc(𝑥. 𝑓 , 1/2) −∗ acc(𝑥.𝑔) and
the states 𝜎𝐹 and 𝜎𝐺, containing full permissions to only x.f and x.g,
respectively. As explained in Section 4.4, 𝑤 is not combinable, because
it holds in both 𝜎𝐹 and 𝜎𝐺, but not in 0.5 ⊗ 𝜎𝐹 ⊕ 0.5 ⊗ 𝜎𝐺.

Consider now the combinable wand𝑊𝑐 ≜ acc(𝑥. 𝑓 , 1/2) −∗𝑐 acc(𝑥.𝑔),
which is combinable because acc(𝑥.𝑔) is combinable (Theorem 4.4.3).
𝜎𝐺 is a valid footprint of𝑊𝑐 . To see this, consider a state 𝜎𝐴 in which the
left-hand side acc(𝑥. 𝑓 , 1/2) holds, and with no permission to x.g. By
Definition 4.4.4, R𝜎𝐴 (𝜎𝐺) = 𝜎𝐺 , and thus 𝜎𝐴 ⊕ R𝜎𝐴 (𝜎𝐺) = 𝜎𝐴 ⊕ 𝜎𝐺 |=
acc(𝑥.𝑔).

In contrast, 𝜎𝐹 is not a footprint of𝑊𝑐 . Indeed, consider a state 𝜎𝐴 with
the same value as 𝜎𝐹 for x.f and in which acc(𝑥. 𝑓 , 1/2) holds. Since
𝜎𝐴 is compatible with 0.5 ⊗ 𝜎𝐹 , the second case of the definition of R
(Definition 4.4.4) applies, and thus R𝜎𝐴 (𝜎𝐹) only has 0.5 (min(1, 0.5))
permission to x.f. Therefore, 𝜎𝐴 ⊕ R𝜎𝐴 (𝜎𝐹) is defined, but does not
satisfy acc(𝑥.𝑔), and thus𝑊𝑐 does not hold in 𝜎𝐹 .
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Standard, unbounded, and combinable wands

We have seen so far three different (meanings for) magic wands, the
standard wand, the unbounded wand (Section 3.2), and the combinable

wand (Definition 4.4.4), which we compare in the following table:

Wand type Standard Unbounded Combinable

Semantics Standard Standard Definition 4.4.4
State model Bounded Unbounded Bounded
Combinability No Yes Yes
Distributivity No Yes No

This table first shows that unbounded wands have the same definition
as standard wands, but they are interpreted in an unbounded state
model. This allows unbounded wands to be packaged using the
specialized package logic from Section 4.3. In contrast, combinable
wands differ from standard wands in their definition of satisfiability,
and thus they require the generalized package logic from Section 4.4.1.
Interestingly, the fourth combination (interpreting Definition 4.4.4
in the unbounded state model) leads to the same semantics as un-
bounded wands, as all footprints are scalable in the unbounded state
model. Definition 4.4.4 can thus be seen as an approximation of the
semantics of unbounded wands in the bounded state model.

Second, this table shows how they differ in their properties. Both
unbounded and combinable wands strengthen the definition of stan-
dard wands to allow combinability. However, only the unbounded
wand satisfies distributivity. Interestingly, we cannot obtain a wand
definition that is distributive but not combinable, as distributivity
implies combinability.16 16: To see this, take an arbitrary wand −∗

(i.e., that satisfies𝐴 ∗ (𝐴−∗𝐵) |= 𝐵), which
also satisfies distributivity, and 𝛼 and 𝛽
such that 𝛼 + 𝛽 = 1. Now take a state
𝜎 satisfying 𝛼 · (𝐴 −∗ 𝐵) ∗ 𝛽 · (𝐴 −∗ 𝐵). By
distributivity and definition of the star,
we get 𝜎1 and 𝜎2 such that 𝜎 = 𝜎1 ⊕ 𝜎2,
where (1) 𝜎1 satisfies (𝛼·𝐴)−∗(𝛼·𝐵) and (2)
𝜎2 satisfies (𝛽·𝐴)−∗(𝛽·𝐵). Now take a state
𝜎𝐴 satisfying 𝐴 and such that 𝜎#𝜎𝐴. We
have 𝜎⊕𝜎𝐴 = (𝜎1⊕𝛼⊗𝜎𝐴)⊕(𝜎2⊕𝛽⊗𝜎𝐴),
and 𝜎1 ⊕ 𝛼⊗ 𝜎𝐴 satisfies 𝛼 · 𝐵 by (1), and
𝜎2 ⊕ 𝛽 ⊗ 𝜎𝐴 satisfies 𝛽 · 𝐵 by (2), thus 𝜎
satisfies (𝛼 ·𝐵) ∗ (𝛽 ·𝐵). If 𝐵 is combinable,
then 𝜎 satisfies (𝛼 + 𝛽) · 𝐵 = 𝐵, and thus
𝛼 · (𝐴 −∗ 𝐵) ∗ 𝛽 · (𝐴 −∗ 𝐵) |= 𝐴 −∗ 𝐵, which
is the definition of combinability.

To see why the combinable wand is not
distributive, consider the combinable wand acc(𝑥. 𝑓 ) −∗𝑐 acc(𝑦.𝑔).
This wand is equivalent to the standard wand acc(𝑥. 𝑓 ) −∗ acc(𝑦.𝑔)
(because of property 3 from Proposition 4.4.3), and thus is satisfied
by any state 𝜎 with some non-zero permission to x.f, for example
0.5. However, 0.5 ⊗ 𝜎, which satisfies 0.5 · acc(𝑥. 𝑓 ) −∗𝑐 acc(𝑦.𝑔) by
definition, does not satisfy acc(𝑥. 𝑓 , 0.5) −∗𝑐 acc(𝑦.𝑔, 0.5), as it only
contains 0.25 permission to x.f.

Moreover, the combinable and unbounded wands are incomparable.
The combinable wand is not stronger than the unbounded wand, as
the state 𝜎 described above satisfies acc(𝑥. 𝑓 ) −∗𝑐 acc(𝑦.𝑔), but not
the unbounded wand acc(𝑥. 𝑓 ) −∗ acc(𝑦.𝑔). Conversely, and perhaps
surprisingly, the unbounded wand is not stronger than the combinable
wand, as illustrated by the following magic wand:

𝑊 ≜ acc(𝑥.𝑏)∗(𝑥.𝑏⇒acc(𝑥. 𝑓 , 0.5)) −∗ acc(𝑥.𝑏)∗(𝑥.𝑏⇒acc(𝑥. 𝑓 , 1.5))

Interpreted in the unbounded state model, this unbounded wand is
satisfied by a state 𝜎 with full permission to x.f (the full permission
matters when combined with a state in which x.b holds). In contrast,
the state 𝜎 does not satisfy the corresponding combinable wand, as
the right-hand side in this case is equivalent to acc(𝑥.𝑏) ∗ (𝑥.𝑏 ⇒ ⊥)
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(because of the bounded state model). Thus, a combination of 𝜎 with a
state in which x.b holds does not satisfy the right-hand side.

While unbounded and combinable wands are incomparable in theory,
the combinable wand is often less restrictive in practice, in particular
because of property 3 from Proposition 4.4.3. Thus, which type of
wand to use in practice depends on the use case and properties needed
(combinability, distributivity, or neither). Nonetheless, our package
logic supports the three types.

4.5. Evaluation

We have implemented package algorithms for the standard wands and
combinable wands in a custom branch of Viper’s [16] verification condition
generator (VCG). The two implementations are based on the package
logic described in Section 4.3 and Section 4.4, and on the proof search
strategy outlined in Section 4.3.5. Viper’s VCG translates Viper programs
to Boogie [12] programs. It uses a total-heap semantics of IDF [74, 87],
where Viper states include a heap and a permission mask (tracking
fractional permission amounts). The heap and mask are represented in
Boogie as maps; we also represent witness sets as Boogie maps.

We evaluate our implementations of the package algorithms on Viper’s
test suite and compare them to Viper’s implementation of the FIA as
presented in Section 4.2.3. Our key findings are that our algorithms

1. enable the verification of almost all correct package operations,
2. correctly report package operations that are supposed to fail (in

contrast to the FIA), and
3. have an acceptable performance overhead compared to the FIA.

Moreover, interpreting wands as combinable wands as explained in
Section 4.4 has only a minor effect on the results, but correctly rejects
attempts to package a non-combinable wand. This finding suggests
that verifiers could improve their expressiveness by allowing flexible
combinations of wands and predicates with only a minor completeness
penalty.

For our evaluation, we considered all 85 files in the test suite for Viper’s
VCG with at least one package operation. From these 85 files, we re-
moved 29 files containing features that our implementation does not yet
support.17

Table 4.1 gives an overview of our results. These confirm that our algo-
rithms for standard and combinable wands (S-Alg and C-Alg) do not
produce false negatives, that is, are sound. In contrast, the FIA does verify
an incorrect program (which is similar to the example in Section 4.2.3).
While this is only a single unsound example, it is worth emphasizing
that (a) it comes from the pre-existing test suite of the tool itself, (b) the
unsoundness was not known of until our work, and (c) soundness issues
in a program verifier are critical to address; we show how to achieve
this.

Compared with the FIA, our implementation reports a handful of false
positives (spurious errors). For S-Alg, 3 out of 5 false positives are caused
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Algorithm Expected result Incorrectly verified Spurious errors
FIA 55 1 0
S-Alg 51 0 5
C-Alg 48 0 8

Table 4.1.: Verification results on our 56
benchmarks with the FIA, our algorithm
for standard wands (S-Alg), and for com-
binable wands (C-Alg). For each algo-
rithm, we report the number of correct
verification results, false negatives, and
false positives.
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by missing features of our implementation (such as remembering a subset
of the permissions that are inside predicate instances when manipulating
predicates); these features could be straightforwardly added in the future.
The other 2 false positives are caused by S-Alg’s strategy. In one, the only
potential footprint prevents the wand from ever being applied; although
technically a false positive, it seems useful to reject the wand and alert
the user. The other case is due to a coarse-grained heuristic applied by
S-Alg that can be improved.

C-Alg reports the expected result in 48 benchmarks. Importantly, it
correctly rejects one wand that indeed does not hold as a combinable
wand. 5 of the 8 false positives are identical to those for S-Alg. In the
other three benchmarks, the wands still do hold as combinable wands,
but further extensions to C-Alg are required to handle them due to
technical challenges regarding predicate instances. Once these extensions
have been implemented, C-Alg will be as precise as S-Alg, indicating
that comparable program verifiers could switch to combinable wands to
simply enable sound, flexible combinations with predicates.

To evaluate performance, we ran each of the three implementations 5
times on each of the 56 benchmarks on a Lenovo T480 with 32 GB of
RAM and a i7-8550U 1.8 GhZ CPU, running on Windows 10. We removed
the slowest and fastest time, and then took the mean of the remaining 3
runs. The FIA takes between 1 and 11 seconds per benchmark. On average,
S-Alg is 21% slower than the FIA. For 46 of the 56 examples, the increase
is less than 30%, and for 3 examples S-Alg is between a factor 2 and
3.4 slower. The overhead is most likely due to the increased complexity
of our algorithms, which track more states explicitly and require more
quantified axioms in the Boogie encoding. C-Alg is on average 10% slower
than S-Alg. We consider the performance overhead of our algorithms
to be acceptable, especially since wands occur much more frequently in
our benchmarks than in average Viper projects, as judged by existing
tests and examples. More representative projects will, thus, incur a much
smaller slow-down.

4.6. Related Work

Before the work based on this chapter was published, VerCors [57]
and Viper [16] were, to the best of our knowledge, the only automated
SL verifiers that supported magic wands. Both employ package and
apply ghost operations. VerCors’ package algorithm requires a user
to manually specify a footprint whereas Viper infers footprints using
the FIA, which is unsound as we show in Section 4.2.3. Our package
algorithm is as automated as the FIA but is sound.

Since this work was published, support for magic wands has been
added [197] to the Gillian verifier [30] based on the package logic
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presented here, which has proved important in the context of unsafe Rust
verification [64]. The Pulse automated verifier (based on the PulseCore
separation logic [50] embedded in F* [14]) supports trades, a binary
connective stronger than the magic wand, as it allows ghost updates and
opening invariants.18

Lee and Park [200] develop a sound and complete proof system for SL
including the magic wand. Moreover, they derive a decision procedure
from their completeness proof for propositional SL. However, more
expressive versions of SL (that include e.g., predicates and quantifiers)
are undecidable [196] and so this decision procedure cannot be directly
applied in the logics employed by program verifiers.

Chang et al. [201] define a shape analysis that derives magic wands
𝐴 −∗ 𝐵 of a restricted form (𝐴 and 𝐵 cannot contain general imprecise
assertions); our package logic does not impose such restrictions, which
rule out some useful kinds of wands. For example, 𝐴 may be a data
structure with a read-only part expressed via existentially-quantified
fractional permissions or 𝐴 may contain the necessary permission to
invoke a method, which may be an arbitrary assertion. In follow-up
work, Chang and Rival [189] present a restricted “inductive” magic wand.
Footprints of inductive wands are expressed via a finite unrolling of an
inductive predicate defining 𝐵 until the permissions in 𝐴 are revealed.
Such wands are useful to reason about data structures with back-pointers
such as doubly-linked lists.

Iris [31] provides a custom proof mode [202] for interactive SL proofs in
Coq [32]. Separation logics expressed in Iris support wands and are more
expressive than those of automated SL verifiers at the cost of requiring
more user guidance. Packaging a wand in the proof mode requires
manually specifying a footprint and proving that the footprint is correct.
While tactics can be used in principle to automate parts of this process,
there are no specific tactics to infer footprints.
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We now turn to a different but complementary goal: The automated
verification of hyperproperties. As explained in Chapter 1, hyperproper-
ties [27] are properties that relate multiple executions of a program, such
as determinism (∀∀), transitivity (∀∀∀), generalized non-interference
(∀∀∃) [28], or the existence of a minimum (∃∀). This chapter introduces
Hyper Hoare Logic, a novel formal foundation for proving program hy-
perproperties, while the next chapter presents Hypra, a novel automated
verifier for hyperproperties based on Hyper Hoare Logic.

5.1. Introduction

As shown by Table 1.2, existing program logics for hyperproperties face
two open problems. First, ∃∗∀∗-hyperproperties, such as the existence
of a minimum or a violation of generalized non-interference, cannot be
expressed by any existing program logic. Second, the existing logics cover
different, often disjoint program properties, which may hinder practical
applications: reasoning about a wide spectrum of properties of a given
program requires the application of several logics, each with its own
judgment; properties expressed in different, incompatible logics cannot
be composed within the same proof system, and thus within the same
automated verifier.

To overcome these limitations, this chapter presents Hyper Hoare Logic,
a novel program logic that enables proving or disproving any program

hyperproperty, a particular class of hyperproperties over the set of ter-
minating executions of a program (formally defined in Section 5.3.3).
In the rest of this chapter, when the context is clear, we use hyperprop-

erties to refer to program hyperproperties. Program hyperproperties
include many different types of properties, relating any (potentially un-
bounded or even infinite) number of program executions, and many
hyperproperties that no existing Hoare logic can handle. Among them are
∃∗∀∗-hyperproperties such as violations of generalized non-interference
(Section 5.5.3), and hyperproperties relating an unbounded or infinite
number of executions such as quantifying information flow based on
Shannon entropy or min-capacity [203–206] (the extended version [207]
of this chapter provides an example). Moreover, Hyper Hoare Logic offers
rules to compose hyper-triples with different types of hyperproperties,
such as monotonicity (∀∀) with the existence of a minimum (∃∀), or
non-interference (∀∀) with generalized non-interference (∀∀∃).

Hyper Hoare Logic is based on a simple yet powerful idea: We lift pre-
and postconditions from assertions over a fixed number of execution
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states (as is usually done by existing Hoare logics for hyperproperties)
to hyper-assertions over sets of execution states. Hyper Hoare Logic then
establishes hyper-triples of the form [𝑃] 𝐶 [𝑄], where 𝑃 and 𝑄 are hyper-
assertions. Such a hyper-triple is valid iff for any set of initial states
𝑆 that satisfies 𝑃, the set of reachable states from executing 𝐶 in any
state from 𝑆 satisfies 𝑄. By allowing assertions to quantify universally

over states, Hyper Hoare Logic can express overapproximate properties,
whereas existential quantification expresses underapproximate properties.
Combinations of universal and existential quantification in the same
assertion, as well as assertions over infinite sets of states, allow Hyper
Hoare Logic to prove or disprove properties beyond existing logics.

Contributions and outline. The main contribution of this chapter is
Hyper Hoare Logic, a novel Hoare logic that can prove or disprove
arbitrary hyperproperties over terminating executions. More precisely,
our contributions are:

▶ We formalize a novel notion of hyper-triples, and demonstrate their
expressiveness on judgments of existing Hoare logics and on
hyperproperties that no existing Hoare logic supports. We prove
that hyper-triples capture precisely program hyperproperties, and
that any invalid hyper-triple can be disproved by proving another
hyper-triple. (Section 5.3)

▶ We present a minimal set of core rules for Hyper Hoare Logic,
and prove that these rules are sound and complete for establishing
valid hyper-triples. (Section 5.4)

▶ We formally define a notion of syntactic hyper-assertions, which
restricts the interaction with the set of states to universal and exis-
tential quantification over states, and derive easy-to-use syntactic
rules for these syntactic hyper-assertions. (Section 5.5)

▶ We present novel loop rules, which capture important reasoning
principles. (Section 5.6)

▶ We present compositionality rules for hyper-triples, which enable
the flexible composition of hyper-triples of different forms and,
thus, facilitate modular proofs. (Section 5.7)

Moreover, Section 5.2 presents hyper-triples informally, and shows how
they can be used to specify hyperproperties, and Section 5.8 discusses
related work.

All the technical results presented in this chapter (including the soundness
of all the rules we present) have been proved in Isabelle/HOL [33], and
our mechanization is publicly available [135, 136].

5.2. Hyper-Triples, Informally

In this section, we illustrate how hyper-triples can be used to express
different types of hyperproperties, including over- and underapproximate
hyperproperties for single (Section 5.2.1) and multiple (Section 5.2.2 and
Section 5.2.3) executions.
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5.2.1. Overapproximation and Underapproximation

Example 5.2.1 A random number generator.
Consider the command 𝐶0 ≜ (x B randIntBounded(0, 9)), which gen-
erates a random integer between 0 and 9 (both included), and assigns
it to the variable 𝑥. We want 𝐶0 to satisfy the following two functional
correctness properties:

(P1) The final value of 𝑥 is in the interval [0, 9].
(P2) Every value in [0, 9] can occur for every initial state (i.e., the

output is not determined by the initial state).

Property P1 expresses the absence of bad executions, in which the output
𝑥 falls outside the interval [0, 9]. This property can be expressed in
classical Hoare logic, with the triple {⊤} 𝐶0 {0 ≤ 𝑥 ≤ 9}. In Hyper
Hoare Logic, where assertions are properties of sets of states, we
express it using a postcondition that universally quantifies over all
possible final states: In all final states, the value of 𝑥 should be in [0, 9].
The hyper-triple

[⊤] 𝐶0 [∀⟨𝜑′⟩. 0 ≤ 𝜑′(𝑥) ≤ 9]

expresses this property. The postcondition, written in the syntax
that will be introduced in Section 5.5, is semantically equivalent to
𝜆𝑆′. ∀𝜑′ ∈ 𝑆′. 0 ≤ 𝜑′(𝑥) ≤ 9. This hyper-triple means that, for any set 𝑆
of initial states 𝜑 (satisfying the trivial precondition ⊤), the set 𝑆′ of all
final states 𝜑′ that can be reached by executing 𝐶0 in some initial state
𝜑 ∈ 𝑆 satisfies the postcondition, i.e., all final states 𝜑′ ∈ 𝑆′ have a value
for 𝑥 between 0 and 9. This hyper-triple illustrates a systematic way of
expressing classical Hoare triples as hyper-triples (see Appendix A.3.1).

In contrast, property P2 expresses the existence of good executions and
can be expressed using an underapproximate Hoare logic (such as
Incorrectness Logic [89] [89]: O’Hearn (2019), Incorrectness Logic). In Hyper Hoare Logic, we use a postcondition
that existentially quantifies over all possible final states: For each 𝑛 ∈
[0, 9], there exists a final state where 𝑥 = 𝑛. The hyper-triple

[∃⟨𝜑⟩.⊤] 𝐶0 [∀𝑛. 0 ≤ 𝑛 ≤ 9 ⇒ ∃⟨𝜑′⟩. 𝜑′(𝑥) = 𝑛]

expresses P2. The precondition is semantically equivalent to 𝜆𝑆.∃𝜑 ∈
𝑆, and the postcondition to 𝜆𝑆′. ∀𝑛. 0 ≤ 𝑛 ≤ 9 ⇒ ∃𝜑′ ∈ 𝑆′. 𝜑′(𝑥) = 𝑛.
It requires the set 𝑆 of initial states to be non-empty (otherwise the
set of states reachable from states in 𝑆 by executing 𝐶0 would also
be empty, and the postcondition would not hold). The postcondition
ensures that, for any 𝑛 ∈ [0, 9], it is possible to reach at least one state
𝜑′ with 𝜑′(𝑥) = 𝑛.

This example shows that hyper-triples can express both underapproxi-
mate and overapproximate properties, which allows Hyper Hoare Logic
to reason about both the absence of bad executions and the existence of
good executions. Moreover, hyper-triples can also be used to prove the
existence of incorrect executions, which has proven useful in practice to
find bugs without false positives [89, 101]. To the best of our knowledge,
the only other Hoare logics that can express both properties P1 and P2
are Outcome Logic [102], Exact Separation Logic [120], and BiKAT [105].1
However, the first two are limited to properties of individual executions,
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and the latter to properties relating two executions. Thus, these logics
cannot handle the general class of 𝑘-safety hyperproperties, which we
discuss next.

5.2.2. (Dis-)Proving 𝑘-Safety Hyperproperties

A 𝑘-safety hyperproperty [27] is a property that characterizes all combina-

tions of 𝑘 executions of the same program. An important example (for
𝑘 = 2) is information flow security [29] which requires that programs
that manipulate secret data (such as passwords) do not expose secret
information to their users. In other words, the content of high-sensitivity
(secret) variables must not leak into low-sensitivity (public) variables. For
deterministic programs, information flow security is often formalized as
non-interference (NI) [208], a 2-safety hyperproperty: Any two executions
of the program with the same low-sensitivity (low for short) inputs (but
potentially different high-sensitivity inputs) must have the same low
outputs. That is, for all pairs of executions 𝜏1 and 𝜏2, if 𝜏1 and 𝜏2 agree
on the initial values of all low variables, they must also agree on the
final values of all low variables. This ensures that the final values of low
variables are not influenced by the values of high variables.

Example 5.2.2 Expressing non-interference in Hyper Hoare Logic.
Assuming that we have one low input variable 𝑙, one high input
variable ℎ, and one low output variable 𝑜, the hyper-triple

[∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1(𝑙) = 𝜑2(𝑙)︸                           ︷︷                           ︸
low(𝑙)

] o B f (l, h) [∀⟨𝜑′
1⟩, ⟨𝜑′

2⟩. 𝜑′
1(𝑜) = 𝜑′

2(𝑜)︸                            ︷︷                            ︸
low(𝑜)

]

expresses that 𝐶1 ≜ (o B f (l, h)) satisfies NI: If all states in 𝑆 have
the same value for 𝑙, then all final states reachable by executing 𝐶1 in
any initial state 𝜑 ∈ 𝑆 will have the same value for 𝑜. This set-based
definition is equivalent to the standard definition based on pairs of
executions, and instantiating 𝑆 with a set of two states directly yields
the standard definition.

Non-interference requires that all final states have the same value for 𝑙,
which is a symmetric property. Other 𝑘-safety hyperproperties, such as
monotonicity, are asymmetric, and thus need to relate initial and final
states.

Example 5.2.3 Expressing monotonicity in Hyper Hoare Logic.
The program y B f (x) is monotonic iff for any two executions with
𝜑1(𝑥) ≥ 𝜑2(𝑥), we have 𝜑′

1(𝑦) ≥ 𝜑′
2(𝑦), where 𝜑1 and 𝜑2 are the initial

states 𝜑′
1 and 𝜑′

2 are the corresponding final states. To relate initial
and final states, Hyper Hoare Logic uses logical variables (also called
auxiliary variables [209] [209]: Kleymann (1999), Hoare Logic and

Auxiliary Variables

). These variables cannot appear in a program,
and thus are guaranteed to have the same values in the initial and
final states of an execution. We use this property to tag corresponding
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states, as illustrated by the following hyper-triple for monotonicity:

[∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1(𝑡) = 1 ∧ 𝜑2(𝑡) = 2 ⇒ 𝜑1(𝑥) ≥ 𝜑2(𝑥)]
y B f (x)

[∀⟨𝜑′
1⟩, ⟨𝜑′

2⟩. 𝜑′
1(𝑡) = 1 ∧ 𝜑′

2(𝑡) = 2 ⇒ 𝜑′
1(𝑦) ≥ 𝜑′

2(𝑦)]

Here, 𝑡 is a logical variable used to distinguish the two executions of
the program.

Disproving 𝑘-safety hyperproperties. As explained in Chapter 1, being
able to prove that a property does not hold is valuable in practice,
because it allows building tools that can find bugs without false positives.
Hyper Hoare Logic is able to disprove hyperproperties by proving a
hyperproperty that is essentially its negation.

Example 5.2.4 Expressing a violation of non-interference.
We can express that the insecure program 𝐶2 ≜ (if (ℎ > 0) {o B
l} else {o B 5}), where ℎ is a high variable containing a confidential
value, violates non-interference (NI), using the following hyper-triple:

[low(𝑙) ∧ (∃⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1(ℎ) > 0 ∧ 𝜑2(ℎ) ≤ 0)]
if (ℎ > 0) {o B l} else {o B 5}
[∃⟨𝜑′

1⟩, ⟨𝜑′
2⟩. 𝜑′

1(𝑜) ≠ 𝜑′
2(𝑜)]

The postcondition is the negation of the postcondition for non-interference
above (Example 5.2.2), hence expressing that 𝐶2 violates NI. Note that
the precondition needs to be stronger than in Example 5.2.2: Since the
postcondition has to hold for all sets that satisfy the precondition, we
must require the set of initial states to contain at least two states that
will definitely lead to different final values of 𝑜.

The general class of 𝑘-safety hyperproperties includes properties that
relate more than 2 executions, such as transitivity (𝑘 = 3) and associativity
(𝑘 = 4) [88]. The only other Hoare logic that can be used to both prove and
disprove arbitrary 𝑘-safety hyperproperties is RHLE [96], since it supports
∀∗∃∗-hyperproperties, which includes both safety hyperproperties (i.e.,∀∗-
hyperproperties) and their negation (i.e., ∃∗-hyperproperties). However,
RHLE does not support ∃∗∀∗-hyperproperties, and thus cannot disprove
∀∗∃∗-hyperproperties such as generalized non-interference, as we discuss
next.

5.2.3. Beyond 𝑘-Safety

NI is widely used to express information flow security for determinis-
tic programs, but is overly restrictive for non-deterministic programs.

Example 5.2.5 A secure, non-deterministic program that violates
non-interference.
The program 𝐶3 ≜ (y B nonDet(); o B h + y) is information flow se-
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3: GNI is often formulated without the
requirement that 𝜏1 and 𝜏2 have the
same low inputs, e.g., in Clarkson and
Schneider [27]. This alternative formu-
lation can also be expressed in Hy-
per Hoare Logic, with the precondi-
tion ∀⟨𝜑⟩. 𝜑(𝑙in) = 𝜑(𝑙) and the post-
condition ∀⟨𝜑′

1⟩, ⟨𝜑
′
2⟩.∃⟨𝜑′⟩. 𝜑′(ℎ) =

𝜑′
1(ℎ)∧𝜑′(𝑙in) = 𝜑′

2(𝑙in)∧𝜑′(𝑜) = 𝜑′
2(𝑜).

The precondition binds, in each state, the
initial value of 𝑙 to the logical variable
𝑙in, which enables the postcondition to
refer to the initial value of 𝑙.

cure. Since the secret ℎ is added to an unbounded non-deterministically
chosen integer 𝑦, any secret ℎ can result in any2 2: This property holds for both un-

bounded and bounded arithmetic.
value for the public

variable 𝑜 and, thus, we cannot learn anything certain about ℎ from
observing the value of 𝑜. However, because of non-determinism, 𝐶3
does not satisfy NI: Two executions with the same initial values for 𝑙
could get different values for 𝑦, and thus have different final values for
𝑜.

Information flow security for non-deterministic programs (such as 𝐶3)
is often formalized as generalized non-interference (GNI) [210, 211] (also
called possibilistic non-interference), a security notion weaker than NI. GNI
allows two executions 𝜏1 and 𝜏2 with the same low inputs to have different

low outputs, provided that there is a third execution 𝜏 with the same low
inputs that has the same high inputs as 𝜏1 and the same low outputs as
𝜏2. That is, the difference in the low outputs between 𝜏1 and 𝜏2 cannot be
attributed to their secret inputs.3

Example 5.2.6 Expressing generalized non-interference.
The non-deterministic program 𝐶3 ≜ (y B nonDet(); o B h + y)
satisfies GNI, which can be expressed via the following hyper-triple:

[low(𝑙)] 𝐶3 [∀⟨𝜑′
1⟩, ⟨𝜑′

2⟩.∃⟨𝜑′⟩. 𝜑′(ℎ) = 𝜑′
1(ℎ) ∧ 𝜑′(𝑜) = 𝜑′

2(𝑜)]

The final states 𝜑′
1 and 𝜑′

2 correspond to the executions 𝜏1 and 𝜏2,
respectively, and 𝜑′ corresponds to execution 𝜏.

As before, the expressivenes of hyper-triples enables us not only to
express that a program satisfies complex hyperproperties such as GNI,
but also that a program violates them.

Example 5.2.7 Expressing a violation of generalized non-interference.
The program 𝐶4 ≜ (y B nonDet(); assume y ≤ 9; o B h + y), where
the first two statements model a non-deterministic choice of 𝑦 smaller
or equal to 9, leaks information: Observing for example 𝑜 = 20 at the
end of an execution, one can deduce that ℎ ≥ 11 (because 𝑦 ≤ 9).
We can formally express that 𝐶4 violates GNI with the following
hyper-triple:4 4: Still assuming that ℎ is not modified.

[low(𝑙) ∧ (∃⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1(ℎ) ≠ 𝜑2(ℎ))]
y B nonDet(); assume y ≤ 9; o B h + y

[∃⟨𝜑′
1⟩, ⟨𝜑′

2⟩. ∀⟨𝜑′⟩. 𝜑′(ℎ) = 𝜑′
1(ℎ) ⇒ 𝜑′(𝑜) ≠ 𝜑′

2(𝑜)]

The postcondition implies the negation of the postcondition we used
previously to express GNI. As before, we had to strengthen the pre-
condition to prove this violation.

GNI is a∀∀∃-hyperproperty, whereas its negation is an∃∃∀-hyperproperty.
To the best of our knowledge, Hyper Hoare Logic is the only Hoare logic
that can both prove and disprove GNI. In fact, we will see in Section 5.3.3
that all hyperproperties over terminating program executions can be
proven or disproven with Hyper Hoare Logic.
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⟨skip, 𝜎⟩ → 𝜎 ⟨x B e, 𝜎⟩ → 𝜎[𝑥 ↦→ 𝑒(𝜎)] ⟨x B nonDet(), 𝜎⟩ → 𝜎[𝑥 ↦→ 𝑣]
⟨𝐶1 , 𝜎⟩ → 𝜎′ ⟨𝐶2 , 𝜎

′⟩ → 𝜎′′

⟨𝐶1; 𝐶2 , 𝜎⟩ → 𝜎′′

⟨𝐶1 , 𝜎⟩ → 𝜎′

⟨𝐶1 + 𝐶2 , 𝜎⟩ → 𝜎′
⟨𝐶2 , 𝜎⟩ → 𝜎′

⟨𝐶1 + 𝐶2 , 𝜎⟩ → 𝜎′
𝑏(𝜎)

⟨assume b, 𝜎⟩ → 𝜎

⟨𝐶, 𝜎⟩ → 𝜎′ ⟨𝐶∗ , 𝜎′⟩ → 𝜎′′

⟨𝐶∗ , 𝜎⟩ → 𝜎′′ ⟨𝐶∗ , 𝜎⟩ → 𝜎

Figure 5.1.: Big-step semantics. Since expressions are functions from states to values, 𝑒(𝜎) denotes the evaluation of expression 𝑒 in state
𝜎. 𝜎[𝑥 ↦→ 𝑣] is the state that yields 𝑣 for 𝑥 and the value in 𝜎 for all other variables.

5.3. Hyper-Triples, Formally

In this section, we define the programming language used in this
chapter (Section 5.3.1), formalize hyper-triples (Section 5.3.2), and for-
mally characterize the expressiveness of hyper-triples (Section 5.3.3).
All technical results presented in this section have been formalized in
Isabelle/HOL.

5.3.1. Language and Semantics

We present Hyper Hoare Logic for the following imperative programming
language:

Definition 5.3.1 Program states and programming language.
A program state (ranged over by 𝜎) is a mapping from local variables (in the

set PVars) to values (in the set PVals): The set of program states PStates is

defined as the set of total functions from PVars to PVals: PStates ≜ PVars →
PVals.

Program commands 𝐶 are defined by the following syntax, where 𝑥 ranges

over variables in the set PVars, 𝑒 over expressions (modeled as total functions

from PStates to PVals), and 𝑏 over predicates over states (total functions from

PStates to Booleans):

𝐶 F skip | x B e | x B nonDet() | assume b | 𝐶; 𝐶 | 𝐶 + 𝐶 | 𝐶∗

The skip, assignment, and sequential composition commands are stan-
dard. The command assume b acts like skip if 𝑏 holds and otherwise
stops the execution. Instead of including deterministic if-statements and
while loops, we consider a non-deterministic choice 𝐶1 + 𝐶2 and a non-

deterministic iteration 𝐶∗, which are more expressive. Combined with
the assume command, they can express deterministic if-statements and
while loops as follows:

if (𝑏) {𝐶1} else {𝐶2} ≜ (assume b; 𝐶1) + (assume ¬b; 𝐶2)
if (𝑏) {𝐶} ≜ (assume b; 𝐶) + (assume ¬b)

while (𝑏) {𝐶} ≜ (assume b; 𝐶)∗; assume ¬b

Our language also includes a non-deterministic assignment y B nonDet()
(also called havoc), which allows us to model unbounded non-determinism.
Together with assume, it can for instance model the generation of random
numbers between bounds: y B randIntBounded(a, b) can be modeled as
y B nonDet(); assume a ≤ y ≤ b.
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The big-step semantics of our language is standard, and formally defined
in Figure 5.1. The rule for x B nonDet() allows 𝑥 to be updated with any
value 𝑣. assume b leaves the state unchanged if 𝑏 holds; otherwise, the
semantics gets stuck to indicate that there is no execution in which 𝑏 does
not hold. The command 𝐶1 + 𝐶2 non-deterministically executes either 𝐶1
or 𝐶2. 𝐶∗ non-deterministically either performs another loop iteration or
terminates.

Note that our language does not contain any command that could fail
(in particular, expression evaluation is total, such that division-by-zero
and other errors cannot occur). Runtime failures could easily be modeled
by instrumenting the program with a special Boolean variable err that
tracks whether a runtime error has occurred and skips the rest of the
execution if this is the case.

5.3.2. Hyper-Triples

As explained in Section 5.2, the key idea behind Hyper Hoare Logic is
to use predicates over sets of states as pre- and postconditions, whereas
traditional Hoare logics use properties of individual states (or of a given
number 𝑘 of states in logics for hyperproperties). Considering arbitrary
sets of states increases the expressiveness of triples substantially; for
instance, universal and existential quantification over these sets corre-
sponds to over- and underapproximate reasoning, respectively. Moreover,
combining both forms of quantification allows one to express advanced
hyperproperties, such as generalized non-interference (Example 5.2.6).

To allow the assertions of Hyper Hoare Logic to refer to logical variables
(as motivated in Section 5.2.2), we include them in our notion of state.

Definition 5.3.2 Extended states.
An extended state (ranged over by 𝜑) is a pair of a logical state (a total

mapping from logical variables to logical values) and a program state:

ExtStates ≜ (LVars → LVals) × PStates

Given an extended state 𝜑, we write 𝜑𝐿 to refer to the logical state and 𝜑𝑃 to

refer to the program state, that is, 𝜑 = (𝜑𝐿 , 𝜑𝑃).

We use the same meta variables (𝑥, 𝑦, 𝑧) for program and logical variables.
When it is clear from the context that 𝑥 ∈ PVars (resp. 𝑥 ∈ LVars), we
often write 𝜑(𝑥) to denote 𝜑𝑃(𝑥) (resp. 𝜑𝐿(𝑥)).

The assertions of Hyper Hoare Logic are predicates over sets of extended
states:

Definition 5.3.3 Hyper-assertions.
A hyper-assertion (ranged over by 𝑃, 𝑄, 𝑅) is a total function from

ℙ(ExtStates) to Booleans.

A hyper-assertion 𝑃 entails a hyper-assertion 𝑄, written 𝑃 |= 𝑄, iff all sets

that satisfy 𝑃 also satisfy 𝑄:

(𝑃 |= 𝑄) ≜ (∀𝑆. 𝑃(𝑆) ⇒ 𝑄(𝑆))
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We formalize hyper-assertions as semantic properties, which allows us to
focus on the key ideas of the logic. In Section 5.5, we will define a syntax
for hyper-assertions, which will allow us to derive simpler rules than the
core rules presented in the next section.

To formalize the meaning of hyper-triples, we need to relate them formally
to the semantics of our programming language. Since hyper-triples are
defined over extended states, we first define a semantic function sem

that lifts the operational semantics to extended states; it yields the set of
extended states that can be reached by executing a command 𝐶 from a
set of extended states 𝑆:

Definition 5.3.4 Extended semantics.

sem(𝐶, 𝑆) ≜ {𝜑 | ∃𝜎. (𝜑𝐿 , 𝜎) ∈ 𝑆 ∧ ⟨𝐶, 𝜎⟩ → 𝜑𝑃}

Lemma 5.3.1 Properties of the extended semantics.
The extended semantics satisfies the following useful properties:

1. sem(𝐶, 𝑆1 ∪ 𝑆2) = sem(𝐶, 𝑆1) ∪ sem(𝐶, 𝑆2)
2. 𝑆 ⊆ 𝑆′ ⇒ sem(𝐶, 𝑆) ⊆ sem(𝐶, 𝑆′)
3. sem(𝐶,⋃𝑥 𝑓 (𝑥)) =

⋃
𝑥 sem(𝐶, 𝑓 (𝑥))

4. sem(skip, 𝑆) = 𝑆
5. sem(𝐶1; 𝐶2 , 𝑆) = sem(𝐶2 , sem(𝐶1 , 𝑆))
6. sem(𝐶1 + 𝐶2 , 𝑆) = sem(𝐶1 , 𝑆) ∪ sem(𝐶2 , 𝑆)
7. sem(𝐶∗ , 𝑆) = ⋃

𝑛∈ℕ sem(𝐶𝑛 , 𝑆) where 𝐶𝑛 ≜ 𝐶; . . . ; 𝐶︸     ︷︷     ︸
n times

Using the extended semantics, we can now define the meaning of hyper-
triples.

Definition 5.3.5 Hyper-triples.
Given two hyper-assertions 𝑃 and 𝑄, and a command 𝐶, the hyper-triple
[𝑃] 𝐶 [𝑄] is valid, written |=[𝑃] 𝐶 [𝑄], iff for any set 𝑆 of initial extended

states that satisfies 𝑃, the set sem(𝐶, 𝑆) of extended states reachable by

executing 𝐶 in some state from 𝑆 satisfies 𝑄:

|=[𝑃] 𝐶 [𝑄] ≜ (∀𝑆. 𝑃(𝑆) ⇒ 𝑄(sem(𝐶, 𝑆)))

This definition is similar to classical Hoare logic, where the initial and
final states have been replaced by sets of extended states. As we have seen
in Section 5.2, hyper-assertions over sets of states allow our hyper-triples
to express properties of single executions and of multiple executions
(i.e., hyperproperties), as well as to perform overapproximate reason-
ing (like e.g., Hoare Logic) and underapproximate reasoning (like e.g.,
Incorrectness Logic).

Terminating hyper-triples

Definition 5.3.5 makes Hyper Hoare Logic a “partial correctness” logic,
in the sense that non-terminating executions are ignored by hyper-
triples. Alternatively, we can define a stronger notion of terminating
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hyper-triples, written |=⇓ [𝑃] 𝐶 [𝑄], as follows:

|=⇓ [𝑃] 𝐶 [𝑄]
≜
(
∀𝑆. 𝑃(𝑆) ⇒ (𝑄(sem(𝐶, 𝑆)) ∧ (∀𝜑 ∈ 𝑆.∃𝜎′. ⟨𝐶, 𝜑𝑃⟩ → 𝜎′))

)
The first conjunct corresponds to the validity of hyper-triples from
Definition 5.3.5, while the second conjunct additionally ensures the
existence of (at least) one terminating execution from any initial state
from 𝑆.

Note that, for non-deterministic programs, terminating hyper-triples
ensure a property strictly weaker than total correctness (i.e., the absence
of non-terminating executions). For example, the terminating hyper-
triple

⊢⇓ [⊤] x B nonDet(); while (𝑥 > 0) {skip} [⊤]

is valid according to this definition, even though (infinitely) many
executions do not terminate.

To formally characterize total correctness, we would need to change
our semantic model, as our big-step semantics (Figure 5.1) ignores non-
terminating executions. One possibility would be to use a small-step
semantics instead, and adapt Definition 5.3.4 accordingly. However,
as we will see later (in Section 5.7.1 and Section 5.6.1), this weaker
property is sufficient to obtain inference rules that lift restrictions
compared to their non-terminating hyper-triple counterparts.

5.3.3. Expressiveness of Hyper-Triples

We now show that hyper-triples are expressive enough to capture arbitrary
hyperproperties over finite program executions. A hyperproperty [27] is
traditionally defined as a property of sets of traces of a system, that is, of
sequences of system states. Since Hoare logics typically consider only the
initial and final state of a program execution, we use a slightly adapted
definition here:

Definition 5.3.6 Program hyperproperties.
A program hyperproperty is a set of sets of pairs of program states, i.e., an

element of ℙ(ℙ(PStates × PStates)).

A command 𝐶 satisfies the program hyperproperty H iff the set of all pairs of

pre- and post-states of 𝐶 is an element of H: {(𝜎, 𝜎′) | ⟨𝐶, 𝜎⟩ → 𝜎′} ∈ H.

Equivalently, a program hyperproperty can be thought of as a predicate
over ℙ(PStates × PStates). Note that this definition subsumes properties
of single executions, such as functional correctness properties.

In contrast to traditional hyperproperties, our program hyperproperties
describe only the finite executions of a program, that is, those that reach
a final state. An extension of Hyper Hoare Logic to infinite executions
might be possible by defining hyper-assertions over sets of traces rather
than sets of states; we leave this as future work. In the rest of this chapter,
when the context is clear, we use hyperproperties to refer to program

hyperproperties.
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Any program hyperproperty can be expressed as a hyper-triple in Hyper
Hoare Logic:

Theorem 5.3.2 Expressing hyperproperties as hyper-triples.
Let Hbe a program hyperproperty. Assume that the cardinality of LVars is at

least the cardinality of PVars, and that the cardinality of LVals is at least the

cardinality of PVals.

Then there exist hyper-assertions 𝑃 and 𝑄 such that, for any command 𝐶,

𝐶 ∈ H iff |=[𝑃] 𝐶 [𝑄].

Proof. We define the precondition 𝑃 such that the set of initial states
contains all program states, and the values of all program variables in
these states are recorded in logical variables (which is possible due to the
cardinality assumptions). Since the logical variables are not affected by the
execution of 𝐶, they allow 𝑄 to refer to the initial values of any program
variable, in addition to their values in the final state. Consequently, 𝑄
can describe all possible pairs of pre- and post-states. We simply define
𝑄 to be true iff the set of these pairs is contained in H.

We also proved the converse: every hyper-triple describes a program
hyperproperty. That is, hyper-triples capture exactly the hyperproperties
over finite executions.

Theorem 5.3.3 Expressing hyper-triples as hyperproperties.
For any hyper-assertions 𝑃 and 𝑄, there exists a hyperproperty H such that,

for any command 𝐶, 𝐶 ∈ H iff |=[𝑃] 𝐶 [𝑄].

Proof. We define

H≜ {Σ | ∀𝑆. 𝑃(𝑆) ⇒ 𝑄({(𝑙 , 𝜎′) | ∃𝜎. (𝑙 , 𝜎) ∈ 𝑆 ∧ (𝜎, 𝜎′) ∈ Σ})}

Combined with the fact that our logic is complete, as we will in the
next section (Theorem 5.4.2), this theorem implies that, if a command
𝐶 satisfies a hyperproperty H then there exists a proof of it in Hyper
Hoare Logic. More surprisingly, our logic also allows us to disprove any
hyperproperty: If𝐶 does not satisfy Hthen𝐶 satisfies the complement of H,
which is also a hyperproperty, and thus can also be proved. Consequently,
Hyper Hoare Logic can prove or disprove any program hyperproperty as
defined in Definition 5.3.6.

Since hyper-triples express hyperproperties (Theorem 5.3.2 and Theo-
rem 5.3.3), the ability to disprove any hyperproperty implies that Hyper
Hoare Logic can also disprove any hyper-triple. More precisely, one can
always use Hyper Hoare Logic to prove that some hyper-triple [𝑃] 𝐶 [𝑄]
is invalid, by proving the validity of another hyper-triple [𝑃′] 𝐶 [¬𝑄],
where 𝑃′ is a satisfiable hyper-assertion that entails 𝑃. Conversely, the
validity of such a hyper-triple [𝑃′] 𝐶 [¬𝑄] implies that all hyper-triples
[𝑃] 𝐶 [𝑄] (with 𝑃 weaker than 𝑃′) are invalid. The following theorem
precisely expresses this observation:
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Theorem 5.3.4 Disproving hyper-triples.
Given 𝑃, 𝐶, and 𝑄, the following two propositions are equivalent:

(1) |=[𝑃] 𝐶 [𝑄] does not hold.

(2) There exists a hyper-assertion 𝑃′
that is satisfiable, entails 𝑃, and

|=[𝑃′] 𝐶 [¬𝑄].

Proof. By negating Definition 5.3.5, we get that point (1) is equivalent
to the existence of a set of extended states 𝑆 such that 𝑃(𝑆) holds but
𝑄(sem(𝐶, 𝑆)) does not, i.e., ¬𝑄(sem(𝐶, 𝑆)) holds. Let 𝑃′ ≜ (𝜆𝑆′. 𝑆 = 𝑆′).
𝑃′ is clearly satisfiable. Moreover, point (1) implies that 𝑃′ entails 𝑃, and
that |=[𝑃′] 𝐶 [¬𝑄] holds. Thus, (1) implies (2).

Assuming (2), we get that there exists a set of extended states 𝑆 such that
𝑃′(𝑆) (since 𝑃′ is satisfiable) and ¬𝑄(sem(𝐶, 𝑆)) hold. Since 𝑃′ entails 𝑃,
𝑃(𝑆) holds, which implies (1).

We need to strengthen 𝑃 to 𝑃′ in point (2), because there might be
some sets 𝑆, 𝑆′ that both satisfy 𝑃, such that 𝑄(sem(𝐶, 𝑆)) holds, but
𝑄(sem(𝐶, 𝑆′)) does not. This was the case for Example 5.2.4 and Exam-
ple 5.2.7 in Section 5.2.2 and Section 5.2.3; for instance, the precondition
from Example 5.2.7 was strengthened to include ∃⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1(ℎ) ≠
𝜑2(ℎ).

Theorem 5.3.4 is another illustration of the expressiveness of Hyper
Hoare Logic. The corresponding result does not hold in traditional Hoare
logics:

Example 5.3.1 Hoare logic is not expressive enough to disprove its
invalid triples.
The classical Hoare triple {⊤} x B nonDet() {𝑥 ≥ 5} does not hold (1),
but there is no satisfiable 𝑃 such that {𝑃} x B nonDet() {¬(𝑥 ≥ 5)}
holds (2). Indeed, to disprove this triple, one needs to show the existence

of an execution that satisfies the negated postcondition, which is not
expressible in standard Hoare logic. In contrast, Hyper Hoare Logic
can disprove the classical Hoare triple by proving the hyper-triple

[∃⟨𝜑⟩.⊤] x B nonDet() [¬(∀⟨𝜑⟩. 𝜑(𝑥) ≥ 5)]

Disproving termination

As Hyper Hoare Logic can be used to prove and disprove hyperprop-
erties, we could extend Hyper Hoare Logic to prove and disprove
termination. Termination can be proven with terminating hyper-triples,
as discussed in Section 5.3.2. Termination can be disproven as follows.

To prove non-termination of a loop while (𝑏) {𝐶}, one can express
and prove that a set of states 𝑅, in which all states satisfy the loop
guard 𝑏, is a recurrent set [212] [212]: Gupta et al. (2008), Proving Non-

Termination

. 𝑅 is a recurrent set iff executing 𝐶 in
any state from 𝑅 leads to at least another state in 𝑅, which can easily
be expressed as a hyper-triple:

[∃⟨𝜑⟩. 𝜑 ∈ 𝑅] assume b; 𝐶 [∃⟨𝜑⟩. 𝜑 ∈ 𝑅]
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[8]: Floyd (1967), Assigning Meanings to

Programs

[9]: Hoare (1969), An Axiomatic Basis for

Computer Programming

[214]: Ascari et al. (2024), Sufficient Incor-

rectness Logic

[89]: O’Hearn (2019), Incorrectness Logic

[103]: Benton (2004), Simple Relational Cor-

rectness Proofs for Static Analyses and Pro-

gram Transformations

[88]: Sousa et al. (2016), Cartesian Hoare

Logic for Verifying K-Safety Properties

Thus, if one state from 𝑅 reaches while (𝑏) {𝐶}, we know that there
is at least one non-terminating execution. This idea is for example
used by Raad et al. [213] [213]: Raad et al. (2024), Non-Termination

Proving at Scale

, who extend an underapproximate program
logic to prove non-termination.

Note that, to formally characterize non-termination, as to formally
characterize total correctness, we would need to change our semantic
model (for example by using a small-step semantics instead of a
big-step semantics).

The correspondence between hyper-triples and program hyperproperties
(Theorem 5.3.2 and Theorem 5.3.3), together with the completeness
result (Theorem 5.4.2, presented in the next section) precisely charac-
terizes the expressiveness of Hyper Hoare Logic. In Appendix A.3, we
show systematic ways to express the judgments of existing over- and
underapproximating Hoare logics as hyper-triples.

For example, for 𝑃 and 𝑄 being sets of (extended) states, we formally
show that the Hoare logic [8, 9] triple |=HL {𝑃} 𝐶 {𝑄} is equivalent to
the hyper-triple [∀⟨𝜑⟩. 𝜑 ∈ 𝑃] 𝐶 [∀⟨𝜑⟩. 𝜑 ∈ 𝑄] (Proposition A.3.2), the
sufficient incorrectness logic [214] triple |=SIL {𝑃} 𝐶 {𝑄} is equivalent
to the hyper-triple [∃⟨𝜑⟩. 𝜑 ∈ 𝑃] 𝐶 [∃⟨𝜑⟩. 𝜑 ∈ 𝑄] (Proposition A.3.9),
and the incorrectness logic [89] triple |=IL {𝑃} 𝐶 {𝑄} is equivalent
to the hyper-triple [𝜆𝑆. 𝑃 ⊆ 𝑆] 𝐶 [𝜆𝑆. 𝑄 ⊆ 𝑆] (Proposition A.3.6). As
another example, for 𝑃 and 𝑄 being sets of pairs of (extended) states,
we show (Proposition A.3.4) that the relational Hoare logic [103] triple
|=RHL {𝑃} 𝐶 {𝑄} (as a special case of Cartesian Hoare logic triples [88])
is equivalent to the hyper-triple

[∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1(𝑡) = 1 ⇒ 𝜑2(𝑡) = 2 ⇒ (𝜑1 , 𝜑2) ∈ 𝑃]
𝐶

[∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1(𝑡) = 1 ⇒ 𝜑2(𝑡) = 2 ⇒ (𝜑1 , 𝜑2) ∈ 𝑄]

5.4. Core Rules

We now present, in Section 5.4.1, a minimal set of core rules for composi-
tionally establishing hyper-triples. As we will prove in Section 5.4.2, these
core rules are sound and complete, i.e., every triple that can be derived
using these core rules is valid (according to Definition 5.3.5), and every
valid triple can be derived with these core rules. All technical results
presented in this section have been formalized in Isabelle/HOL.

5.4.1. The Rules

The core rules of Hyper Hoare Logic are shown in Figure 5.2. The
rules Skip, Seq, Cons, and Exist are analogous to traditional Hoare logic.
Assume, Assign, and Havoc are straightforward given the semantics of these
commands. All three rules work backward. In particular, the precondition
of Assume applies the postcondition 𝑃 only to those states that satisfy the
assumption 𝑏. By leaving the value 𝑣 unconstrained, Havoc considers
as precondition the postcondition 𝑃 for all possible values for 𝑥. The
three rules Assume, Assign, and Havoc are optimized for expressivity; we
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Seq
⊢ [𝑃] 𝐶1 [𝑅] ⊢ [𝑅] 𝐶2 [𝑄]

⊢ [𝑃] 𝐶1; 𝐶2 [𝑄]

Choice
⊢ [𝑃] 𝐶1 [𝑄1] ⊢ [𝑃] 𝐶2 [𝑄2]

⊢ [𝑃] 𝐶1 + 𝐶2 [𝑄1 ⊗ 𝑄2]

Iter
⊢ [𝐼𝑛] 𝐶 [𝐼𝑛+1]

⊢ [𝐼0] 𝐶∗ [⊗𝑛∈ℕ 𝐼𝑛]

Cons
𝑃 |= 𝑃′ 𝑄′ |= 𝑄 ⊢ [𝑃′] 𝐶 [𝑄′]

⊢ [𝑃] 𝐶 [𝑄]

Exist
∀𝑥. (⊢ [𝑃𝑥] 𝐶 [𝑄𝑥])

⊢ [∃𝑥. 𝑃𝑥] 𝐶 [∃𝑥. 𝑄𝑥]

Havoc
⊢ [𝜆𝑆. 𝑃({𝜑 | ∃𝛼 ∈ 𝑆.∃𝑣. 𝜑𝐿 = 𝛼𝐿 ∧ 𝜑𝑃 = 𝛼𝑃[𝑥 ↦→ 𝑣]})] x B nonDet() [𝑃]

Assume
⊢ [𝜆𝑆. 𝑃({𝜑 | 𝜑 ∈ 𝑆 ∧ 𝑏(𝜑𝑃)})] assume b [𝑃]

Assign
⊢ [𝜆𝑆. 𝑃({𝜑 | ∃𝛼 ∈ 𝑆. 𝜑𝐿 = 𝛼𝐿 ∧ 𝜑𝑃 = 𝛼𝑃[𝑥 ↦→ 𝑒(𝜑𝑃)]})] x B e [𝑃]

Skip
⊢ [𝑃] skip [𝑃]

Figure 5.2.: Core rules of Hyper Hoare Logic. The meaning of the operators⊗ and
⊗
𝑛∈ℕ are defined in Definition 5.4.1 and Definition 5.4.2,

respectively.

will derive in Section 5.5 syntactic versions of these rules, which are less
expressive, but easier to apply.

The rule Choice (for non-deterministic choice) is more involved. Most
standard Hoare logics use the same assertion 𝑄 as postcondition of all
three triples. However, such a rule would not be sound in Hyper Hoare
Logic. Consider for instance an application of this hypothetical Choice rule
where both 𝑃 and 𝑄 are defined as 𝜆𝑆. |𝑆| = 1, expressing that there is a
single pre- and post-state. If commands 𝐶1 and 𝐶2 are deterministic, the
antecedents of the rule can be proved because a single pre-state leads to
a single post-state. However, the non-deterministic choice will in general
produce two post-states, such that the postcondition is violated.

To account for the effects of non-determinism on the sets of states
described by hyper-assertions, we obtain the postcondition of the non-
deterministic choice by combining the postconditions of its branches.
As shown by Lemma 5.3.1 (point 6), executing the non-deterministic
choice 𝐶1 + 𝐶2 in the set of states 𝑆 amounts to executing 𝐶1 in 𝑆 and
𝐶2 in 𝑆, and taking the union of the two resulting sets of states. Thus, if
𝑄1(sem(𝐶1 , 𝑆)) and𝑄2(sem(𝐶2 , 𝑆)) hold then the postcondition of𝐶1+𝐶2
must characterize the union sem(𝐶1 , 𝑆) ∪ sem(𝐶2 , 𝑆) The postcondition
of the rule Choice, 𝑄1 ⊗ 𝑄2, achieves that:

Definition 5.4.1 Union of hyper-assertions.
A set 𝑆 satisfies 𝑄1 ⊗ 𝑄2 iff it can be split into two (potentially overlapping)

sets 𝑆1 and 𝑆2 (the sets of post-states of the branches), such that 𝑆1 satisfies

𝑄1 and 𝑆2 satisfies 𝑄2:

(𝑄1 ⊗ 𝑄2)(𝑆) ≜ (∃𝑆1 , 𝑆2. 𝑆 = 𝑆1 ∪ 𝑆2 ∧𝑄1(𝑆1) ∧𝑄2(𝑆2))

The rule Iter for non-deterministic iterations generalizes our treatment of
non-deterministic choice. It employs an indexed loop invariant 𝐼, which
maps a natural number 𝑛 to a hyper-assertion 𝐼𝑛 . 𝐼𝑛 characterizes the
set of states reached after executing 𝑛 times the command 𝐶 in a set of
initial states that satisfies 𝐼0. Analogously to the rule Choice, the indexed
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invariant avoids using the same hyper-assertion for all non-deterministic
choices. The precondition of the rule’s conclusion and its premise allow
us to prove (inductively) that the triple [𝐼0] 𝐶𝑛 [𝐼𝑛] holds for all 𝑛. 𝐼𝑛 thus
characterizes the set of reachable states after exactly 𝑛 iterations of the
loop. Since our loop is non-deterministic (i.e., has no loop condition), the
set of reachable states after the loop is the union of the sets of reachable
states after each iteration. The postcondition of the conclusion captures
this intuition, by using a version of the ⊗ operator generalized to an
indexed family of hyper-assertions:

Definition 5.4.2 Indexed union of hyper-assertions.
A set𝑆 satisfies

⊗
𝑛∈ℕ 𝐼𝑛 iff it can be split into

⋃
𝑖 𝑓 (𝑖) = 𝑓 (0)∪. . .∪ 𝑓 (𝑖)∪. . .,

where 𝑓 (𝑖) (the set of reachable states after exactly 𝑖 iterations) satisfies 𝐼𝑖 (for

each 𝑖 ∈ ℕ):

(⊗𝑛∈ℕ 𝐼𝑛)(𝑆) ≜
(
∃ 𝑓 . (𝑆 =

⋃
𝑛∈ℕ 𝑓 (𝑛)) ∧ (∀𝑛 ∈ ℕ. 𝐼𝑛( 𝑓 (𝑛)))

)
Rules for terminating hyper-triples

While the rules presented in Figure 5.2 are designed for partially

correct hyper-triples (as defined in Definition 5.3.5), they are all sound
for terminating hyper-triples (as presented at the end of Section 5.3.2),
except for the rule Assume, as assume b does not reach a final state
when 𝑏 does not hold. Formally, we have proven that, if the program
𝐶 does not contain any assume statement, then the two types of
hyper-triples are equivalent, i.e., ⊢ [𝑃] 𝐶 [𝑄] ⇐⇒⊢⇓ [𝑃] 𝐶 [𝑄].

However, both if-statements and while loops contain assume state-
ments, as

if (𝑏) {𝐶1} else {𝐶2} ≜ (assume b; 𝐶1) + (assume ¬b; 𝐶2)
while (𝑏) {𝐶} ≜ (assume b; 𝐶)∗; assume ¬b

This is not a problem for establishing hyper-triples for if-statements,
as the condition 𝑏 is either true or false in any given state. Formally,
we have proven the following rule sound, where the termination of
each branch ensures the termination of the composed if-statement:

IfTot
⊢ [𝑃] assume b [𝑃⊤]

⊢ [𝑃] assume ¬b [𝑃⊥] ⊢⇓ [𝑃⊤] 𝐶1 [𝑄1] ⊢⇓ [𝑃⊥] 𝐶2 [𝑄2]
⊢⇓ [𝑃] if (𝑏) {𝐶1} else {𝐶2} [𝑄1 ⊗ 𝑄2]

Crucially, we decompose the statement assume b; 𝐶1 into two parts:
assume b, which might not terminate, and the command 𝐶1, which
is required to terminate (and similarly for assume ¬b; 𝐶2).

For while loops, by combining the rules Iter, Assume, and Seq, we obtain
the following rule for partially correct hyper-triples:

WhileDesugared
⊢ [𝐼𝑛] assume b; 𝐶 [𝐼𝑛+1] ⊢ [⊗𝑛∈ℕ 𝐼𝑛] assume ¬b [𝑄]

⊢ [𝐼0] while (𝑏) {𝐶} [𝑄]



5. Hyper Hoare Logic 122

The corresponding rule for terminating hyper-triples additionally re-
quires proving that a loop variant strictly decreases after every itera-
tion, as follows:

WhileDesugaredTot
⊢ [𝐼𝑛] assume b [𝑅𝑛] ⊢⇓ [𝑅𝑛 ∧ □(𝑒 = 𝑡𝐿)] 𝐶 [𝑃𝑛+1 ∧ □(𝑒 ≺ 𝑡𝐿)]

⊢ [⊗𝑛∈ℕ 𝐼𝑛] assume ¬b [𝑄]
𝑡𝐿 ∉ fv(𝐼𝑛) ∪ fv(𝑅𝑛) ≺ well-founded

⊢⇓ [𝑃0] while (𝑏) {𝐶} [𝑄]

In this rule, we use a fresh logical variable 𝑡𝐿 to first record (in the
precondition) the initial value of the ranking function 𝑒, which we
then use (in the postcondition) to check that the ranking function 𝑒
has indeed strictly decreased. Moreover, as in the rule IfTot, we split
the statement assume b; 𝐶 into assume b, which might not terminate,
and the command 𝐶, which is required to terminate.

5.4.2. Soundness and Completeness

We have proved in Isabelle/HOL that Hyper Hoare Logic is sound and
complete. That is, every hyper-triple that can be derived from the core
rules is valid, and vice versa. Note that Figure 5.2 contains only the core

rules of Hyper Hoare Logic. These are sufficient to prove completeness;
all rules presented later in this chapter are only useful to make proofs
more succinct and natural.

Theorem 5.4.1 Soundness of the core rules.
Hyper Hoare Logic is sound:

If ⊢ [𝑃] 𝐶 [𝑄] then |=[𝑃] 𝐶 [𝑄].

Proof. We prove ∀𝑃, 𝑄. ⊢ [𝑃] 𝐶 [𝑄] ⇒ |=[𝑃] 𝐶 [𝑄] by straightforward
structural induction on 𝐶. The cases for skip, 𝐶1; 𝐶2, 𝐶1 + 𝐶2, and 𝐶∗,
directly follow from Lemma 5.3.1.

Theorem 5.4.2 Completeness of the core rules.
Hyper Hoare Logic is complete:

If |=[𝑃] 𝐶 [𝑄] then ⊢ [𝑃] 𝐶 [𝑄].

Proof. We prove 𝐻(𝐶) ≜ (∀𝑃, 𝑄. |=[𝑃] 𝐶 [𝑄] ⇒⊢ [𝑃] 𝐶 [𝑄]) by struc-
tural induction over 𝐶. We show the case for 𝐶 ≜ 𝐶1 + 𝐶2; the proof
for the non-deterministic iteration is analogous, and the other cases are
standard or straightforward.

We assume𝐻(𝐶1) and𝐻(𝐶2), and want to prove𝐻(𝐶)where𝐶 ≜ 𝐶1+𝐶2.
As we illustrate after this proof sketch, we need to consider each possible
value𝑉 of the set of extended states 𝑆 separately. For an arbitrary value𝑉 ,
we define 𝑃𝑉 ≜ (𝜆𝑆. 𝑃(𝑆) ∧ 𝑆 = 𝑉), 𝑅1

𝑉
≜ (𝜆𝑆. 𝑆 = sem(𝐶1 , 𝑉) ∧ 𝑃(𝑉)),

and 𝑅2
𝑉
≜ (𝜆𝑆. 𝑆 = sem(𝐶2 , 𝑉)). We get ⊢ [𝑃𝑉 ] 𝐶1 [𝑅1

𝑉
] from 𝐻(𝐶1) and
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⊢ [𝑃𝑉 ] 𝐶2 [𝑅2
𝑉
] from 𝐻(𝐶2). We then construct the following derivation,

using the core rules:

∀𝑉. ⊢ [𝑃𝑉 ] 𝐶1 [𝑅1
𝑉 ] ∀𝑉. ⊢ [𝑃𝑉 ] 𝐶2 [𝑅2

𝑉 ]
∀𝑉. ⊢ [𝑃𝑉 ] 𝐶1 + 𝐶2 [𝑅1

𝑉 ⊗ 𝑅2
𝑉 ]

Choice

⊢ [∃𝑉. 𝑃𝑉 ] 𝐶 [∃𝑉. 𝑅1
𝑉 ⊗ 𝑅2

𝑉 ]
Exist

. . .

⊢ [𝑃] 𝐶1 + 𝐶2 [𝑄]
Cons

To construct this derivation, we first apply the rule Choice, which gives
us ⊢ [𝑃𝑉 ] 𝐶 [𝑅1

𝑉
⊗ 𝑅2

𝑉
]. Since we prove this triple for an arbitrary

value 𝑉 (that is, for all 𝑉), we then apply the rule Exist, to obtain
⊢ [∃𝑉. 𝑃𝑉 ] 𝐶 [∃𝑉. 𝑅1

𝑉
⊗ 𝑅2

𝑉
]. 𝑃 clearly entails ∃𝑉. 𝑃𝑉 , and the postcon-

dition ∃𝑉. 𝑅1
𝑉
⊗ 𝑅2

𝑉
entails 𝜆𝑆.∃𝑉. 𝑃(𝑉) ∧ 𝑆 = sem(𝐶1 , 𝑉) ∪ sem(𝐶2 , 𝑉),

which precisely describes the sets of states sem(𝐶1+𝐶2 , 𝑉) (Lemma 5.3.1(6))
where 𝑉 satisfies 𝑃, and thus entails 𝑄. By rule Cons, we get ⊢ [𝑃] 𝐶 [𝑄],
which concludes the case.

Note that our completeness theorem is not concerned with the expressiv-
ity of the assertion language because we use semantic hyper-assertions (i.e.,
functions, see Definition 5.3.3). Similarly, by using semantic entailments
in the rule Cons, we decouple the completeness of Hyper Hoare Logic
from the completeness of the logic used to derive entailments.

Interestingly, the logic would not be complete without the core rule Exist,
as we illustrate with the following simple example:

Example 5.4.1 Incompleteness of Hyper Hoare Logic without the rule
Exist.
Let 𝜑𝑣 be the state that maps 𝑥 to 𝑣 and all other variables to 0.
Let 𝑃𝑣 ≜ (𝜆𝑆. 𝑆 = {𝜑𝑣}). Clearly, the hyper-triples [𝑃0] skip [𝑃0],
[𝑃2] skip [𝑃2], [𝑃0] x B x + 1 [𝑃1], and [𝑃2] x B x + 1 [𝑃3] are
all valid. We would like to prove the hyper-triple [𝑃0 ∨ 𝑃2] skip +
(x B x + 1) [𝜆𝑆. 𝑆 = {𝜑0 , 𝜑1} ∨ 𝑆 = {𝜑2 , 𝜑3}]. That is, either 𝑃0 holds
before, and then we have 𝑆 = {𝜑0 , 𝜑1} afterwards, or 𝑃2 holds before,
and then we have 𝑆 = {𝜑2 , 𝜑3} afterwards. However, using the rule
Choice only, the most precise triple we can prove is

⊢ [𝑃0 ∨ 𝑃2] skip [𝑃0 ∨ 𝑃2] ⊢ [𝑃0 ∨ 𝑃2] x B x + 1 [𝑃1 ∨ 𝑃3]
⊢ [𝑃0 ∨ 𝑃2] skip + (x B x + 1) [(𝑃0 ∨ 𝑃2) ⊗ (𝑃1 ∨ 𝑃3)]

Choice

The postcondition (𝑃0 ∨ 𝑃2) ⊗ (𝑃1 ∨ 𝑃3) is equivalent to

(𝑃0 ⊗ 𝑃1) ∨ (𝑃0 ⊗ 𝑃3) ∨ (𝑃2 ⊗ 𝑃1) ∨ (𝑃2 ⊗ 𝑃3)

i.e.,

𝜆𝑆. 𝑆 = {𝜑0 , 𝜑1} ∨ 𝑆 = {𝜑0 , 𝜑3} ∨ 𝑆 = {𝜑2 , 𝜑1} ∨ 𝑆 = {𝜑2 , 𝜑3}

We thus have two spurious disjuncts, 𝑃0 ⊗ 𝑃3 (i.e., 𝑆 = {𝜑0 , 𝜑3}) and
𝑃2 ⊗ 𝑃1 (i.e., 𝑆 = {𝜑2 , 𝜑1}).

This example shows that the rule Choice on its own is not precise enough for
the logic to be complete; we need at least a disjunction rule to distinguish
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the two cases 𝑃0 and 𝑃2. In general, however, there might be an infinite
number of cases to consider, which is why we need the rule Exist. The
premise of this rule allows us to fix a set of states 𝑆 that satisfies some
precondition 𝑃 and to prove the most precise postcondition for the
precondition 𝜆𝑆′. 𝑆 = 𝑆′; combining these precise postconditions with
an existential quantifier in the conclusion of the rule allows us to obtain
the most precise postcondition for the precondition 𝑃.

For our example, we can use the rule Exist with a Boolean 𝑏 that records
whether 𝑃0 or 𝑃2 is satisfied initially, as follows:

⊢ [(𝑏⇒𝑃0)∧(¬𝑏⇒𝑃2)] skip [(𝑏⇒𝑃0)∧(¬𝑏⇒𝑃2)]
⊢ [(𝑏⇒𝑃0)∧(¬𝑏⇒𝑃2)] x B x + 1 [(𝑏⇒𝑃1)∧(¬𝑏⇒𝑃3)]

⊢ [(𝑏⇒𝑃0)∧(¬𝑏⇒𝑃2)] skip + (x B x + 1) [((𝑏⇒𝑃0)∧(¬𝑏⇒𝑃2)) ⊗ ((𝑏⇒𝑃1)∧(¬𝑏⇒𝑃3))]
Choice

⊢ [∃𝑏. (𝑏⇒𝑃0)∧(¬𝑏⇒𝑃2)︸                       ︷︷                       ︸
=𝑃0∨𝑃2

] skip + (x B x + 1) [∃𝑏. ((𝑏⇒𝑃0)∧(¬𝑏⇒𝑃2)) ⊗ ((𝑏⇒𝑃1)∧(¬𝑏⇒𝑃3))
=(𝑃0⊗𝑃2)∨(𝑃1⊗𝑃3)

]
Exist

5.5. Syntactic Rules

The core rules presented in Section 5.4 are optimized for expressiveness:
They are sufficient to prove any valid hyper-triple (Theorem 5.4.2), but
not necessarily in the simplest way. In particular, the rules for atomic
statements Assume, Assign, and Havoc require a set comprehension in the
precondition, which is necessary when dealing with arbitrary semantic
hyper-assertions. However, by imposing syntactic restrictions on hyper-
assertions, we can derive simpler rules, as we show in this section. In
Section 5.5.1, we define a syntax for hyper-assertions, in which the set of
states occurs only as range of universal and existential quantifiers. As
we have seen in Section 5.2 and formally show in Appendix A.3, this
syntax is sufficient to capture many useful hyperproperties. Moreover,
it allows us to derive simple rules for assignments (Section 5.5.2) and
assume statements (Section 5.5.3). All rules presented in this section have
been proven sound in Isabelle/HOL.

5.5.1. Syntactic Hyper-Assertions

We define a restricted class of syntactic hyper-assertions, which can interact
with the set of states only through universal and existential quantification
over its states:

Definition 5.5.1 Syntactic hyper-expressions and hyper-assertions.
Hyper-expressions 𝑒 are defined by the following syntax, where 𝜑 ranges

over states, 𝑥 over (program or logical) variables, 𝑦 over quantified variables,

𝑐 over literals, ⊕ over binary operators (such as +,−, ∗ for integers, ++
for lists, etc.), and 𝑓 denotes functions from values to values (such as len for

lists):

eF 𝑐 | 𝑦 | 𝜑𝑃(𝑥) | 𝜑𝐿(𝑥) | 𝑒 ⊕ 𝑒 | 𝑓 (𝑒)

Syntactic hyper-assertions 𝐴 are defined by the following syntax, where

𝑒 ranges over hyper-expressions, 𝑏 over boolean literals, and ⪰ over binary
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AssignS
⊢ [A𝑒

𝑥 [𝑃]] x B e [𝑃]
HavocS
⊢ [H𝑥 [𝑃]] x B nonDet() [𝑃]

AssumeS
⊢ [Π𝑏 [𝑃]] assume b [𝑃]

Figure 5.3.: Selected syntactic rules of Hyper Hoare Logic. The syntactic transformations A𝑒𝑥 [𝐴], H𝑥 [𝐴], and Π𝑏 [𝐴], are defined in
Definition 5.5.3, Definition 5.5.4, and Definition 5.5.5, respectively.

5: State expressions refer to a single (im-
plicit) state. In contrast to program ex-
pressions, they may additionally refer to
logical variables and use quantifiers over
values.

operators (such as =,≠, <, >,≤,≥, . . .):

𝐴F 𝑏 | 𝑒 ⪰ 𝑒 | 𝐴 ∨ 𝐴 | 𝐴 ∧ 𝐴 | ∀𝑦. 𝐴 | ∃𝑦. 𝐴 | ∀⟨𝜑⟩. 𝐴 | ∃⟨𝜑⟩. 𝐴

Note that hyper-expressions are different from program expressions, since
the latter can only refer to program variables of a single implicit state
(e.g., 𝑥 = 𝑦 + 𝑧), while the former can explicitly refer to different states
(e.g., 𝜑(𝑥) = 𝜑′(𝑥)). Negation ¬𝐴 is defined recursively in the standard
way. We also define (𝐴⇒ 𝐵) ≜ (¬𝐴 ∨ 𝐵), emp ≜ (∀⟨𝜑⟩.⊥), and □𝑝 ≜
(∀⟨𝜑⟩. 𝑝(𝜑)), where 𝑝 is a state

5 expression.

The semantics of syntactic hyper-expressions and hyper-assertions is
defined as follows:

Definition 5.5.2 Evaluation of syntactic hyper-expressions and satisfi-
ability of hyper-assertions.
Let Σ a mapping from state variables (such as 𝜑 and 𝜑′

) to states, and Δ a

mapping from standard variables (such as 𝑥) to values.
6 6: In our Isabelle formalization, these

mappings are actually lists, since we use
De Bruĳn indices [215].

The evaluation of

hyper-expressions is defined as follows:

⟦𝑐⟧Σ
Δ

≜ 𝑐

⟦𝑦⟧Σ
Δ

≜ Δ(𝑦)
⟦𝜑𝑃(𝑥)⟧Σ

Δ
≜ (Σ(𝜑))𝑃(𝑥)

⟦𝜑𝐿(𝑥)⟧Σ
Δ

≜ (Σ(𝜑))𝐿(𝑥)
⟦𝑒1 ⊕ 𝑒2⟧

Σ
Δ
≜ ⟦𝑒1⟧ΣΔ ⊕ ⟦𝑒2⟧ΣΔ

⟦ 𝑓 (𝑒)⟧Σ
Δ

≜ 𝑓 (⟦𝑒⟧Σ
Δ
)

Let 𝑆 be a set of states. The satisfiability of hyper-assertions is defined as

follows:

𝑆,Σ,Δ |= 𝑏 ≜ 𝑏

𝑆,Σ,Δ |= 𝑒1 ⪰ 𝑒2 ≜
(
⟦𝑒1⟧

Σ
Δ
⪰ ⟦𝑒2⟧ΣΔ

)
𝑆,Σ,Δ |= 𝐴 ∧ 𝐵 ≜ (𝑆,Σ,Δ |= 𝐴 ∧ 𝑆,Σ,Δ |= 𝐵)
𝑆,Σ,Δ |= 𝐴 ∨ 𝐵 ≜ (𝑆,Σ,Δ |= 𝐴 ∨ 𝑆,Σ,Δ |= 𝐵)
𝑆,Σ,Δ |= ∀𝑥. 𝐴 ≜ (∀𝑣. 𝑆,Σ,Δ[𝑥 ↦→ 𝑣] |= 𝐴)
𝑆,Σ,Δ |= ∃𝑥. 𝐴 ≜ (∃𝑣. 𝑆,Σ,Δ[𝑥 ↦→ 𝑣] |= 𝐴)
𝑆,Σ,Δ |= ∀⟨𝜑⟩. 𝐴 ≜

(
∀𝛼 ∈ 𝑆. 𝑆,Σ[𝜑 ↦→ 𝛼],Δ |= 𝐴

)
𝑆,Σ,Δ |= ∃⟨𝜑⟩. 𝐴 ≜

(
∃𝛼 ∈ 𝑆. 𝑆,Σ[𝜑 ↦→ 𝛼],Δ |= 𝐴

)
When interpreting hyper-assertions in hyper-triples, we usually start with Δ

and Σ being the empty mappings.
7 7: An exception is when there is an ex-

plicit quantifier around the triple, such
as in the premises for the rule While-∃
from Figure 5.5.
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5.5.2. Syntactic Rules for Deterministic and
Non-Deterministic Assignments

In classical Hoare logic, we obtain the precondition of the rule for the
assignment x B e by substituting 𝑥 by 𝑒 in the postcondition. The
Hyper Hoare Logic syntactic rule for assignments AssignS (Figure 5.3)
generalizes this idea by repeatedly applying this substitution for every

quantified state. This syntactic transformation, written A𝑒
𝑥 [_] is defined

below. As an example, for the assignment x B y + z and postcondition
∃⟨𝜑⟩. ∀⟨𝜑′⟩. 𝜑(𝑥) ≤ 𝜑′(𝑥), we obtain the precondition

A
𝑦+𝑧
𝑥

[
∃⟨𝜑⟩. ∀⟨𝜑′⟩. 𝜑(𝑥) ≤ 𝜑′(𝑥)

]
=
(
∃⟨𝜑⟩. ∀⟨𝜑′⟩. 𝜑(𝑦) + 𝜑(𝑧) ≤ 𝜑′(𝑦) + 𝜑′(𝑧)

)
Definition 5.5.3 Syntactic transformation for deterministic assign-
ments.
A𝑒
𝑥 [𝐴] yields the hyper-assertion 𝐴, where 𝜑(𝑥) is syntactically substituted

by 𝑒(𝜑) for all (existentially or universally) quantified states 𝜑:

A𝑒
𝑥 [𝑏] ≜ 𝑏

A𝑒
𝑥 [𝑒1 ⪰ 𝑒2] ≜ 𝑒1 ⪰ 𝑒2

A𝑒
𝑥 [𝐴 ∧ 𝐵] ≜ A𝑒

𝑥 [𝐴] ∧ A𝑒
𝑥 [𝐵]

A𝑒
𝑥 [𝐴 ∨ 𝐵] ≜ A𝑒

𝑥 [𝐴] ∨ A𝑒
𝑥 [𝐵]

A𝑒
𝑥 [∀𝑥. 𝐴] ≜ ∀𝑥.A𝑒

𝑥 [𝐴]
A𝑒
𝑥 [∃𝑥. 𝐴] ≜ ∃𝑥.A𝑒

𝑥 [𝐴]
A𝑒
𝑥

[
∀⟨𝜑⟩. 𝐴

]
≜

(
∀⟨𝜑⟩.A𝑒

𝑥

[
𝐴[𝑒(𝜑)/𝜑(𝑥)]

] )
A𝑒
𝑥

[
∃⟨𝜑⟩. 𝐴

]
≜

(
∃⟨𝜑⟩.A𝑒

𝑥

[
𝐴[𝑒(𝜑)/𝜑(𝑥)]

] )
where 𝐴[𝑦/𝑥] refers to the standard syntactic substitution of 𝑥 by 𝑦.

Similarly, our syntactic rule for non-deterministic assignments HavocS
substitutes every occurrence of 𝜑(𝑥), for every quantified state 𝜑, by a
fresh quantified variable 𝑣. This variable is universally quantified for
universally-quantified states, capturing the intuition that we must con-
sider all possible assigned values. In contrast, 𝑣 is existentially quantified
for existentially-quantified states, because it is sufficient to find one suit-
able behavior of the non-deterministic assignment. As an example, for
the non-deterministic assignment x B nonDet() and the aforementioned
postcondition, we obtain the precondition

H𝑥

[
∃⟨𝜑⟩. ∀⟨𝜑′⟩. 𝜑(𝑥) ≤ 𝜑′(𝑥)

]
=
(
∃⟨𝜑⟩.∃𝑣. ∀⟨𝜑′⟩. ∀𝑣′. 𝑣 ≤ 𝑣′

)
Definition 5.5.4 Syntactic transformation for non-deterministic assign-
ments.
H𝑥 [𝐴] yields the hyper-assertion 𝐴 where 𝜑(𝑥) is syntactically substituted

by a fresh quantified variable 𝑣, universally (resp. existentially) quantified for
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universally (resp. existentially) quantified states:

H𝑥 [𝑏] ≜ 𝑏

H𝑥 [𝑒1 ⪰ 𝑒2] ≜ 𝑒1 ⪰ 𝑒2

H𝑥 [𝐴 ∧ 𝐵] ≜ H𝑥 [𝐴] ∧ H𝑥 [𝐵]
H𝑥 [𝐴 ∨ 𝐵] ≜ H𝑥 [𝐴] ∨ H𝑥 [𝐵]
H𝑥 [∀𝑥. 𝐴] ≜ ∀𝑥.H𝑥 [𝐴]
H𝑥 [∃𝑥. 𝐴] ≜ ∃𝑥.H𝑥 [𝐴]
H𝑥

[
∀⟨𝜑⟩. 𝐴

]
≜

(
∀⟨𝜑⟩. ∀𝑣.H𝑥

[
𝐴[𝑣/𝜑(𝑥)]

] )
H𝑥

[
∃⟨𝜑⟩. 𝐴

]
≜

(
∃⟨𝜑⟩.∃𝑣.H𝑥

[
𝐴[𝑣/𝜑(𝑥)]

] )
5.5.3. Syntactic Rules for Assume Statements

Intuitively, assume b provides additional information when proving
properties for all states, but imposes an additional requirement when
proving the existence of a state. This intuition is captured by the rule
AssumeS shown in Figure 5.3. The syntactic transformation Π𝑏 adds the
state expression 𝑏 as an assumption for universally-quantified states, and
as a proof obligation for existentially-quantified states. As an example, for
the statement assume x ≥ 0 and the postcondition ∀⟨𝜑⟩.∃⟨𝜑′⟩. 𝜑(𝑥) ≤
𝜑′(𝑥), we obtain the precondition

Π𝑥≥0
[
∀⟨𝜑⟩.∃⟨𝜑′⟩. 𝜑(𝑥) ≤ 𝜑′(𝑥)

]
=
(
∀⟨𝜑⟩. 𝜑(𝑥) ≥ 0 ⇒ (∃⟨𝜑′⟩. 𝜑′(𝑥) ≥ 0 ∧ 𝜑(𝑥) ≤ 𝜑′(𝑥))

)
Definition 5.5.5 Syntactic transformation for assume statements.
Π𝑏 [𝐴] yields the hyper-assertion 𝐴 where 𝑏 is syntactically added as an

assumption for universally-quantified states, and as a proof obligation for

existentially-quantified states:

Π𝑝 [𝑏] ≜ 𝑏

Π𝑝 [𝑒1 ⪰ 𝑒2] ≜ 𝑒1 ⪰ 𝑒2

Π𝑝 [𝐴 ∧ 𝐵] ≜ Π𝑝 [𝐴] ∧ Π𝑝 [𝐵]
Π𝑝 [𝐴 ∨ 𝐵] ≜ Π𝑝 [𝐴] ∨ Π𝑝 [𝐵]
Π𝑝 [∀𝑥. 𝐴] ≜ ∀𝑥.Π𝑝 [𝐴]
Π𝑝 [∃𝑥. 𝐴] ≜ ∃𝑥.Π𝑝 [𝐴]
Π𝑝

[
∀⟨𝜑⟩. 𝐴

]
≜ ∀⟨𝜑⟩. 𝑝(𝜑) ⇒ Π𝑝 [𝐴]

Π𝑝

[
∃⟨𝜑⟩. 𝐴

]
≜ ∃⟨𝜑⟩. 𝑝(𝜑) ∧ Π𝑝 [𝐴]

We now illustrate the use of our three syntactic rules on the following
example.

Example 5.5.1 Using the syntactic rules to prove a violation of GNI.
Figure 5.4 shows a proof outline that the program

𝐶4 ≜ (y B nonDet(); assume y ≤ 9; o B h + y)
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{
∃⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1(ℎ) ≠ 𝜑2(ℎ)

}{
∃⟨𝜑1⟩. (∃⟨𝜑2⟩. (∀⟨𝜑⟩. ∀𝑣. 𝑣 ≤ 9 ⇒ (𝜑(ℎ) = 𝜑1(ℎ) ⇒ 𝜑2(ℎ) + 9 > 𝜑(ℎ) + 𝑣)))

}
(Cons){

∃⟨𝜑1⟩.∃𝑣1 . 𝑣1 ≤ 9 ∧ (∃⟨𝜑2⟩.∃𝑣2 . 𝑣2 ≤ 9 ∧ (∀⟨𝜑⟩. ∀𝑣. 𝑣 ≤ 9 ⇒ ((𝜑(ℎ) ≠ 𝜑1(ℎ)) ∨ (𝜑(ℎ) + 𝑣 ≠ 𝜑2(ℎ) + 𝑣2))))
}

(Cons)

y B nonDet();{
∃⟨𝜑1⟩. 𝜑1(𝑦) ≤ 9 ∧ (∃⟨𝜑2⟩. 𝜑2(𝑦) ≤ 9 ∧ (∀⟨𝜑⟩. 𝜑(𝑦) ≤ 9 ⇒ (𝜑(ℎ) ≠ 𝜑1(ℎ) ∨ 𝜑(ℎ) + 𝜑(𝑦) ≠ 𝜑2(ℎ) + 𝜑2(𝑦))))

}
(HavocS)

assume y ≤ 9;{
∃⟨𝜑1⟩, ⟨𝜑2⟩. ∀⟨𝜑⟩. 𝜑(ℎ) ≠ 𝜑1(ℎ) ∨ 𝜑(ℎ) + 𝜑(𝑦) ≠ 𝜑2(ℎ) + 𝜑2(𝑦)

}
(AssumeS)

o B h + y{
∃⟨𝜑1⟩, ⟨𝜑2⟩. ∀⟨𝜑⟩. 𝜑(ℎ) ≠ 𝜑1(ℎ) ∨ 𝜑(𝑜) ≠ 𝜑2(𝑜)

}
(AssignS)

Figure 5.4.: Proof outline showing that the program violates generalized non-interference. The rules used at each step of the derivation
are shown on the right (the use of rule Seq is implicit).

from Example 5.2.7 violates GNI. This program leaks information
about the secret ℎ through its public output 𝑜 because the pad it uses
(variable 𝑦) is upper bounded. From the output 𝑜, we can derive a
lower bound for the secret value of ℎ, namely ℎ ≥ 𝑜 − 9.

To see why 𝐶4 violates GNI, consider two executions with different
secret values for ℎ, and where the execution for the larger secret value
sets 𝑦 to exactly 9. This execution will produce a larger public output 𝑙
(since the other execution adds at most 9 to its smaller secret). Hence,
these executions can be distinguished by their public outputs.

Our proof outline in Figure 5.4 captures this intuitive reasoning in
a natural way. We start with the postcondition that corresponds to
the negation of GNI, and work our way backward, by successively
applying our syntactic rules AssignS, AssumeS, and HavocS. We conclude
using the rule Cons: Since the precondition implies the existence of
two states with different values for ℎ, we first instantiate 𝜑1 and 𝜑2
such that 𝜑1 and 𝜑2 are both members of the set of initial states, and
𝜑2(ℎ) > 𝜑1(ℎ).8 8: Note that the quantified states 𝜑1, 𝜑2

and 𝜑 from different hyper-assertions
can be unrelated. That is, the wit-
nesses for 𝜑1 and 𝜑2 in the first hyper-
assertion ∃⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1(ℎ) ≠ 𝜑2(ℎ)
are not necessarily the same as the
ones in the second hyper-assertion
∃⟨𝜑1⟩.∃⟨𝜑2⟩. 𝜑2(ℎ) > 𝜑1(ℎ), which is
why the entailment holds.

We then instantiate 𝑣2 = 9, such that, for any 𝑣 ≤ 9,
𝜑2(ℎ) + 𝑣2 > 𝜑(ℎ) + 𝑣, which concludes the proof.

5.6. Loop Rules

To reason about standard while loops, we can derive from the core rule
Iter in Figure 5.2 the rule WhileDesugared, shown in Figure 5.5 (recall that
while (𝑏) {𝐶} ≜ (assume b; 𝐶)∗; assume ¬b). While this derived rule is
expressive, it has two main drawbacks for usability: (1) Because of the
use of the infinitary

⊗
𝑛∈ℕ , it requires non-trivial semantic reasoning (via

the consequence rule), and (2) the invariant 𝐼𝑛 relates only the executions
that perform at least 𝑛 iterations, but ignores executions that perform
fewer.

Example 5.6.1 The rule WhileDesugared is limited.
To illustrate problem (2), imagine that we want to prove that the hyper-
assertion low(𝑙) ≜ (∀⟨𝜑⟩. ∀⟨𝜑′⟩. 𝜑(𝑙) = 𝜑′(𝑙)) holds after a while
loop. A natural choice for our loop invariant 𝐼𝑛 would be 𝐼𝑛 ≜ low(𝑙)
(independent of 𝑛). However, this invariant does not entail our desired
postcondition low(𝑙). Indeed,

⊗
𝑛∈ℕ low(𝑙) holds for a set of states iff
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WhileDesugared
⊢ [𝐼𝑛] assume b; 𝐶 [𝐼𝑛+1] ⊢ [⊗𝑛∈ℕ 𝐼𝑛] assume ¬b [𝑄]

⊢ [𝐼0] while (𝑏) {𝐶} [𝑄]

WhileSync
𝐼 |= low(𝑏) ⊢ [𝐼 ∧ □𝑏] 𝐶 [𝐼]

⊢ [𝐼] while (𝑏) {𝐶} [(𝐼 ∨ emp) ∧ □(¬𝑏)]

IfSync
𝑃 |= low(𝑏) ⊢ [𝑃 ∧ □𝑏] 𝐶1 [𝑄] ⊢ [𝑃 ∧ □(¬𝑏)] 𝐶2 [𝑄]

⊢ [𝑃] if (𝑏) {𝐶1} else {𝐶2} [𝑄]

While-∀∗∃∗

⊢ [𝐼] if (𝑏) {𝐶} [𝐼] ⊢ [𝐼] assume ¬b [𝑄] no ∀⟨_⟩ after any ∃ in 𝑄
⊢ [𝐼] while (𝑏) {𝐶} [𝑄]

While-∃
∀𝑣. ⊢ [∃⟨𝜑⟩. 𝑃𝜑 ∧ 𝑏(𝜑) ∧ 𝑣 = 𝑒(𝜑)] if (𝑏) {𝐶} [∃⟨𝜑⟩. 𝑃𝜑 ∧ 𝑒(𝜑) ≺ 𝑣] ∀𝜑. ⊢ [𝑃𝜑] while (𝑏) {𝐶} [𝑄𝜑] ≺ wf

⊢ [∃⟨𝜑⟩. 𝑃𝜑] while (𝑏) {𝐶} [∃⟨𝜑⟩. 𝑄𝜑]

Figure 5.5.: Hyper Hoare Logic rules for while loops (and branching). Recall that low(𝑏) ≜ (∀⟨𝜑⟩, ⟨𝜑′⟩. 𝑏(𝜑) = 𝑏(𝜑′)) □𝑏 ≜ (∀⟨𝜑⟩. 𝑏(𝜑)),
and emp ≜ (∀⟨𝜑⟩.⊥). In the rule While-∃, ≺ must be well-founded (wf).

[103]: Benton (2004), Simple Relational Cor-

rectness Proofs for Static Analyses and Pro-

gram Transformations

[216]: Terauchi et al. (2005), Secure Infor-

mation Flow as a Safety Problem

it is a union of sets of states that all individually satisfy low(𝑙). This
property holds trivially in our example (simply choose one set per
possible value of 𝑙) and, in particular, does not express that the entire
set of states after the loop satisfies low(𝑙). Note that this does not
contradict completeness (Theorem 5.4.2), but simply means that a
stronger invariant 𝐼𝑛 is needed.

In this section, we thus present three more convenient loop rules, shown
in Figure 5.5, which capture powerful reasoning principles, and over-
come those limitations: The rule WhileSync (Section 5.6.1) is the easiest
to use, and can be applied whenever all executions of the loop have the
same control flow. Two additional rules for while loops can be applied
whenever the control flow differs. The rule While-∀∗∃∗ (Section 5.6.2) sup-
ports ∀∗∃∗-postconditions, while the rule While-∃ (Section 5.6.3) handles
postconditions with a top-level existential quantifier. In our experience,
these loop rules cover all practical hyper-assertions that can be expressed
in our syntax. We are not aware of any practical program hyperproperty
that requires multiple quantifier alternations.

5.6.1. Synchronized Control Flow

Standard loop invariants are sound in relational logics if all executions
exit the loop simultaneously [103, 216]. In our logic, this synchronized
control flow can be enforced by requiring that the loop guard 𝑏 has
the same value in all states (1) before the loop and (2) after every loop
iteration, as shown by the rule WhileSync in Figure 5.5. After the loop, we
get to assume (𝐼 ∨ emp) ∧ □(¬𝑏). That is, the loop guard 𝑏 is false in all
executions, and the invariant 𝐼 holds, or the set of states is empty. The
emp disjunct corresponds to the case where the loop does not terminate
(i.e., no execution terminates). The rule WhileSync is suitable for invariants
𝐼 of the form ∀+∃∗, as in this case 𝐼 ∨ emp is equivalent to 𝐼. Going back to
our motivating example (Example 5.6.1), the natural invariant 𝐼 ≜ low(𝑙)
with the rule WhileSync is now sufficient for our example, since we get
the postcondition (low(𝑙) ∨ emp) ∧ □(¬𝑏), which implies our desired
(universally-quantified) postcondition low(𝑙).
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Synchronized loop rule for terminating hyper-triples

The rule WhileSync in Figure 5.5 is unsuitable for invariants 𝐼 of the
form ∃+∀∗, as 𝐼 ∨ emp does not imply 𝐼 for such 𝐼. In this case, it is
necessary to prove that at least one execution of the loop terminates.

Using terminating hyper-triples, we have proven sound the following
rule, which overcomes the aforementioned limitation:

WhileSyncTot
⊢⇓ [𝐼 ∧ □(𝑏 ∧ 𝑒 = 𝑡𝐿)] 𝐶 [𝐼 ∧ low(𝑏) ∧ □(𝑒 ≺ 𝑡𝐿)]

≺ well-founded 𝑡𝐿 ∉ fv(𝐼)
⊢⇓ [𝐼 ∧ low(𝑏)] while (𝑏) {𝐶} [𝐼 ∧ □(¬𝑏)]

Unlike the rule WhileSync, the rule WhileSyncTot does not have the emp

disjunct in the postcondition of its conclusion anymore, and thus can
be used to prove hyperproperties of the form ∃+∀∗. It achieves this by
requiring that (1) the loop body 𝐶 terminates (using the terminating
hyper-triples defined at the end of Section 5.3.2), and (2) that the
loop itself terminates, by requiring that a variant 𝑒 decreases in all
executions. The initial value of the variant 𝑒 is stored in the logical
variable 𝑡𝐿, such that it can be referred to in the postcondition.

We also provide a rule for if statements with synchronized control flow
(rule IfSync in Figure 5.5), which can be applied when all executions
take the same branch. This rule is simpler to apply than the core rule
Choice, since it avoids the ⊗ operator, which usually requires semantic
reasoning.

Example 5.6.2 Using the rule WhileSync to prove GNI.
The program in Figure 5.6 takes as input a list ℎ of secret values (but
whose length is public), computes its prefix sum [ℎ[0], ℎ[0]+ ℎ[1], . . .],
and encrypts the result by performing a one-time pad on each element
of this prefix sum, resulting in the output [ℎ[0] ⊕ 𝑘0 , (ℎ[0] + ℎ[1]) ⊕
𝑘1 , . . .]. The keys 𝑘0 , 𝑘1 , . . . are chosen non-deterministically at each
iteration, via the variable 𝑘.9 9: In practice, the keys used in this pro-

gram should be stored somewhere, so
that one is later able to decrypt the out-
put.

Our goal is to prove that the encrypted output 𝑙 does not leak in-
formation about the secret elements of ℎ, provided that the attacker
does not have any information about the non-deterministically chosen
keys. We achieve this by formally proving that this program satis-
fies GNI. Since the length of the list ℎ is public, we start with the
precondition ∀⟨𝜑1⟩, ⟨𝜑2⟩. len(𝜑1(ℎ)) = len(𝜑2(ℎ)). This implies that
all our executions will perform the same number of loop iterations.
Thus, we use the rule WhileSync, with the natural loop invariant 𝐼 ≜
(∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1(𝑖) = 𝜑2(𝑖)∧ len(𝜑1(ℎ)) = len(𝜑2(ℎ))∧ (∃⟨𝜑⟩. 𝜑(ℎ) =
𝜑1(ℎ) ∧ 𝜑(𝑙) = 𝜑2(𝑙))). The last conjunct corresponds to the postcon-
dition we want to prove, while the former entails low(𝑖 < len(ℎ)), as
required by the rule WhileSync.

The proof of the loop body starts at the end with the loop invariant
𝐼, and works backward, using the syntactic rules HavocS and AssignS.
From 𝐼 ∧ □(𝑖 < len(ℎ)), we have to prove that there exists a value 𝑣
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{
∀⟨𝜑1⟩, ⟨𝜑2⟩. len(𝜑1(ℎ)) = len(𝜑2(ℎ))

}{
∀⟨𝜑1⟩, ⟨𝜑2⟩. 0 = 0 ∧ len(𝜑1(ℎ)) = len(𝜑2(ℎ)) ∧ (∃⟨𝜑⟩. 𝜑(ℎ) = 𝜑1(ℎ) ∧ [] = [])

}
(Cons)

s B 0

l B []
i B 0{
∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1(𝑖) = 𝜑2(𝑖) ∧ len(𝜑1(ℎ)) = len(𝜑2(ℎ)) ∧ (∃⟨𝜑⟩. 𝜑(ℎ) = 𝜑1(ℎ) ∧ 𝜑(𝑙) = 𝜑2(𝑙))

}
(AssignS)

while (𝑖 < len(ℎ)) {{
(∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1(𝑖) = 𝜑2(𝑖) ∧ len(𝜑1(ℎ)) = len(𝜑2(ℎ)) ∧ (∃⟨𝜑⟩. 𝜑(ℎ) = 𝜑1(ℎ) ∧ 𝜑(𝑙) = 𝜑2(𝑙))) ∧ □(𝑖 < len(ℎ))

}
{∀⟨𝜑1⟩. ∀𝑣1. ∀⟨𝜑2⟩. ∀𝑣2. 𝜑1(𝑖) + 1 = 𝜑2(𝑖) + 1 ∧ len(𝜑1(ℎ)) = len(𝜑2(ℎ))∧
(∃⟨𝜑⟩.∃𝑣. 𝜑(ℎ) = 𝜑1(ℎ) ∧ 𝜑(𝑙) ++ [(𝜑(𝑠) + 𝜑(ℎ)[𝜑(𝑖)]) ⊕ 𝑣] = 𝜑2(𝑙) ++ [(𝜑2(𝑠) + 𝜑2(ℎ)[𝜑2(𝑖)]) ⊕ 𝑣2])} (Cons)
s B s + h[i];
k B nonDet();
l B l ++ [s ⊕ k];
i B i + 1;{
∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1(𝑖) = 𝜑2(𝑖) ∧ len(𝜑1(ℎ)) = len(𝜑2(ℎ)) ∧ (∃⟨𝜑⟩. 𝜑(ℎ) = 𝜑1(ℎ) ∧ 𝜑(𝑙) = 𝜑2(𝑙))

}
(HavocS, AssignS)

}{
((∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1(𝑖) = 𝜑2(𝑖) ∧ len(𝜑1(ℎ)) = len(𝜑2(ℎ)) ∧ (∃⟨𝜑⟩. 𝜑(ℎ) = 𝜑1(ℎ) ∧ 𝜑(𝑙) = 𝜑2(𝑙))) ∨ emp) ∧ □(𝑖 ≥ len(ℎ))

}
(WhileSync){

∀⟨𝜑1⟩, ⟨𝜑2⟩.∃⟨𝜑⟩. 𝜑(ℎ) = 𝜑1(ℎ) ∧ 𝜑(𝑙) = 𝜑2(𝑙)
}

(Cons)

Figure 5.6.: A proof that the program in black satisfies generalized non-interference (where the elements of list ℎ are secret, but its length
is public), using the rule WhileSync. [] represents the empty list, ++ represents list concatenation, ℎ[𝑖] represents the i-th element of
list ℎ, and ⊕ represents the XOR operator.

such that

𝜑(𝑙) ++ [(𝜑(𝑠)+𝜑(ℎ)[𝜑(𝑖)])⊕𝑣] = 𝜑2(𝑙) ++ [(𝜑2(𝑠)+𝜑2(ℎ)[𝜑2(𝑖)])⊕𝑣2]

Since 𝜑(𝑙) = 𝜑2(𝑙), this boils down to proving that

(𝜑(𝑠) + 𝜑(ℎ)[𝜑(𝑖)]) ⊕ 𝑣 = (𝜑2(𝑠) + 𝜑2(ℎ)[𝜑2(𝑖)]) ⊕ 𝑣2

which we achieve by choosing

𝑣 ≜ (𝜑2(𝑠) + 𝜑2(ℎ)[𝜑2(𝑖)]) ⊕ 𝑣2 ⊕ (𝜑(𝑠) + 𝜑(ℎ)[𝜑(𝑖)])

5.6.2. ∀∗∃∗-Hyperproperties

Let us now turn to the more general case, where different executions
might exit the loop at different iterations. As explained at the start of
this section, the main usability issue of the rule WhileDesugared is the
precondition

⊗
𝑛∈ℕ 𝐼𝑛 in the second premise, which requires non-trivial

semantic reasoning. The
⊗

𝑛∈ℕ operator is required, because 𝐼𝑛 ignores
executions that exited the loop earlier; it relates only the executions that
have performed at least 𝑛 iterations. In particular, it would be unsound to
replace the precondition

⊗
𝑛∈ℕ 𝐼𝑛 by ∃𝑛. 𝐼𝑛 .

The rule While-∀∗∃∗ in Figure 5.5 solves this problem for the general case
of ∀∗∃∗-postconditions. The key insight is to reason about the successive
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a B 0;
b B 1;
i B 0;
while (𝑖 < 𝑛)
{

tmp B b;
b B a + b;
a B tmp;
i B i + 1

}

(a) The program 𝐶fib, which computes the
𝑛-th Fibonacci number.

x B 0;
y B 0;
i B 0;
while (𝑖 < 𝑘)
{

r B nonDet();
assume r ≥ 2;
t B x;
x B 2 ∗ x + r;
y B y + t ∗ r;
i B i + 1

}

(b) A program with a final state with mini-
mal values for 𝑥 and 𝑦.

Figure 5.7.: Two simple programs with
loops, illustrating the need for the rules
While-∀∗∃∗ and While-∃.

unrollings of the while loop: The rule requires to prove an invariant 𝐼 for
the conditional statement if (𝑏) {𝐶}, in contrast to assume b; 𝐶 in the
rule WhileDesugared. This allows the invariant 𝐼 to refer to all executions,
i.e., executions that are still running the loop (which will execute 𝐶),
and executions that have already exited the loop (which will not execute
𝐶).

Example 5.6.3 Using the rule While-∀∗∃∗ to prove monotonicity of Fi-
bonacci.
The program𝐶fib in Figure 5.7a takes as input an integer 𝑛 ≥ 0 and com-
putes the 𝑛-th Fibonacci number (in variable 𝑎). We want to prove that
𝐶fib is monotonic, i.e., that the 𝑛-th Fibonacci number is greater than or
equal to the 𝑚-th Fibonacci number whenever 𝑛 ≥ 𝑚, without making
explicit what𝐶fib computes. Formally, we want to prove the hyper-triple

[∀⟨𝜑1⟩,⟨𝜑2⟩. 𝜑1(𝑡)=1∧𝜑2(𝑡)=2⇒𝜑1(𝑛)≥𝜑2(𝑛)]
𝐶fib

[∀⟨𝜑1⟩,⟨𝜑2⟩. 𝜑1(𝑡)=1∧𝜑2(𝑡)=2⇒𝜑1(𝑎)≥𝜑2(𝑎)]

where 𝑡 is a logical variable used to track the execution (as explained
in Section 5.2.2).

Intuitively, this program is monotonic because both executions will
perform at least 𝜑2(𝑛) iterations, during which they will have the same
values for 𝑎 and 𝑏. The first execution will then perform 𝜑1(𝑛) − 𝜑2(𝑛)
additional iterations, during which 𝑎 and 𝑏 will increase, thus resulting
in larger values for 𝑎 and 𝑏.

We cannot use the rule WhileSync to make this intuitive argument formal,
since both executions might perform a different number of iterations.
Moreover, we cannot express this intuitive argument with the rule
WhileDesugared either, since the invariant 𝐼𝑘 only relates executions that
perform at least 𝑘 iterations, as explained earlier: After the first 𝜑2(𝑛)
iterations, the loop invariant 𝐼𝑘 cannot refer to the values of 𝑎 and 𝑏 in
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10: If a syntactic hyper-assertion 𝑄 satis-
fies this syntactic restriction, then it sat-
isfies the following semantic property,
which we use to prove the soundness
of the rule While-∀∗∃∗: For any non-
decreasing sequence (𝑆𝑛)𝑛∈ℕ of set of
states, if ∀𝑛. 𝑆𝑛 |= 𝑄, then (⋃𝑛 𝑆𝑛) |= 𝑄.
The proof of Theorem 6.4.1, which es-
tablishes the soundness of a rule similar
to While-∀∗∃∗, provides more explana-
tions.

the second execution, since this execution has already exited the loop.

However, we can use the rule While-∀∗∃∗ to prove that 𝐶fib is monotonic,
with the intuitive loop invariant

𝐼 ≜□(𝑏≥𝑎≥0) ∧ (∀⟨𝜑1⟩,⟨𝜑2⟩. 𝜑1(𝑡)=1 ∧ 𝜑2(𝑡)=2
⇒(𝜑1(𝑛)−𝜑1(𝑖)≥𝜑2(𝑛)−𝜑2(𝑖) ∧ 𝜑1(𝑎)≥𝜑2(𝑎) ∧ 𝜑1(𝑏)≥𝜑2(𝑏)))

The second part captures the relation between the two executions: 𝑎
and 𝑏 are larger in the first execution than in the second one, and the
first execution does at least as many iterations as the second one. The
first part □(𝑏 ≥ 𝑎 ≥ 0) is needed to prove that the additional iterations
lead to larger values for 𝑎 and 𝑏. The proof of this example is in the
appendix (Appendix A.4.1).

Restriction to ∀∗∃∗-hyperproperties. The rule While-∀∗∃∗ is quite general
and powerful, since it can be applied to prove any postcondition of the
shape ∀∗∃∗, which includes all safety hyperproperties, as well as some
liveness hyperproperties such as GNI. However, it cannot be applied for
postconditions with a top-level existential quantification over states or
values,10 because this would be unsound, as illustrated by the following
example.

Example 5.6.4 The rule While-∀∗∃∗ without the syntactic restriction
would be unsound.
Consider the program 𝐶 ≜ while (𝑥 < 𝑛) {x B x + 1}, which results
in 𝑥 = 𝑛 after the loop terminates (if 𝑛 ≥ 0). By incorrectly using the
rule While-∀∗∃∗ with the loop invariant 𝐼 ≜ ∃𝑁. ∀⟨𝜑⟩. 𝜑(𝑥) ≤ 𝑁 (which
violates the syntactic restriction), we can construct the following invalid

hyper-triple:

. . .

[𝐼] if (𝑥 < 𝑛) {x B x + 1} [𝐼]
. . .

[𝐼] assume ¬b [𝐼]
[𝐼] while (𝑥 < 𝑛) {x B x + 1} [𝐼]

While-∀∗∃∗

This (invalid) triple expresses that if we have an upper bound for the
value of 𝑥 in all states before the loop, then we have an upper bound
for the value of 𝑥 in all states after the loop. To see why it is invalid,
consider for example the following set of states 𝑆, which has an upper
bound for 𝑥 (𝑁 = 0), but no upper bound for 𝑛:

𝑆 ≜ {𝜑 | ∃𝑛 ≥ 0. 𝜑(𝑛) = 𝑁 ∧ 𝜑(𝑥) = 0}

While 𝑆 clearly satisfies the precondition, it leads to the following set
of states after the loop, which has no upper bound for 𝑥 (as 𝑥 = 𝑛),
and thus violates the postcondition:

sem(𝐶, 𝑆) ≜ {𝜑 | ∃𝑛 ≥ 0. 𝜑(𝑛) = 𝑁 ∧ 𝜑(𝑥) = 𝑁}

The key issue is that the witness 𝑁 that we get after 𝑛 unrollings is not
necessarily the same as the witness we get for 𝑛 + 1 unrollings, and
thus, nothing guarantees that there is a global witness that works after
any number of loop unrollings.



5. Hyper Hoare Logic 134

11: Interestingly, note that the
existentially-quantified state 𝜑 in the
postcondition of the first premise of the
rule While-∃ does not have to be from
the same execution as the one in the
precondition.

Similarly, using this rule with an invariant with a top-level existential
quantification over states would also be unsound. Indeed, a triple such
as ⊢ [∃⟨𝜑⟩. ∀⟨𝜑′⟩. 𝐼] if (𝑏) {𝐶} [∃⟨𝜑⟩. ∀⟨𝜑′⟩. 𝐼] implies that, for any 𝑛,
there exists a state 𝜑 such that 𝐼 holds for all states 𝜑′ reached after
unrolling the loop 𝑛 times. As in Example 5.6.4, the state 𝜑 might not be a
valid witness for states 𝜑′ reached after more than 𝑛 loop unrollings, and
therefore we might have different witnesses for 𝜑 for each value of 𝑛. We
thus have no guarantee that there is a global witness that works for all
states 𝜑′ after any number of loop unrollings. To handle such examples,
we present a rule for ∃∗∀∗-hyperproperties next.

5.6.3. ∃∗∀∗-Hyperproperties

The rule While-∀∗∃∗ can be applied for any postcondition of the form
∀∗∃∗, which includes all safety hyperproperties as well as some liveness
hyperproperties such as GNI, but cannot be applied to prove postcon-
ditions with a top-level existential quantifier, such as postconditions
of the shape ∃∗∀∗ (e.g., to prove the existence of minimal executions,
or to prove that a ∀∗∃∗-hyperproperty is violated). In this case, we can
apply the rule While-∃ in Figure 5.5. To the best of our knowledge, this is
the first program logic rule that can deal with ∃∗∀∗-hyperproperties for
loops. This rule splits the reasoning into two parts: First, we prove that
there is a terminating state 𝜑 such that the hyper-assertion 𝑃𝜑 holds after
some number of loop unrollings. This is achieved via the first premise
of the rule, which requires a well-founded relation ≺, and a variant
𝑒(𝜑) that strictly decreases at each iteration, until 𝑏(𝜑) becomes false
and 𝜑 exits the loop.11 In a second step, we fix the state 𝜑 (since it has
exited the loop), which corresponds to our global witness, and prove
⊢ [𝑃𝜑] while (𝑏) {𝐶} [𝑄𝜑] using any loop rule. For example, if 𝑃𝜑 has
another top-level existential quantifier, we can apply the rule While-∃ once
more; if 𝑃𝜑 is a ∀∗∃∗-hyper-assertion, we can apply the rule While-∀∗∃∗.

Example 5.6.5 Using the rule While-∃ to prove the existence of minimal
executions.
Consider proving that the program 𝐶𝑚 in Figure 5.7b has a final state
with a minimal value for 𝑥 and 𝑦. Formally, we want to prove the triple

[¬emp ∧ □(𝑘 ≥ 0)] 𝐶𝑚 [∃⟨𝜑⟩. ∀⟨𝛼⟩. 𝜑(𝑥) ≤ 𝛼(𝑥) ∧ 𝜑(𝑦) ≤ 𝛼(𝑦)]

Since the set of initial states is not empty and 𝑘 is always non-negative,
we know that there is an initial state with a minimal value for 𝑘. We
prove that this state leads to a final state with minimal values for 𝑥
and 𝑦, using the rule While-∃. For the first premise, we choose the
variant12 12: We interpret ≺ as < between natural

numbers, i.e., 𝑎 ≺ 𝑏 iff 0 ≤ 𝑎 and 𝑎 < 𝑏,
which is well-founded.

𝑘 − 𝑖, and the invariant 𝑃𝜑 ≜ (∀⟨𝛼⟩. 0 ≤ 𝜑(𝑥) ≤ 𝛼(𝑥) ∧ 0 ≤
𝜑(𝑦) ≤ 𝛼(𝑦) ∧ 𝜑(𝑘) ≤ 𝛼(𝑘) ∧ 𝜑(𝑖) = 𝛼(𝑖)), capturing both that 𝜑 has
minimal values for 𝑥 and 𝑦, but also that 𝜑 will be the first state to
exit the loop. We prove that this is indeed an invariant for the loop, by
choosing 𝑟 = 2 for the non-deterministic assignment for 𝜑. Finally, we
prove the second premise with 𝑄𝜑 ≜ (∀⟨𝛼⟩. 0 ≤ 𝜑(𝑥) ≤ 𝛼(𝑥) ∧ 0 ≤
𝜑(𝑦) ≤ 𝛼(𝑦)) and the rule While-∀∗∃∗. The proof of this example is in
the appendix (Appendix A.4.2).
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5.7. Compositionality Rules

Since the core rules are complete (Theorem 5.4.2), they can be used to
derive any valid hyper-triple, but they are limited in their compositionality,
as shown by the following example.

Example 5.7.1 Composing generalized non-interference with non-in-
terference.
Consider the sequential composition of a command 𝐶1 that satisfies
generalized non-interference (GNI) with a command 𝐶2 that satisfies
non-interference (NI). We would like to prove that 𝐶1; 𝐶2 satisfies
GNI (the weaker property). As discussed in Section 5.2.3, a pos-
sible postcondition for 𝐶1 is GNI

ℎ
𝑙
≜ (∀⟨𝜑1⟩, ⟨𝜑2⟩.∃⟨𝜑⟩. 𝜑𝐿1 (ℎ) =

𝜑𝐿(ℎ) ∧ 𝜑𝑃(𝑙) = 𝜑𝑃2 (𝑙)), while a possible precondition for 𝐶2 is
low(𝑙) ≜ (∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1(𝑙) = 𝜑2(𝑙)). The corresponding hyper-triples
for 𝐶1 and 𝐶2 cannot be composed using the core rules. In particular,
rule Seq cannot be applied (even in combination with Cons), since the
postcondition of 𝐶1 does not imply the precondition of 𝐶2.

Note that this observation does not contradict completeness: By Theo-
rem 5.4.2, it is possible to prove more precise triples for 𝐶1 and 𝐶2, such
that the postcondition of 𝐶1 matches the precondition of 𝐶2. However, to
enable modular reasoning, our goal is to construct the proof by compos-
ing the given triples for the individual commands rather than deriving
new ones.

In this section, we present compositionality rules for hyper-triples (Sec-
tion 5.7.1). These rules are admissible in Hyper Hoare Logic, in the sense
that they do not modify the set of valid hyper-triples that can be proved.
Rather, these rules enable flexible compositions of hyper-triples (such
as those discussed above). We illustrate these rules on two examples
(Section 5.7.2): Composing minimality with monotonicity, and GNI with
NI. All technical results presented in this section (soundness of the rules
shown in Figure 5.8 and validity of the examples) have been formalized
and proved in Isabelle/HOL.

5.7.1. Compositionality Rules

Figure 5.8 shows compositionality rules for Hyper Hoare Logic, which
we discuss below.

Linking. To prove hyper-triples of the form [∀⟨𝜑1⟩. 𝑃𝜑1] 𝐶 [∀⟨𝜑2⟩. 𝑄𝜑2],
the rule Linking considers each pair of pre-state 𝜑1 and post-state 𝜑2 sepa-
rately, and lets one assume that 𝜑2 can be reached by executing 𝐶 in the
state 𝜑1, and that logical variables do not change during this execution.

Conjunctions and disjunctions. Hyper Hoare Logic admits the usual
rules for conjunction (And and Forall in Figure 5.8) and disjunction (Or in
Figure 5.8 and the core rule Exist in Figure 5.2).
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Forall
∀𝑥. (⊢ [𝑃𝑥] 𝐶 [𝑄𝑥])
⊢ [∀𝑥. 𝑃𝑥] 𝐶 [∀𝑥. 𝑄𝑥]

Linking
∀𝜑1 , 𝜑2.

(
𝜑𝐿1 = 𝜑𝐿2∧ ⊢ [⟨𝜑1⟩] 𝐶 [⟨𝜑2⟩] =⇒ ⊢ [𝑃𝜑1] 𝐶 [𝑄𝜑2]

)
⊢ [∀⟨𝜑⟩. 𝑃𝜑] 𝐶 [∀⟨𝜑⟩. 𝑄𝜑]

IndexedUnion
∀𝑥. (⊢ [𝑃𝑥] 𝐶 [𝑄𝑥])

⊢ [
⊗

𝑥∈𝑋 𝑃𝑥] 𝐶 [
⊗

𝑥∈𝑋 𝑄𝑥]

Union
⊢ [𝑃1] 𝐶 [𝑄1] ⊢ [𝑃2] 𝐶 [𝑄2]

⊢ [𝑃1 ⊗ 𝑃2] 𝐶 [𝑄1 ⊗ 𝑄2]

BigUnion
⊢ [𝑃] 𝐶 [𝑄]

⊢ [
⊗

𝑃] 𝐶 [
⊗

𝑄]

And
⊢ [𝑃1] 𝐶 [𝑄1] ⊢ [𝑃2] 𝐶 [𝑄2]

⊢ [𝑃1 ∧ 𝑃2] 𝐶 [𝑄1 ∧𝑄2]

Or
⊢ [𝑃1] 𝐶 [𝑄1] ⊢ [𝑃2] 𝐶 [𝑄2]

⊢ [𝑃1 ∨ 𝑃2] 𝐶 [𝑄1 ∨𝑄2]

AtMost
⊢ [𝑃] 𝐶 [𝑄]

⊢ [⊑ 𝑃] 𝐶 [⊑ 𝑄]

AtLeast
⊢ [𝑃] 𝐶 [𝑄]

⊢ [⊒ 𝑃] 𝐶 [⊒ 𝑄]

LUpdateS
⊢ [𝑃 ∧ (∀⟨𝜑⟩. 𝜑(𝑡) = 𝑒(𝜑))] 𝐶 [𝑄] 𝑡 ∉ fv(𝑃) ∪ fv(𝑄) ∪ fv(𝑒)

⊢ [𝑃] 𝐶 [𝑄]

LUpdate
𝑃 ⇒𝑉 𝑃′ ⊢ [𝑃′] 𝐶 [𝑄] inv

𝑉 (𝑄)
⊢ [𝑃] 𝐶 [𝑄]

True
⊢ [𝑃] 𝐶 [⊤]

False
⊢ [⊥] 𝐶 [𝑄]

FrameSafe
⊢ [𝑃] 𝐶 [𝑄] no ∃⟨_⟩ in 𝐹 wr(𝐶) ∩ fv(𝐹) = ∅

⊢ [𝑃 ∧ 𝐹] 𝐶 [𝑄 ∧ 𝐹]

Specialize
⊢ [𝑃] 𝐶 [𝑄] wr(𝐶) ∩ fv(𝑏) = ∅

⊢ [Π𝑏 [𝑃]] 𝐶 [Π𝑏 [𝑄]]

Figure 5.8.: Compositionality rules of Hyper Hoare Logic. All these rules have been proven sound in Isabelle/HOL. wr(𝐶) corresponds
to the set of program variables that are potentially written by 𝐶 (i.e., that appear on the left-hand side of an assignment), while fv(𝐹)
corresponds to the set of program variables that appear in look-up expressions for quantified states. For example, fv(∀⟨𝜑⟩.∃𝑛. 𝜑𝑃(𝑥) =
𝑛2) = {𝑥}. The rules FrameSafe and Specialize assume that 𝐹 (in the former) and 𝑃 and 𝑄 (in the latter) are syntactic hyper-assertions, i.e.,
that they are written in the syntax presented in Section 5.5. In particular, the transformation Π𝑏 [𝑃] is formally defined in Section 5.5.
The operators

⊗
, ⊑, and ⊒ are defined as follows:

⊗
𝑃 ≜ (𝜆𝑆.∃𝐹. (𝑆 =

⋃
𝑆′∈𝐹 𝑆′) ∧ (∀𝑆′ ∈ 𝐹. 𝑃(𝑆′))), ⊑ 𝑃 ≜ (𝜆𝑆.∃𝑆′. 𝑆 ⊆ 𝑆′ ∧ 𝑃(𝑆′)),

and ⊒ 𝑃 ≜ (𝜆𝑆.∃𝑆′. 𝑆′ ⊆ 𝑆 ⇒ 𝑃(𝑆′)).

[10]: Reynolds (2002), Separation Logic

13: Semantically, condition (2) means
that 𝐹 is downwards-closed, i.e., if it sat-
isfied by a set 𝑆, then it must also be
satisfied by all its subsets 𝑆′ ⊆ 𝑆.

Framing. Similarly to the frame rules in Hoare logic and separation
logic [10], Hyper Hoare Logic admits rules that allow us to frame in-
formation about states that is not affected by the execution of 𝐶. The
rule FrameSafe allows us to frame any syntactic hyper-assertion 𝐹 if (1)
it does not refer to variables that the program can modify, and (2) it
does not existentially quantify over states.13 While (1) is standard, (2) is
specific to hyper-assertions: Framing the existence of a state (e.g., with
𝐹 ≜ (∃⟨𝜑⟩.⊤)) would be unsound if the execution of the program in the
state 𝜑 does not terminate.

Framing for terminating hyper-triples

Restriction (2) of the rule FrameSafe can be lifted if we use terminating

hyper-triples (as defined at the end of Section 5.3.2), as they guarantee
that each initial state existentially quantified in the frame 𝐹 has a
corresponding final state. Formally, we have proven the following rule
sound in Isabelle/HOL, which allows the syntactic hyper-assertion 𝐹
to universally and existentially quantify over states:

Frame
wr(𝐶) ∩ fv(𝐹) = ∅

⊢⇓ [𝑃 ∧ 𝐹] 𝐶 [𝑄 ∧ 𝐹]
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Crucially, the soundness of this rule relies on the fact that 𝐹 is a
syntactic hyper-assertion. Such a rule would be unsound for semantic

hyper-assertions 𝐹. For example, using 𝐹 ≜ (𝜆𝑆. |𝑆| = 1) (which does
not mention any program variable) as the frame, we could prove the
following invalid hyper-triple:

[⊤ ∧ 𝐹] x B nonDet() [⊤ ∧ 𝐹]

This triple is invalid, as the non-deterministic assignment results in
more than one reachable state.

Decompositions. As explained at the beginning of this section, the two
triples [𝑃] 𝐶1 [GNI

ℎ
𝑙
] and [low(𝑙)] 𝐶2 [𝑄] cannot be composed because

GNI
ℎ
𝑙

does not entail low(𝑙) (not all states in the set 𝑆 of final states of
𝐶1 need to have the same value for 𝑙). However, we can prove GNI
for the composed commands by decomposing 𝑆 into subsets that all
satisfy low(𝑙) and considering each subset separately. The rule BigUnion
allows us to perform this decomposition (formally expressed with the
hyper-assertion

⊗
low(𝑙)), use the specification of 𝐶2 on each of these

subsets (since they all satisfy the precondition of 𝐶2), and eventually
recompose the final set of states (again with the operator

⊗
) to prove our

desired postcondition. Hyper Hoare Logic also admits rules for binary
unions (rule Union) and indexed unions (rule IndexedUnion).

Note that unions (⊗ and
⊗

) and disjunctions in hyper-assertions are
very different: (𝑃 ⊗ 𝑄)(𝑆) expresses that the set 𝑆 can be decomposed
into two sets 𝑆𝑃 (satisfying 𝑃) and 𝑆𝑄 (satisfying 𝑄), while (𝑃 ∨𝑄)(𝑆)
expresses that the entire set 𝑆 satisfies 𝑃 or 𝑄. Similarly, intersections
and conjunctions are very different: While Hyper Hoare Logic admits
conjunction rules, rules based on intersections would be unsound, as
shown by the following example:

Example 5.7.2 Unsoundness of a potential intersection rule.
Let 𝑃𝑖 ≜ (∃⟨𝜑⟩. 𝜑(𝑥) = 𝑖) ∧ (∀⟨𝜑⟩. 𝜑(𝑥) = 𝑖).

Both triples [𝑃1] x B 1 [𝑃1] and [𝑃2] x B 1 [𝑃1] are valid. If we had
an intersection rule, we could derive from these two triples the triple

[𝜆𝑆.∃𝑆1 , 𝑆2. 𝑆 = 𝑆1 ∩ 𝑆2 ∧ 𝑃1(𝑆1) ∧ 𝑃2(𝑆2)]
x B 1

[𝜆𝑆.∃𝑆1 , 𝑆2. 𝑆 = 𝑆1 ∩ 𝑆2 ∧ 𝑃1(𝑆1) ∧ 𝑃1(𝑆2)]

This triple is however invalid, as the precondition is satisfiable by the
empty set, whereas the postcondition is not (as the postcondition is
equivalent to 𝑃1).

Specializing hyper-triples. By definition, a hyper-triple can only be
applied to a set of states that satisfies its precondition, which can be
restrictive. In cases where only a subset of the current set of states satisfies
the precondition, one can obtain a specialized triple using the rule Specialize.
This rule uses the syntactic transformation Π𝑏 (Definition 5.5.5) to weaken
both the precondition and the postcondition of the triple, which is sound
as long as the validity of 𝑏 is not influenced by executing 𝐶. Intuitively,
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Π𝑏 [𝑃] holds for a set 𝑆 iff 𝑃 holds for the subset of states from 𝑆 that
satisfy 𝑏.

Example 5.7.3 Specializing hyper-triples for proving monotonicity.
From the triples [□(𝑥 ≥ 0)] 𝐶 [□(𝑦 ≥ 0)] and [□(𝑥 ≤ 0)] 𝐶 [□(𝑦 ≤ 0)],
we can derive the following triple

[□(𝑡=1⇒𝑥≥0)∧□(𝑡=2⇒𝑥<0)]
𝐶

[∀⟨𝜑1⟩,⟨𝜑2⟩. 𝜑1(𝑡)=1∧𝜑2(𝑡)=2⇒𝜑1(𝑦)≥𝜑2(𝑦)]

whose postcondition corresponds to mono
𝑡
𝑦 (Example 5.2.3), as follows:

[□(𝑥≥0)] 𝐶 [□(𝑦≥0)]
[□(𝑡=1⇒𝑥≥0)] 𝐶 [□(𝑡=1⇒𝑦≥0)] Sp.

[□(𝑥≤0)] 𝐶 [□(𝑦≤0)]
[□(𝑡=2⇒𝑥≤0)] 𝐶 [□(𝑡=1⇒𝑦≤0)] Sp.

[□(𝑡=1⇒𝑥≥0)∧□(𝑡=2⇒𝑥≤0)] 𝐶 [□(𝑡=1⇒𝑦≥0)∧□(𝑡=2⇒𝑦≤0)] And

[□(𝑡=1⇒𝑥≥0)∧□(𝑡=2⇒𝑥<0)] 𝐶 [∀⟨𝜑1⟩,⟨𝜑2⟩. 𝜑1(𝑡)=1∧𝜑2(𝑡)=2⇒𝜑1(𝑦)≥𝜑2(𝑦)]
Cons

Logical updates. Logical variables play an important role in the expres-
siveness of the logic: As we have informally shown in Section 5.2.2 and
formally show in Appendix A.3, relational specifications are typically
expressed in Hyper Hoare Logic by using logical variables to formally
link the pre-state of an execution with the corresponding post-states.
Since logical variables cannot be modified by the execution, these tags
are preserved.

To apply this proof strategy with existing triples, it is often necessary to
update logical variables to introduce such tags. The rule LUpdate allows
us to update the logical variables in a set 𝑉 , provided that (1) from every
set of states 𝑆 that satisfies 𝑃, we can obtain a new set of states 𝑆′ that
satisfies 𝑃′, by only updating (for each state) the logical variables in 𝑉 ,
(2) we can prove the triple with the updated set of initial states, and
(3) the postcondition𝑄 cannot distinguish between two sets of states that
are equivalent up to logical variables in 𝑉 . We formalize this intuition in
the following:

Definition 5.7.1 Logical updates.
Let 𝑉 be a set of logical variable names. Two states 𝜑1 and 𝜑2 are equal up
to logical variables 𝑉 , written 𝜑1

𝑉
= 𝜑2, iff

∀𝑖. 𝑖 ∉ 𝑉 ⇒ 𝜑𝐿1 (𝑖) = 𝜑𝐿2 (𝑖) and 𝜑𝑃1 = 𝜑𝑃2

Two sets of states 𝑆1 and 𝑆2 are equivalent up to logical variables 𝑉 ,

written 𝑆1
𝑉
= 𝑆2, iff every state 𝜑1 ∈ 𝑆1 has a corresponding state 𝜑2 ∈ 𝑆2

with the same values for all variables except those in 𝑉 , and vice-versa.

Formally, 𝑆1
𝑉
= 𝑆2 holds iff

∀𝜑1 ∈ 𝑆1.∃𝜑2 ∈ 𝑆2. 𝜑1
𝑉
= 𝜑2 and ∀𝜑2 ∈ 𝑆2.∃𝜑1 ∈ 𝑆1. 𝜑1

𝑉
= 𝜑2

A hyper-assertion 𝑃 entails a hyper-assertion 𝑃′ modulo logical variables
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⊢ [singleton] 𝐶2 [singleton]
⊢ [Π𝑖=1

[
singleton

]
] 𝐶2 [Π𝑖=1

[
singleton

]
]

Specialize

⊢ [Π𝑖=1
[
singleton

]
∧ (∀⟨𝜑⟩. 𝜑𝐿(𝑖) ∈ {1, 2})︸                                               ︷︷                                               ︸

𝑃′

] 𝐶2 [Π𝑖=1
[
singleton

]
∧ (∀⟨𝜑⟩. 𝜑𝐿(𝑖) ∈ {1, 2})︸                                               ︷︷                                               ︸

𝑄′

]
FrameSafe

(5.1)

⊢ [𝑃] 𝐶1 [hasMin𝑥]
hasMin𝑥

{𝑖}
⇒ mono

𝑖
𝑥 ∧ 𝑃′

⊢ [mono
𝑖
𝑥] 𝐶2 [mono

𝑖
𝑦]

(5.1)
⊢ [𝑃′] 𝐶2 [𝑄′]

⊢ [mono
𝑖
𝑥 ∧ 𝑃′] 𝐶2 [mono

𝑖
𝑦 ∧𝑄′]

And

⊢ [mono
𝑖
𝑥 ∧ 𝑃′] 𝐶2 [hasMin𝑦]

Cons
inv

{𝑖}(hasMin𝑦)
⊢ [hasMin𝑥] 𝐶2 [hasMin𝑦]

LU

⊢ [𝑃] 𝐶1; 𝐶2 [hasMin𝑦]
Seq

Figure 5.9.: A compositional proof that the sequential composition of a command that has a minimum and a monotonic, deterministic
command in turn has a minimum. Recall that singleton ≜ (∃⟨𝜑⟩. ∀⟨𝜑′⟩. 𝜑 = 𝜑′), and thus Π𝑖=1 [singleton] = (∃⟨𝜑⟩. 𝜑(𝑖) = 1 ∧
(∀⟨𝜑′⟩. 𝜑′(𝑖) = 1 ⇒ 𝜑 = 𝜑′))

𝑉 , written 𝑃
𝑉⇒ 𝑃′

, iff

∀𝑆. 𝑃(𝑆) =⇒ (∃𝑆′. 𝑃′(𝑆′) ∧ 𝑆 𝑉
= 𝑆′)

Finally, a hyper-assertion 𝑃 is invariant with respect to logical updates
in 𝑉 , written inv

𝑉 (𝑃), iff

∀𝑆1 , 𝑆2. 𝑆1
𝑉
= 𝑆2 =⇒ (𝑃(𝑆1) ⇐⇒ 𝑃(𝑆2))

Note that inv
𝑉 (𝑄) means that 𝑄 cannot inspect the value of logical

variables in 𝑉 , but it usually also implies that 𝑄 cannot check for
equality between states, and cannot inspect the cardinality of the set, since
updating logical variables might collapse two states that were previously
distinct (because of distinct values for logical variables in 𝑉).

Since this rule requires semantic reasoning, we also derive a weaker
version of this rule, LUpdateS, which is easier to use. The rule LUpdateS
allows us to strengthen a precondition 𝑃 to 𝑃 ∧ (∀⟨𝜑⟩. 𝜑(𝑡) = 𝑒(𝜑)),
which corresponds to updating the logical variable 𝑡 with the expres-
sion 𝑒, as long as the logical variable 𝑡 does not appear syntactically

in 𝑃, 𝑄, and 𝑒 (and thus does not influence their validity). For ex-
ample, to connect the postcondition □(𝑥 = 0 ∨ 𝑥 = 1) to the precon-
dition mono

𝑡
𝑥 ≜

(
∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1(𝑡) = 1 ∧ 𝜑2(𝑡) = 2 ⇒ 𝜑1(𝑥) ≥ 𝜑2(𝑥)

)
described in Section 5.2.2, one can use this rule to assign 1 to 𝑡 if 𝑥 = 1,
and 2 otherwise. Appendix A.4.1 shows a detailed example.

5.7.2. Examples

We now illustrate our compositionality rules on two examples: Compos-
ing minimality and monotonicity, and composing non-interference with
generalized non-interference.

Example 5.7.4 Composing minimality and monotonicity.
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⊢ [low(𝑙)] 𝐶2 [low(𝑙)]

⊢ [¬emp] 𝐶2 [¬emp]
⊢ [Π

ℎ=𝜑𝐿1 (ℎ)
[¬emp]] 𝐶2 [Π

ℎ=𝜑𝐿1 (ℎ)
[¬emp]]

Specialize

⊢ [∃⟨𝜑⟩. 𝜑𝐿(ℎ) = 𝜑𝐿1 (ℎ)] 𝐶2 [∃⟨𝜑⟩. 𝜑𝐿(ℎ) = 𝜑𝐿1 (ℎ)]
Cons

⊢ [low(𝑙) ∧ (∃⟨𝜑⟩. 𝜑𝐿(ℎ) = 𝜑𝐿1 (ℎ))] 𝐶2 [low(𝑙) ∧ (∃⟨𝜑⟩. 𝜑𝐿(ℎ) = 𝜑𝐿1 (ℎ))]
And

⊢ [
⊗(

low(𝑙) ∧ (∃⟨𝜑⟩. 𝜑𝐿(ℎ) = 𝜑𝐿1 (ℎ))
)
] 𝐶2 [

⊗(
low(𝑙) ∧ (∃⟨𝜑⟩. 𝜑𝐿(ℎ) = 𝜑𝐿1 (ℎ))

)
]

BigUnion

⊢ [∀⟨𝜑2⟩.∃⟨𝜑⟩. 𝜑𝐿1 (ℎ) = 𝜑𝐿(ℎ) ∧ 𝜑𝑃2 (𝑙) = 𝜑𝑃(𝑙)︸                                                     ︷︷                                                     ︸
𝑃′𝜑1

] 𝐶2 [∀⟨𝜑2⟩.∃⟨𝜑⟩. 𝜑𝐿1 (ℎ) = 𝜑𝐿(ℎ) ∧ 𝜑𝑃2 (𝑙) = 𝜑𝑃(𝑙)︸                                                     ︷︷                                                     ︸
𝑄′
𝜑1

]
Cons

(5.2)

⊢ [low(𝑙)] 𝐶1 [GNI
ℎ
𝑙
]

using (5.2) and 𝜑𝐿1 = 𝜑′𝐿
1 =⇒ 𝑄′

𝜑1 = 𝑄′
𝜑′

1

∀𝜑1 , 𝜑
′
1 . (𝜑

𝐿
1 = 𝜑′𝐿

1 ∧ ⊢ [⟨𝜑1⟩] 𝐶 [⟨𝜑′
1⟩] =⇒ (⊢ [𝑃′

𝜑1 ] 𝐶2 [𝑄′
𝜑′

1
])

⊢ [GNI
ℎ
𝑙
] 𝐶2 [GNI

ℎ
𝑙
]

Linking

⊢ [low(𝑙)] 𝐶1; 𝐶2 [GNI
ℎ
𝑙
]

Seq

Figure 5.10.: A compositional proof that the sequential composition of a command that satisfies GNI and a command that satisfies NI in
turn satisfies GNI. Recall that GNI

ℎ
𝑙
≜ (∀⟨𝜑1⟩, ⟨𝜑2⟩.∃⟨𝜑⟩. 𝜑𝐿1 (ℎ) = 𝜑𝐿(ℎ) ∧ 𝜑𝑃(𝑙) = 𝜑𝑃2 (𝑙)), low(𝑙) ≜ (∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑𝑃1 (𝑙) = 𝜑𝑃2 (𝑙)), and

emp ≜ (∀⟨𝜑⟩.⊥).

Consider a command 𝐶1 that computes a function that has a minimum
for 𝑥, and a deterministic command 𝐶2 that is monotonic from 𝑥 to 𝑦.
We want to prove compositionally that 𝐶1; 𝐶2 has a minimum for 𝑦.

More precisely, we assume that the following hyper-triples are valid:

(1) [𝑃] 𝐶1 [hasMin𝑥] (minimality)
(2) [mono

𝑖
𝑥] 𝐶2 [mono

𝑖
𝑦] (monotonicity)

(3) [singleton] 𝐶2 [singleton] (determinism14
14: This triple ensures that 𝐶2 does not
map the initial state with the minimum
value for 𝑥 to potentially different states
with incomparable values for 𝑦 (the or-
der ≤ on values might be partial). More-
over, it ensures that 𝐶2 does not drop
any initial states because of an assume
command or a non-terminating loop.

)

where mono
𝑖
𝑥 ≜ (∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑𝐿1 (𝑖)=1 ∧ 𝜑𝐿2 (𝑖)=2 ⇒ 𝜑𝑃1 (𝑥)≤𝜑𝑃2 (𝑥)),

hasMin𝑥 ≜ (∃⟨𝜑⟩. ∀⟨𝜑′⟩. 𝜑𝑃(𝑥) ≤ 𝜑′𝑃(𝑥)), and singleton ≜ (∃⟨𝜑⟩.
∀⟨𝜑′⟩. 𝜑 = 𝜑′), With the core rules alone, we cannot compose the two
triples (1) and (2) to prove that 𝐶1; 𝐶2 has a minimum for 𝑦 since the
postcondition of 𝐶1 does not imply the precondition of 𝐶2.

Figure 5.9 shows a valid derivation in Hyper Hoare Logic of ⊢
[𝑃] 𝐶1; 𝐶2 [hasMin𝑦] (which we have proved in Isabelle/HOL). The
key idea is to use the rule LUpdate to mark the minimal state with 𝑖 = 1,
and all the other states with 𝑖 = 2, in order to match 𝐶1’s postcondition
with 𝐶2’s precondition. Note that we had to use the consequence rule
to turn 𝐶2’s postcondition mono

𝑖
𝑦 ∧𝑄′ into hasMin𝑦 before applying the

rule LUpdate, because the latter hyper-assertion is invariant w.r.t. logical
updates in {𝑖} (as required by the rule LUpdate), whereas the former is
not.

The upper part of Figure 5.9 shows the derivation of ⊢ [𝑃′] 𝐶2 [𝑄′],
which uses the rule Specialize to restrict the triple [singleton] 𝐶2 [singleton]
to the subset of states where 𝑖 = 1, ensuring the existence of a unique
state (the minimum) where 𝑖 = 1 after executing 𝐶2. We also use the
rule FrameSafe to ensure that our set only contains states with 𝑖 = 1 or
𝑖 = 2.15 15: We could avoid the use of

this rule by defining mono
𝑖
𝑥 as

∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑𝐿1 (𝑖)=1 ∧ 𝜑𝐿2 (𝑖)≠2 ⇒
𝜑𝑃1 (𝑥)≤𝜑𝑃2 (𝑥).Example 5.7.5 Composing non-interference with generalized non-in-

terference.
To illustrate additional compositionality rules, we re-visit the example
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introduced at the beginning of this section. Consider a command 𝐶1
that satisfies GNI (for a public variable 𝑙 and a secret variable ℎ) and a
command 𝐶2 that satisfies NI (for the public variable 𝑙). We want to
prove that 𝐶1; 𝐶2 satisfies GNI (for 𝑙 and ℎ).

More precisely, we assume that the following hyper-triples are valid:

(1) ⊢ [low(𝑙)] 𝐶1 [GNI
ℎ
𝑙
] (GNI)

(2) ⊢ [low(𝑙)] 𝐶2 [low(𝑙)] (NI)
(3) ⊢ [¬emp] 𝐶2 [¬emp] (termination)

where GNI
ℎ
𝑙
≜ (∀⟨𝜑1⟩, ⟨𝜑2⟩.∃⟨𝜑⟩. 𝜑𝐿1 (ℎ) = 𝜑𝐿(ℎ) ∧ 𝜑𝑃(𝑙) = 𝜑𝑃2 (𝑙)),

low(𝑙) ≜ (∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑𝑃1 (𝑙) = 𝜑𝑃2 (𝑙)), and emp ≜ (∀⟨𝜑⟩.⊥). Triple (3)
is needed to ensure that 𝐶2 does not drop executions depending on
some values for ℎ (e.g., because of secret-dependent non-termination),
which might cause 𝐶1; 𝐶2 to violate GNI.

Figure 5.10 shows a valid derivation of the triple⊢ [low(𝑙)] 𝐶1; 𝐶2 [GNI
ℎ
𝑙
]

(which we have proved in Isabelle/HOL). The first key idea of
this derivation is to use the rule Linking to eliminate the ∀⟨𝜑1⟩ in
the pre- and postcondition of the triple [GNI

ℎ
𝑙
] 𝐶2 [GNI

ℎ
𝑙
], while

assuming that they have the same value for the logical variable
ℎ (implied by the assumption 𝜑𝐿1 = 𝜑′𝐿

1 ). The second key idea
is to decompose any set of states 𝑆 that satisfies 𝑃′

𝜑1 (defined as
∀⟨𝜑2⟩.∃⟨𝜑⟩. 𝜑𝐿1 (ℎ) = 𝜑𝐿(ℎ) ∧ 𝜑𝑃2 (𝑙) = 𝜑𝑃(𝑙)) into a union of smaller
sets that all satisfy low(𝑙) ∧ (∃⟨𝜑⟩. 𝜑𝐿1 (ℎ) = 𝜑𝐿(ℎ)). More precisely, we
rewrite 𝑆 as the union of all sets {𝜑, 𝜑2} for all 𝜑, 𝜑2 ∈ 𝑆 such that
𝜑𝐿1 (ℎ) = 𝜑𝐿(ℎ) ∧ 𝜑𝑃2 (𝑙) = 𝜑𝑃(𝑙), using the rule Cons. Unlike 𝑆, these
smaller sets all satisfy the precondition low(𝑙) of 𝐶2, which allows us
to leverage the triple ⊢ [low(𝑙)] 𝐶2 [low(𝑙)]. Finally, we use the rule
Specialize to prove that, after executing 𝐶2 in each of the smaller sets
{𝜑, 𝜑2}, there will exist at least one state 𝜑′ with 𝜑′𝐿(ℎ) = 𝜑𝐿1 (ℎ).

5.8. Related Work

Overapproximate (relational) Hoare logics. Hoare Logic originated
with the seminal works of Floyd [8] and Hoare [9], with the goal of
proving programs functionally correct. Relational Hoare Logic [103] (RHL)
extends Hoare Logic to reason about (2-safety) hyperproperties of a
single program as well as relational properties relating the executions of
two different programs (e.g., semantic equivalence). RHL’s ability to relate
the executions of two different programs is also useful in the context of
proving 2-safety hyperproperties of a single program, in particular, when
the two executions take different branches of a conditional statement. In
comparison, Hyper Hoare Logic can prove and disprove hyperproperties
of a single program (Section 5.3.3), but requires a program transformation
to express relational properties (see Appendix A.3.3). Extending Hyper
Hoare Logic to multiple programs is interesting future work.

RHL has been extended in many ways, for example to deal with heap-
manipulating [110] and higher-order [111] programs. A family of Hoare
and separation logics [112–115] designed to prove non-interference [208]
specialize RHL by considering triples with a single program, similar
to Hyper Hoare Logic. Naumann [109] provides an overview of the
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principles underlying relational Hoare logics. Sousa and Dillig [88] have
proposed Cartesian Hoare Logic (CHL) to reason about 𝑘-safety properties
for any fixed 𝑘, with a focus on automation and scalability. Hyper Hoare
Logic can express the properties supported by CHL, in addition to
many other properties; we show how to automate Hyper Hoare Logic
in Chapter 6. D’Osualdo et al. [116] have identified several limitations
of CHL when trying to compose together proofs of different 𝑘-safety
properties, and have proposed a novel weakest-precondition calculus to
overcome these limitations. Gladshtein et al. [117] have further extended
the previous calculus to handle heap-manipulating programs and 𝑘-
safety properties for values of 𝑘 depending on program variables, which
is useful to specify and verify computations over structured data (such
as sparse representations of arrays or matrices).

Underapproximate program logics. Reverse Hoare Logic [106] is an
underapproximate variant of Hoare Logic, designed to prove the existence
of good executions. The recent Incorrectness Logic [89] adapts this idea
to prove the presence of bugs. Incorrectness Logic has been extended
with concepts from separation logic to reason about heap-manipulating
sequential [118] and concurrent [119] programs. It has also been extended
to prove the presence of insecurity in a program (i.e., to disprove 2-safety
hyperproperties) [107]. Underapproximate logics [89, 106, 214] have been
successfully used as foundation of industrial bug-finding tools [98–101].
Hyper Hoare Logic enables proving and disproving hyperproperties
within the same logic.

Several recent works have proposed approaches to unify over- and
underapproximate reasoning. Exact Separation Logic [120] can establish
both overapproximate and (backward) underapproximate properties
over single executions of heap-manipulating programs, by employing
triples that describe exactly the set of reachable states. Local Completeness
Logic [217, 218] unifies over- and underapproximate reasoning in the
context of abstract interpretation, by building on Incorrectness Logic, and
enforcing a notion of local completeness (no false alarm should be produced
relative to some fixed input). HL and IL have been both embedded in a
Kleene algebra with diamond operators and countable joins of tests [219].
Dynamic Logic [220] is an extension of modal logic that can express
both overapproximate and underapproximate guarantees over single
executions of a program.

Outcome Logic [102] (OL) unifies overapproximate and (forward) un-
derapproximate reasoning for heap-manipulating and probabilistic
programs, by combining and generalizing the standard overapproxi-
mate Hoare triples with forward underapproximate triples (see Ap-
pendix A.3.2). OL (instantiated to the powerset monad) uses a semantic
model similar to our extended semantics (Definition 5.3.4), and a similar
definition for triples (Definition 5.3.5). Moreover, a theorem similar to our
Theorem 5.3.4 holds in OL, i.e., invalid OL triples can be disproven within
OL. The key difference with Hyper Hoare Logic is that OL does not
support reasoning about hyperproperties. OL assertions are composed of
atomic unary assertions, which can express the existence and the absence
of certain states, but not relate states with each other, which is key to
expressing hyperproperties. OL does not provide logical variables, on
which we rely to express certain hyperproperties (see Section 5.2.2).



5. Hyper Hoare Logic 143

[104]: Maillard et al. (2019), The next 700

Relational Program Logics

[96]: Dickerson et al. (2022), RHLE

[121]: Beutner (2024), Automated Software

Verification of Hyperliveness

[105]: Antonopoulos et al. (2023), An Alge-

bra of Alignment for Relational Verification

16: Note that one can in principle use
BiKAT to prove ∃∀-properties, by es-
sentially proving the negation of ∀∃-
properties: To prove that an ∃∀-property
between two programs 𝐶1 and 𝐶2 holds,
one needs to consider all programs 𝑊
that overapproximate the behavior of 𝐶1
and underapproximate the behavior of
𝐶2, and prove that𝑊 does not satisfy a
∀∀-property.

[221]: Ramshaw (1979), Formalizing the

Analysis of Algorithms

[222]: den Hartog (1999), Verifying Proba-

bilistic Programs Using a Hoare like Logic

[223]: Corin et al. (2006), A Probabilistic

Hoare-style Logic for Game-Based Crypto-

graphic Proofs

[224]: Barthe et al. (2018), An Assertion-

Based Program Logic for Probabilistic Pro-

grams

[225]: Barthe et al. (2019), A Probabilistic

Separation Logic

[226]: Rand et al. (2015), VPHL

[224]: Barthe et al. (2018), An Assertion-

Based Program Logic for Probabilistic Pro-

grams

[224]: Barthe et al. (2018), An Assertion-

Based Program Logic for Probabilistic Pro-

grams

[227]: Barthe et al. (2009), Formal Certifi-

cation of Code-Based Cryptographic Proofs

[27]: Clarkson et al. (2008), Hyperproper-

ties

[122]: Barthe et al. (2004), Secure Informa-

tion Flow by Self-Composition

[216]: Terauchi et al. (2005), Secure Infor-

mation Flow as a Safety Problem

[123]: Barthe et al. (2011), Relational Verifi-

cation Using Product Programs

[124]: Eilers et al. (2019), Modular Product

Programs

[125]: Barthe et al. (2013), Beyond 2-Safety

[228]: Barthe et al. (2014), Proving Differ-

ential Privacy in Hoare Logic

Logics for ∀∗∃∗-hyperproperties. Maillard et al. [104] present a general
framework for defining relational program logics for arbitrary monadic
effects (such as state, input-output, nondeterminism, and discrete prob-
abilities), for two executions of two (potentially different) programs.
Their key idea is to map pairs of (monadic) computations to relational
specifications, using relational effect observations. In particular, they dis-
cuss instantiations for ∀∀-, ∀∃-, and ∃∃-hyperproperties. RHLE [96]
and FEHL [121] support overapproximate and (a limited form of) un-
derapproximate reasoning, as they can establish ∀∗∃∗-hyperproperties,
such as generalized non-interference (Section 5.2.3) and program refine-
ment. BiKAT [105], an algebra of alignment for relational verification,
can be used directly to prove ∀∀-properties. Moreover, ∀∃-properties
between two programs 𝐶1 and 𝐶2 can also be proved with BiKAT, by
proving that a corresponding ∀∀-property holds for some alignment

witness, i.e., a program that overapproximates the behavior of 𝐶1 while
underapproximating the behavior of 𝐶2.16

All four frameworks can be used to reason about relational properties
of multiple programs, whereas Hyper Hoare Logic requires a program
transformation to handle such properties. On the other hand, our logic
supports a wider range of underapproximate reasoning and can express
properties not handled by any of them, e.g., ∃∗∀∗-hyperproperties and
hyperproperties relating an unbounded or infinite number of executions.
Moreover, even for ∀∗∃∗-hyperproperties, Hyper Hoare Logic provides
while loop rules that have no equivalent in these logics, such as the rules
While-∃ (useful in this restricted context for∃∗-hyperproperties) and While-

∀∗∃∗ (Section 5.6). Additionally, as shown in Section 5.7, Hyper Hoare
Logic offers flexible compositionality principles that are not supported
by the aforementioned frameworks.

Probabilistic Hoare logics. Many assertion-based logics for probabilis-
tic programs have been proposed [221–226]. These logics typically employ
assertions over probability (sub-)distributions of states, which bear some
similarities to hyper-assertions: Asserting the existence (resp. absence) of
a state is analogous to asserting that the probability of this state is strictly
positive (resp. zero). Taking the union of two sets of states is analogous to
taking the sum of two sub-distributions. Our operator ⊗ (Definition 5.4.1)
used in the rule Choice is thus similar to the operator ⊕ from Barthe et al.
[224]. Notably, our loop rule While-∀∗∃∗ draws some inspiration from the
rule While of Barthe et al. [224], which also requires an invariant that
holds for all unrollings of the loop. These probabilistic logics have also
been extended to the relational setting [227], for instance to reason about
the equivalence of probabilistic programs.

Verification of hyperproperties. The concept of hyperproperties has
been formalized by Clarkson and Schneider [27]. Verifying that a pro-
gram satisfies a 𝑘-safety hyperproperty can be reduced to verifying a
safety property of the self-composition of the program [122, 216] (e.g.,
by sequentially composing the program with renamed copies of itself).
Self-composition has been generalized to product programs [123, 124].
(Extensions of) product programs have also been used to verify relational
properties such as program refinement [125] and probabilistic relational
properties such as differential privacy [228]. The temporal logics LTL,
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CTL, and CTL*, have been extended to HyperLTL and HyperCTL* [229]
to specify hyperproperties, and model-checking algorithms [128, 230–
232] have been proposed to verify hyperproperties expressed in these
logics, including hyperproperties outside the safety class. Unno et al.
[127] propose an approach to automate relational verification (includ-
ing ∀∗∃∗-properties such as GNI) based on an extension of constrained
Horn-clauses. Relational properties of imperative programs can be veri-
fied by reducing them to validity problems in trace logic [233]. Finally,
the notion of hypercollecting semantics [204] (similar to our extended
semantics) has been proposed to statically analyze information flow
using abstract interpretation [234]. One major difference between our
extended semantics and this hypercollecting semantics is the treatment
of loops. The former is defined directly on top of the big-step semantics
(Definition 5.3.4), whereas the latter is defined inductively, and, in the
case of loops, as a fixpoint over sets of sets of traces, which is more
suitable for abstract interpretation, but less precise than the extended
semantics. This difference in precision matters for hyperproperties that
are not subset-closed (such as GNI) [235, 236].
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alignments of loop iterations between dif-
ferent programs. For example, when veri-
fying a relational property of the form∀∃
between two programs, one can choose
to perform 𝑐1 loop iterations in the first
program and 𝑐2 loop iterations in the sec-
ond program, where 𝑐1 and 𝑐2 are fixed
constants.

Hypra 6.
Hyper! Hyper!

Scooter, Hyper Hyper

In the previous chapter, we have introduced Hyper Hoare Logic, a
novel program logic to express and prove program hyperproperties
with arbitrary quantifier alternations. In this chapter, we present Hypra,
an automated deductive verifier for hyperproperties based on Hyper
Hoare Logic, which inherits much of Hyper Hoare Logic’s expressive-
ness, and thus is the first deductive verifier for hyperproperties with
arbitrary quantifier alternations (including ∀∗∃∗-hyperproperties and
∃∗∀∗-hyperproperties).

6.1. Introduction

As we have seen in Chapter 1, automated deductive verifiers for hyper-
properties are mostly limited to 𝑘-safety hyperproperties, which can be
reduced to safety properties for a product program [122–124] and then
verified using an off-the-shelf verifier. Alternatively, there are dedicated
verifiers for hyperproperties, such as WhyRel [126], SecC (based on
SecCSL [114]), and HyperViper (based on CommCSL [115]) for 2-safety
hyperproperties, and Descartes (based on Cartesian Hoare Logic [88])
for 𝑘-safety hyperproperties.

To the best of our knowledge, ORHLE (based on RHLE) [96] and ForEx
(based on FEHL) [121] are the only automated deductive verifiers that go
beyond 𝑘-safety hyperproperties by supporting ∀∗∃∗-hyperproperties.1
However, they are limited to a fixed quantification scheme; users have to
first fix the numbers of ∀-quantifiers and ∃-quantifiers and then write
preconditions, postconditions, and loop invariants in this fixed scheme.
It is, thus, not possible to compose proofs with different quantification
schemes, e.g., to use a ∀-property in the proof of a ∀∀-property, or a
∀∀-property in the proof of a ∀∃-property. Moreover, ORHLE and ForEx
only support synchronized loop rules,2 which limits the programs and
hyperproperties that can be verified in practice. For example, they cannot
verify the monotonicity of the Fibonacci sequence (Example 5.6.3), which
requires a loop rule such as Hyper Hoare Logic’s While-∀∗∃∗.

To the best of our knowledge, no existing verifier supports properties
beyond ∀∗∃∗-hyperproperties, such as ∃∗∀∗-hyperproperties.

This chapter. We present the first deductive verifier for hyperproperties
with arbitrary quantifier alternations. Our tool, Hypra, is based on Hyper
Hoare Logic (HHL) (Chapter 5). Like HHL, Hypra allows assertions to
quantify explicitly over states, giving users the flexibility to express and
combine different types of hyperproperties in the same proof. Going
beyond HHL, Hypra supports reasoning about runtime errors (e.g., to
prove the existence or absence of bugs).
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Our key insight is that arbitrary hyperproperties and the corresponding
proof rules can be encoded into a standard intermediate verification
language by representing sets of states of the input program explicitly in
the states of the intermediate program. Verification is then automated
using an existing SMT-based verifier for the intermediate language. To
ensure that SMT solvers can handle the resulting verification conditions,
our encoding carefully manages quantifier instantiations by tracking
simultaneously a lower bound and an upper bound of the sets of states.
Note that, in contrast to product constructions, our encoding does not

duplicate the statements of the input program and can handle arbitrary
hyperproperties (beyond 𝑘-safety).

Like HHL, we focus on hyperproperties that relate multiple executions
of the same program; relating executions of different programs (e.g., to
prove their equivalence) poses additional challenges (such as finding an
alignment), which are orthogonal to the problems addressed here. Both
WhyRel and ORHLE support such relational proofs.

Contributions. In summary, this chapter makes the following contri-
butions:

1. We extend Hyper Hoare Logic (Chapter 5) with the ability to
reason about runtime errors. This allows us to prove correctness
(the absence of bugs), incorrectness (the existence of bugs) and
more complex hyperproperties (e.g., proving that the occurrence
of a runtime error does not leak any secret information).

2. We present the first approach to generate verification conditions for
hyperproperties with arbitrary quantifier alternations for loop-free
statements. The resulting verification conditions are amenable to
SMT solvers.

3. HHL provides multiple loop rules for different kinds of programs
and properties. We present our approach to automatically select
which loop rule to apply, such that users are not exposed to the
details of the underlying logic. This automatic selection is important
when dealing with ∃∗∀∗-invariants, which require the application
of several different loop rules. Moreover, we present and prove
sound a new loop rule for ∀∗∃∗-hyperproperties, which is more
suitable for automated verification than the corresponding rule in
HHL.

4. We implement our approach in a tool called Hypra, based on
the Viper intermediate language [16]. Our evaluation on a set of
benchmarks from the literature shows that Hypra can prove a
large class of hyperproperties for a large class of programs, in a
reasonable amount of time and with a reasonable amount of proof
annotations.

Outline. The rest of the chapter is organized as follows: Section 6.2
highlights the capabilities of our verifier through several examples,
and presents our extension of Hyper Hoare Logic to reason about
runtime errors. Section 6.3 presents our approach to generate verification
conditions for loop-free statements, while Section 6.4 handles loops.
Finally, we discuss the implementation and evaluation of Hypra in
Section 6.5, and related work in Section 6.6.
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[137]: Dardinier et al. (2024), Hypra: A De-

ductive Program Verifier for Hyperproperties

(Artifact)

Accompanying artifact. The artifact [137] associated with this chapter
consists of (1) our tool Hypra, (2) our evaluation, with instructions on how
to reproduce the results, and (3) Isabelle/HOL proofs of the soundness
of the novel loop rule described in Section 6.4.1 (Theorem 6.4.1) and of
Lemma 6.4.2.

6.2. A Tour of the Verifier

In this section, we illustrate the key capabilities of Hypra on several
examples. Section 6.2.1 shows how Hypra can be used to verify safety and
reachability properties. Section 6.2.2 then illustrates how Hypra can verify
complex hyperproperties (such as ∃∗∀∗-hyperproperties). Section 6.2.3
illustrates how Hypra can be used to verify properties about runtime
errors, such as the absence of errors, the existence of errors, and more
complex (hyper)properties (such as the fact that the occurrence of a
runtime error does not leak secret information). We also explain how
we extend Hyper Hoare Logic, which does not support errors, to do so.
Finally, Section 6.2.4 shows how Hypra handles while loops. All examples
shown in this section are successfully and automatically verified by our
tool.

6.2.1. Verifying Safety and Reachability Propertes

Hypra can be used to verify hyperproperties for the following class of
programs:

Definition 6.2.1 Syntax of Hypra statements.
Hypra statements are written in the following syntax, where 𝐶 ranges over

program statements, 𝑥, 𝑥𝑖 and 𝑦𝑖 range over program variables, 𝑒 ranges over

arithmetic expressions, 𝑏 ranges over boolean expressions, 𝑇 over types, and

𝑚 represents a method with 𝑛 parameters and 𝑘 return variables:

𝐶 F skip | assume b | assert b | 𝐶;𝐶 | x B nonDet() | x B e | var x : T
| if (𝑏) {𝐶} else {𝐶} | while (𝑏) {𝐶} | 𝑦1 , . . . , 𝑦𝑘 ≔ 𝑚(𝑥1 , . . . , 𝑥𝑛)

This syntax is similar to the syntax from Definition 5.3.1. One addition
is the statement var x : T, which declares a new local program variable
𝑥 of type 𝑇. Another important addition is the statement 𝑦1 , . . . , 𝑦𝑘 ≔

𝑚(𝑥1 , . . . , 𝑥𝑛), which calls the method𝑚 with arguments 𝑥1 , . . . , 𝑥𝑛 , and
stores the results of the call in the variables 𝑦1 , . . . , 𝑦𝑘 . Hypra programs are
collections of methods, which have a name, a list of typed parameters, a
list of typed return variables, and an optional body (written in the syntax
of Definition 6.2.1).

Specifications and hints. Given a method with body 𝐶, annotated
with a precondition 𝑃 and a postcondition 𝑄, where 𝑃 and 𝑄 are hyper-
assertions written in the specification language that we will introduced in
Section 6.2.3, Hypra tries to establish the hyper-triple [𝑃] 𝐶 [𝑄]. To help
guide the proof, users can annotate while loops with loop invariants and
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method randNat() returns (y: Int)
requires ∃⟨𝜎 ⟩ . ⊤
ensures ∀⟨𝜎 ⟩ . 1 ≤ 𝜎 ( 𝑦 ) ≤ 2
ensures ∃⟨𝜎 ⟩ . 𝜎 (𝑦 ) = 1
ensures ∃⟨𝜎 ⟩ . 𝜎 (𝑦 ) = 2

{
var x: Int
x := nonDet() // {hint}
// use hint(0,1)
if (x > 0) {

y := 1
}
else {

y := 2
}

}

method secure(h: Int, l: Int) returns (o: Int)
requires ∀⟨𝜎1 ⟩ , ⟨𝜎2 ⟩ . 𝜎1 ( 𝑙 ) = 𝜎2 ( 𝑙 )
ensures ∀⟨𝜎1 ⟩ , ⟨𝜎2 ⟩ . 𝜎1 (𝑜 ) = 𝜎2 (𝑜 )

{
if (h > 0) { o := 2 * l }
else { o := l }
if (h <= 0) { o := o + l }

}

method leaky(h: Int) returns (o: Int)
requires ∃⟨𝜎1 ⟩ , ⟨𝜎2 ⟩ . 𝜎1 ( ℎ ) < 𝜎2 ( ℎ )
ensures ∃⟨𝜎1 ⟩ , ⟨𝜎2 ⟩ . ∀⟨𝜎 ⟩ . 𝜎 (𝑜 )=𝜎1 (𝑜 )⇒𝜎 ( ℎ )≠𝜎2 ( ℎ )

{
var y: Int
y := nonDet() // {hint}
assume 0 <= y <= 10
// use hint(10)
o := h + y

}

Figure 6.1.: Examples of overapproximation, underapproximation, and hyperproperties. The example on the left illustrates ∀-properties
and ∃-properties of individual program executions. The examples on the right illustrate hyperproperties. Method secure satisfies
non-interference, a ∀∀-hyperproperty. Method leaky (which is adapted from Example 5.2.7) violates generalized non-interference. The
negation of this property is expressed as an ∃∃∀-hyperproperty. All examples are successfully verified by Hypra, using the provided
hints to construct witnesses for existential quantifiers.

loop variants, as we will see in Section 6.2.4. Users can also provide hints

for non-deterministic assignments, as we show in the next example.

Example 6.2.1 Verifying safety and reachability.
Consider the method randNat in Figure 6.1 (left). This method non-
deterministically chooses a value for 𝑥 (which can for example represent
a random choice or some user input), and assigns 1 to 𝑦 if 𝑥 > 0,
and 2 otherwise. In other words, this method non-deterministically
returns 1 or 2. The keyword requires specifies the precondition of
the method, while the keyword ensures specifies the postcondition.
Multiple preconditions or postconditions are simply conjoined. Thus,
verifying this example corresponds to proving the hyper-triple

[∃⟨𝜎⟩.⊤] 𝐶𝑟 [(∀⟨𝜎⟩. 1≤𝜎(𝑦)≤2) ∧ (∃⟨𝜎⟩. 𝜎(𝑦)=1) ∧ (∃⟨𝜎⟩. 𝜎(𝑦)=2)]

where 𝐶𝑟 refers to the body of method randNat. Let 𝑆′ be the set of
reachable states at the end of the method. The postcondition ∀⟨𝜎⟩. 1 ≤
𝜎(𝑦) ≤ 2, which is equivalent to∀𝜎 ∈ 𝑆′. 1 ≤ 𝜎(𝑦) ≤ 2, overapproximates

the set 𝑆′: It means that, in any final state (from 𝑆′), 𝑦 will either be 1 or
2, corresponding to the standard Hoare triple {⊤} 𝐶𝑟 {1 ≤ 𝑦 ≤ 2}. On
the other hand, the postconditions ∃⟨𝜎⟩. 𝜎(𝑦) = 1 and ∃⟨𝜎⟩. 𝜎(𝑦) = 2,
equivalent to ∃𝜎 ∈ 𝑆′. 𝜎(𝑦) = 1 and ∃𝜎 ∈ 𝑆′. 𝜎(𝑦) = 2, respectively,
underapproximate the set 𝑆′: They express the existence of two reachable
final states with 𝑦 = 1 and 𝑦 = 2. Conjoined, these three postconditions
express that this method has only two possible outcomes for 𝑦, 1 and
2, and that both outcomes are reachable. The precondition ∃⟨𝜎⟩.⊤
expresses that the set of initial states is non-empty. This precondition
is required for the hyper-triple to hold, otherwise the postconditions
∃⟨𝜎⟩. 𝜎(𝑦) = 1 and ∃⟨𝜎⟩. 𝜎(𝑦) = 2 would not hold (because no states
are reachable from an empty set of initial states).
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3: Note that, in general, hints can depend
on the variables of one or more states.
For example, use ∀⟨𝜎⟩. hint(𝜎(𝑛))
tells the SMT solver to consider the

value of variable 𝑛 in all relevant
states 𝜎. Hints can also depend on
multiple quantified states, as in use

∀⟨𝜎1⟩, ⟨𝜎2⟩. hint(𝜎1(𝑎) + 𝜎2(𝑏)).

While Hypra verifies the first postcondition automatically, proving the
existentially-quantified postconditions requires a user-provided hint.
Hints are annotations for non-deterministic assignments that give exam-
ples of values that might be assigned. Hypra uses this information to
construct witness states for ∃-properties. In our example, the {hint} an-
notation after the non-deterministic assignment introduces an identifier
for this assignment, and the annotation use hint(0,1) tells the verifier
that 0 and 1 are relevant choices for this non-deterministic assignment
(technically, hints are used to provide triggers for the quantifier instantia-
tion in the SMT solver).3 The two values ensure that both branches of the
subsequent conditional statement are considered, which is necessary to
prove both existentially-quantified postconditions. The specific values
are irrelevant in this example; any pair of a non-negative and a positive
integer would work.

6.2.2. Verifying Hyperproperties

Overapproximation allows us to formally verify safety hyperproperties
such as non-interference, as illustrated by the following example.

Example 6.2.2 Verifying non-interference.
Consider the method secure in Figure 6.1 (top right). The specification
expresses that the output 𝑜 depends only on the low-sensitive input
𝑙 and, thus, does not leak any information about the secret input ℎ.
Hypra verifies this example without further annotations.

By enabling both overapproximation and underapproximation reasoning,
our approach can verify more complex hyperproperties, such as ∀∗∃∗-
hyperproperties or ∃∗∀∗-hyperproperties, as illustrated by the following
example.

Example 6.2.3 Verifying a violation of generalized non-interference.
Consider the method leaky in Figure 6.1 (bottom right), inspired by
Example 5.2.7. The statements y := nonDet() and assume 0 <= y <= 10

model a non-deterministic choice between 0 and 10. This method leaks
information about its secret input ℎ via its output 𝑜: ℎ is between
𝑜 − 10 and 𝑜. To prove this claim, we formally verify that the method
violates generalized non-interference [208, 210] [208]: Volpano et al. (1996), A Sound Type

System for Secure Flow Analysis

[210]: McCullough (1987), Specifications

for Multi-Level Security and a Hook-Up

. That is, we prove the
existence of two executions with distinct secret values for ℎ that can be
distinguished. The postcondition expresses that observing the output
𝜎1(𝑜) rules out the possibility that the secret value of ℎ was 𝜎2(ℎ),
thus leaking information about the initial value of ℎ. Verifying this
existentially-quantified postcondition requires a hint; choosing the
provided value 10 for 𝜎2(𝑦) yields the required witnesses.

6.2.3. Verifying Properties about Runtime Errors

Our examples so far reason about properties of normal states, that is, states
that are reached when the program executes successfully. In addition,
our technique can also reason about a set of error states, which are
reached when a runtime error occurs. This feature allows us to prove
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method buggy() returns (x: Int)
requires ∃⟨𝜎 ⟩ . ⊤
ensures ∃⟨𝜎 ⟩er . 𝜎 (𝑥 ) = 1
ensures ∃⟨𝜎 ⟩er . 𝜎 (𝑥 ) = 2

{
x := randNat()
var y: Int := x + x
assert y % 2 == 1

}

method almostCorrect(x:Int) returns (o:Int)
requires ∀⟨𝜎 ⟩ . 𝜎 (𝑥 ) ≥ 0
ensures ∀⟨𝜎 ⟩er . 𝜎 (𝑥 ) = 0 ∧ 𝜎 (𝑜 ) = 0

{
o := nonDet()
assume o >= 0
var y: Int := x + o
assert y > 0

}

method lowError(h: Int, l: Int, t: Int)
requires ∃⟨𝜎1 ⟩ , ⟨𝜎2 ⟩ . 𝜎1 ( 𝑡 ) = 1 ∧ 𝜎2 ( 𝑡 ) = 2
requires ∀⟨𝜎1 ⟩ , ⟨𝜎2 ⟩ . 𝜎1 ( 𝑙 ) = 𝜎2 ( 𝑙 )
ensures (∃⟨𝜎1 ⟩er . 𝜎1 ( 𝑡 ) = 1) ⇔ (∃⟨𝜎2 ⟩er . 𝜎2 ( 𝑡 ) = 2)

{
if (h > 0) {

assert l >= 0
}
if (l < 0) {

assert false
}

}

Figure 6.2.: Reasoning about runtime errors. In the top left example, the postconditions specify two possible executions that lead to a
runtime error (an assertion violation). The postcondition on the top right expresses that the method fails only if both x and o are 0. The
example on the bottom illustrates reasoning about runtime errors in the context of hyperproperties. The specification expresses that the
occurrence of a runtime error does not depend on the secret input h. All examples are successfully verified by Hypra without any hints.

both the absence and presence of runtime errors, as well as advanced
hyperproperties such as failure-sensitive non-interference.

Example 6.2.4 Verifying the existence of bugs.
Method buggy in Figure 6.2 (top left) calls method randNat (see Fig-
ure 6.1), doubles the result, and asserts that the resulting value is odd.
The postconditions express the existence of two failing executions, à la
Incorrectness Logic [89] [89]: O’Hearn (2019), Incorrectness Logic: There exist error states 𝜎 where the result of
randNat is 1 and 2, respectively.

The ability to quantify over error states allows us to express more complex
properties, as illustrated by the following example.

Example 6.2.5 Verifying that a program is almost correct.
For example, the specification of method almostCorrect in Figure 6.2
(top right) expresses that a runtime error occurs only if the non-
deterministic value assigned to 𝑜 is 0 and the input 𝑥 is 0. This
almost-correctness is captured by the universal quantification in the
postcondition which expresses that all error states satisfy 𝑥 = 0∧ 𝑜 = 0,
that is, no other execution fails.

The absence of errors can be specified via the postcondition ∀⟨𝜎⟩er.⊥,
which expresses that the set of error states is empty.

In the context of hyperproperties, reasoning about error states is, for
instance, useful to express failure-sensitive non-interference, that is, the
fact that observing a runtime error does not leak secret information, as
shown by the following example.
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Example 6.2.6 Verifying failure-sensitive non-interference.
The specification of method lowError in Figure 6.2 (bottom) expresses
this property. For two different executions with the same value for
the low-sensitive input 𝑙 (but potentially different values for the secret
input ℎ), one execution fails if and only if the other execution fails. In
particular, this proves that the occurrence of a runtime error does not
depend on ℎ, such that observing an error does not leak secret infor-
mation. In this specification, the parameter 𝑡 is used to tag executions,
which allows us to identify the pre- and post-state of a given execution.
Tags are expressed as logical variables in Hyper Hoare Logic, but
represented by (immutable) program variables in Hypra.

Extending Hyper Hoare Logic to support runtime errors. We have
extended Hyper Hoare Logic, which does not provide any support for
reasoning about errors, as follows:

Definition 6.2.2 Hyper-triples with errors.
Given a program statement 𝐶 and two program states 𝜎 and 𝜎′

, we write

⟨𝐶, 𝜎⟩ → 𝜎′
to express that executing 𝐶 in the initial state 𝜎 may lead to

the final normal state 𝜎′
. Executions that lead to runtime errors (because of

violated assertions) are denoted as ⟨𝐶, 𝜎⟩er → 𝜎′
, where 𝜎′

is the last state

reached before the error occurred. We refer to such states as error states, in

contrast to normal states. The set of normal states reachable by executing 𝐶

in any state from 𝑆 is denoted as sem(𝐶, 𝑆) ≜ {𝜎′ | ∃𝜎 ∈ 𝑆. ⟨𝐶, 𝜎⟩ → 𝜎′},

while the set of error states reachable by executing 𝐶 in any state from 𝑆 is

denoted as err(𝐶, 𝑆) ≜ {𝜎′ | ∃𝜎 ∈ 𝑆. ⟨𝐶, 𝜎⟩er → 𝜎′}.

Hyper-assertions in Hypra are predicates over pairs of sets of states, where

the first set corresponds to normal states, and the second set corresponds to

error states. Given two hyper-assertions 𝑃 and 𝑄, we write |=[𝑃] 𝐶 [𝑄] to

express that the triple [𝑃] 𝐶 [𝑄] is valid, which is defined as follows:

|=[𝑃] 𝐶 [𝑄] iff ∀𝑆. 𝑃(𝑆,∅) ⇒ 𝑄(sem(𝐶, 𝑆), err(𝐶, 𝑆))

Note that we start with an empty set of error states (second argument
of 𝑃) to distinguish clearly between the errors caused by a statement
𝐶 and those caused by statements executed prior to 𝐶. In particular,
for a sequential composition 𝐶1; 𝐶2, the set of error states that come
from 𝐶2 depends on sem(𝐶1 , 𝑆) only, but not on err(𝐶1 , 𝑆); formally,
err(𝐶1; 𝐶2 , 𝑆) = err(𝐶1 , 𝑆) ∪ err(𝐶2 , sem(𝐶1 , 𝑆)). Consequently, prescrib-
ing a specific set of error states in 𝐶2’s precondition is not useful.

We have also extended the syntax for hyper-assertions from Defini-
tion 5.3.3 to support quantification over error states, as follows.

Definition 6.2.3 Hypra’s specification language.
Hypra supports the following syntax for hyper-assertions 𝑃 where 𝐸 ranges

over integer expressions, 𝐵 over Boolean expressions, and 𝑃 over hyper-
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method minimum(n: Int) returns (x: Int, y: Int)
requires ∃⟨𝜎 ⟩ . ⊤
requires ∀⟨𝜎1 ⟩ , ⟨𝜎2 ⟩ . 𝜎1 (𝑛 ) = 𝜎2 (𝑛 )
ensures ∃⟨𝜎 ⟩ . ∀⟨𝜎 ′ ⟩ . 𝜎 (𝑥 ) ≤ 𝜎 ′ (𝑥 ) ∧ 𝜎 ( 𝑦 ) ≤ 𝜎 ′ ( 𝑦 )

{
var i, r: Int
i, x, y := 0
while (i < n)

invariant ∀⟨𝜎1 ⟩ , ⟨𝜎2 ⟩ . 𝜎1 (𝑛 ) = 𝜎2 (𝑛 ) ∧ 𝜎1 ( 𝑖 ) = 𝜎2 ( 𝑖 )
invariant ∃⟨𝜎 ⟩ . ∀⟨𝜎 ′ ⟩ . 𝜎 (𝑥 ) ≤ 𝜎 ′ (𝑥 ) ∧ 𝜎 (𝑦 ) ≤ 𝜎 ′ (𝑦 )
decreases n - i

{
r := nonDet() // {hint}
assume r >= 5
// use hint(5)
x := x + y + 2 * i + 3 * r
y := x + 3 * i + 2 * r
if (x >= n) { y := y + r }
i := i + 1

}
}

Figure 6.3.: Reasoning about loops.
Given a loop invariant and an optional
variant, Hypra automatically selects the
appropriate loop rule. Like all other as-
sertions, loop invariants may express ar-
bitrary hyperproperties, here, the exis-
tence of an execution with minimal val-
ues for x and y. This example is success-
fully verified by Hypra.

assertions:

𝐸 F𝜎(𝑦) | 𝑥 | 𝑛 | 𝐸 + 𝐸 | 𝐸 − 𝐸 | 𝐸 ∗ 𝐸 | 𝐸 / 𝐸 | 𝐸 % 𝐸 | . . .
𝐵 F⊤ | ⊥ | 𝐸 = 𝐸 | 𝐸 > 𝐸 | 𝐸 ≥ 𝐸 | ¬𝐵 | . . .
𝑃 F∀⟨𝜎⟩. 𝑃 | ∃⟨𝜎⟩. 𝑃 | ∀⟨𝜎⟩er. 𝑃 | ∃⟨𝜎⟩er. 𝑃 | ∀𝑥. 𝑃 | ∃𝑥. 𝑃

|𝑃 ∧ 𝑃 | 𝑃 ∨ 𝑃 | 𝑃 ⇒ 𝑃 | 𝐵

Hyper-assertions interact with the set of normal states through the
quantifiers ∀⟨𝜎⟩ and ∃⟨𝜎⟩, and with the set of error states via the
quantifiers ∀⟨𝜎⟩er and ∃⟨𝜎⟩er. The quantifiers ∀⟨𝜎⟩er and ∃⟨𝜎⟩er are not
allowed in preconditions (since we always start with an empty set of
error states).

6.2.4. Verifying Loops

As discussed in Section 5.6, Hyper Hoare Logic provides four different
loop rules that can prove different flavors of hyperproperties. These rules
are applicable in different contexts; for example, some rules are applicable
only if all loop executions perform the same number of iterations, and
others only if the loop is proved to terminate. Based on a user-provided
loop invariant (provided via the keyword invariant) and an optional
loop variant (provided via the keyword decreases), Hypra determines
automatically which rule to apply. This allows users to reason about
loops in a familiar way without being exposed to the complexity of the
underlying logic, as we illustrate in the following example.

Example 6.2.7 Verifying that a program has an execution with minimal
values.
Consider the method minimum in Figure 6.3. This method starts with
𝑥 = 𝑦 = 0 and performs 𝑛 loop iterations, during which it modifies
the values of 𝑥 and 𝑦 in a non-deterministic way. We want to prove
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[16]: Müller et al. (2016), Viper

4: Technically, we use an inhale-
statement (Section 2.2.1), which has the
same semantics as an assume statement
for pure (non-SL) assertions.

5: Technically, we use an exhale-
statement (Section 2.2.1), which has the
same semantics as an assert statement
for pure (non-SL) assertions.

that, given a fixed value for the input 𝑛 (enforced by the precondition
∀⟨𝜎1⟩, ⟨𝜎2⟩. 𝜎1(𝑛) = 𝜎2(𝑛)), there exists an execution where both 𝑥 and
𝑦 have minimal values at the end of the method (without specifying
their values, which depend on 𝑛 non-deterministic choices). The proof
is based on a user-provided relational loop invariant, which must hold
before the loop, and after every iteration. The first part of the loop
invariant, ∀⟨𝜎1⟩, ⟨𝜎2⟩. 𝜎1(𝑛) = 𝜎2(𝑛) ∧ 𝜎1(𝑖) = 𝜎2(𝑖), ensures that all
states have the same values for 𝑖 and 𝑛, and thus that all executions
will exit the loop simultaneously. Our verifier automatically detects
this pattern, and uses a specialized loop encoding to handle it, as
we will explain in Section 6.4. Moreover, knowing that all executions
have the same value for 𝑖 is necessary to prove the existence of an
execution with minimal values. The second part of the loop invariant,
∃⟨𝜎⟩. ∀⟨𝜎′⟩. 𝜎(𝑥) ≤ 𝜎′(𝑥) ∧ 𝜎(𝑦) ≤ 𝜎′(𝑦), ensures that, after any num-
ber of iterations, there exists an execution with minimal values for 𝑥
and 𝑦, which corresponds to our postcondition. Finally, we need to
prove that the loop terminates, otherwise our postcondition would
not hold: If the loop did not terminate, then no final state would exist.
We prove termination using a standard loop variant (following the
decreases keyword). The verifier checks, for all states, that this loop
variant is well-founded (non-negative), and that it strictly decreases
during each iteration, thus ensuring termination.

This section illustrated the capabilities of our verification approach from
a user’s perspective. In the next two sections, we will explain how we
compute verification conditions by encoding the input program into
an intermediate verification language, for which an automated verifier
exists.

6.3. Verification Conditions for Loop-Free
Statements

Given a loop-free program statement 𝐶 (potentially containing hints), a
precondition 𝑃 and a postcondition 𝑄, our verifier generates a Viper [16]
program, such that validity of the Viper program implies validity of the
hyper-triple |=[𝑃] 𝐶 [𝑄]. Our key insight is to represent sets of states of the
input program 𝐶 as single states in the Viper program. More precisely, the
Viper program contains set-valued variables, whose contents represent
the set of states. Intuitively, the generated Viper program starts with a set-
valued variable 𝑆 (containing an arbitrary value), assumes that 𝑆 satisfies
the precondition 𝑃 (via an assume-statement4 in the Viper program),
tracks the sets of normal states and error states that can be reached by
executing 𝐶 in any state from 𝑆 (by updating the set-valued variable 𝑆
accordingly), and checks whether they satisfy the postcondition 𝑄 (via
an assert-statement5 in the Viper program). To avoid clutter, we often
ignore the set of error states in the rest of this chapter, and focus only on
the set of normal states (which we also call the set of reachable states),
but the same principles apply to both.

We first describe, in Section 6.3.1, a simplified version of our encoding. This
simplified encoding is logically sound, but, as we show in Section 6.3.2,
it does not work in practice, because it leads to matching loops where
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6: We describe the actual encoding in
Section 6.3.2.

7: In practice, 𝑆0 and 𝑆 𝑗 correspond to
the same variable whose value has been
updated, but we use superscripts to de-
note the values of this variable at differ-
ent points in the encoding, to simplify
the explanations.

the SMT solver gets stuck in an infinite instantiation of quantifiers. We
then present our solution to this problem, which is to track separately

an upper bound and a lower bound of the set of reachable states. Tracking
both bounds separately avoids the aforementioned matching loops, but
is sometimes too restrictive for preconditions that contain both universal
and existential quantifiers. Thus, in Section 6.3.3, we show how we
encode preconditions such that we can lift this restriction, while avoiding
further matching loops.

6.3.1. (Naively) Tracking the Set of Reachable States

Our simplified
6 encoding starts with an arbitrary set of states 𝑆0 that

satisfies the precondition 𝑃. We then translates the Hypra command 𝐶 to
a Viper command ⟦𝐶⟧, which computes from the set of initial states 𝑆0

the set of final states 𝑆 𝑗 ≜ sem(𝐶, 𝑆0), for some 𝑗 ≥ 0.7 Finally, we assert
that the postcondition holds for the set of final states 𝑆 𝑗 . That is, for a
triple |=[𝑃] 𝐶 [𝑄], the Viper encoding generated by our approach has
the following shape (for some 𝑗):

assume 𝑃 (𝑆 0 ); ⟦𝐶 ⟧; assert 𝑄 (𝑆 𝑗 )

Encoding sequential compositions of atomic statements. Given an
atomic statement 𝐶 (assignments, assert statements, assume statements),
our translation ⟦𝐶⟧ to Viper, which updates the current set of states 𝑆𝑖 to
the set of reachable states 𝑆𝑖+1 ≜ sem(𝐶, 𝑆𝑖), is defined as follows (where
⟨𝐶, 𝜎𝑖⟩→𝜎𝑖+1 is specialized for each atomic statement):

assume ∀𝜎 𝑖+1 ∈ 𝑆 𝑖+1 . ∃𝜎 𝑖 ∈ 𝑆 𝑖 . ⟨𝐶 , 𝜎 𝑖 ⟩ → 𝜎 𝑖+1
assume ∀𝜎 𝑖 ∈ 𝑆 𝑖 . ∀𝜎 𝑖+1 . ⟨𝐶 , 𝜎 𝑖 ⟩ → 𝜎 𝑖+1 ⇒ 𝜎 𝑖+1 ∈ 𝑆 𝑖+1

The first line expresses that every state 𝜎𝑖+1 ∈ 𝑆𝑖+1 results from executing
𝐶 in some state 𝜎𝑖 ∈ 𝑆𝑖 , while the second line expresses that any final
state 𝜎𝑖+1 that results from executing 𝐶 in a state 𝜎𝑖 ∈ 𝑆𝑖 belongs to
𝑆𝑖+1. Together, the two assume statements ensure that 𝑆𝑖+1 = sem(𝐶, 𝑆𝑖).
Sequential compositions of commands are simply handled by chaining
the two assume statements above, i.e., ⟦𝐶1;𝐶2⟧ ≜ ⟦𝐶1⟧; ⟦𝐶2⟧.

Example 6.3.1 (Naively encoding a simple Hypra program).
We illustrate our approach on the simple Hypra program main from
Figure 6.4a. Figure 6.4b shows the high-level idea of our encoding
into Viper (ignore the blue numbers for now).8 8: As we will explain in Section 6.3.2, this

encoding actually results in a matching

loop, where the SMT solver gets stuck
in an infinite instantiation of quanti-
fiers. The actual Hypra encoding, which
avoids this matching loop, is shown in
Figure 6.4c.

We start with an
arbitrary set of states 𝑆0, which is assumed to satisfy the precondition
𝑃 (Line 2). From 𝑆0, we construct the set of reachable states 𝑆1 ≜
sem(y B nonDet(), 𝑆0) (Line 4 and Line 5). We then construct similarly
the set 𝑆2 ≜ sem(o B h + y, 𝑆1) (Line 7 and Line 8). Finally, we assert
that the postcondition 𝑄 holds for the set 𝑆2 (Line 10).
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[237]: Detlefs et al. (2005), Simplify

Encoding conditional statements. For conditional statements, we lever-
age the fact that

sem(if (𝑏) {𝐶1} else {𝐶2}, 𝑆)
=sem(assume b; 𝐶1 , 𝑆) ∪ sem(assume ¬b; 𝐶2 , 𝑆)

Thus, to construct the encoding for a conditional statement, we split
the current set of program states 𝑆𝑖 into 𝑆𝑖

𝑏
and 𝑆𝑖¬𝑏 , where 𝑆𝑖

𝑏
is the set

of states where 𝑏 holds, and 𝑆𝑖¬𝑏 is the set of states where 𝑏 does not
hold. 𝑆𝑖

𝑏
and 𝑆𝑖¬𝑏 are then updated to 𝑆 𝑗

𝑏
and 𝑆 𝑗¬𝑏 , using ⟦𝐶1⟧ and ⟦𝐶2⟧,

respectively. We finally compute the union of 𝑆 𝑗
𝑏

and 𝑆 𝑗¬𝑏 to obtain the
set of reachable states after the statement.

Tracking the set of error states. On top of tracking the set of reachable
states, our encoding also tracks the set of error states err(𝐶, 𝑆) (defined
in Definition 6.2.2) in the set-valued variable 𝑆⊥. At the start of every
method, the set of error states is initially empty (preconditions, unlike
postconditions, are not allowed to quantify over error states). We then
grow this set of error states monotonically, because the set of error states
for a sequential composition 𝐶1;𝐶2, written err(𝐶1;𝐶2, 𝑆), is the union of
err(𝐶1 , 𝑆) and err(𝐶2 , sem(𝐶1 , 𝑆)). Similarly, for conditionals, we compute
the set of errors for both branches, and take their union. Error states can
be generated only by assert statements: the encoding of assert b adds all
reachable states that violate 𝑏 to the set of error states. Finally, the error
states arising from loops are handled via loop invariants (which we will
see in Section 6.4). For example, to prove that there are no error states
after a loop, the invariant must assert the absence of error states after
every iteration.

E-matching and the encoding of hints. SMT solvers (such as Z3)
used by Viper and other verifiers typically instantiate quantifiers via
E-matching [237]. In this approach, every universal quantifier is associated
with one or more syntactic matching patterns (also called triggers), ground
terms that contain the bound variables of the quantifier. The quantifier
gets instantiated only when the SMT solver’s proof search encounters a
term that matches its trigger (taking into account equalities). For instance,
given the quantifier ∀𝑥. 𝑓 (𝑥) > 0 with trigger 𝑓 (𝑥), encountering the term
𝑓 (5) in the proof search will instantiate the quantifier with value 5 for
the bound variable 𝑥.

Triggers need to be chosen carefully. Overly restrictive triggers may
prevent necessary quantifier instantiations, which may cause spurious
verification errors. Conversely, overly permissive patterns may, in the
worst case, introduce matching loops, where each quantifier instantiation
produces a term that triggers the next instantiation, causing the SMT
solver to diverge, as we will see next.

To avoid matching loops, our encoding uses rather restrictive triggers,
as we discuss in Section 6.3.3. When our chosen triggers are too restric-
tive, users can initiate additional quantifier instantiations by annotating
the input program with hints. These are encoded as applications of a
vacuously-true function, which is used as a trigger. Consequently, a hint
such as hint(0,1) in Figure 6.1 causes a quantifier instantiation with the
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method main(l: Int) returns (y: Int, o: Int)
requires ∀⟨𝜎 ⟩ . ∃⟨𝜎 ′ ⟩ . 𝜎 ( 𝑙 ) ≠ 𝜎 ′ ( 𝑙 )
ensures ∀⟨𝜎 ⟩ . ∃⟨𝜎 ′ ⟩ . 𝜎 ( 𝑦 ) = 𝜎 ′ ( 𝑦 ) ∧ 𝜎 (𝑜 ) ≠ 𝜎 ′ (𝑜 )

{
y := nonDet()
o := l + y

}

(a) A simple Hypra program. This program would require a hint (e.g., ∀⟨𝜑⟩. hint(𝜎(𝑦)))
to be verified by Hypra, but we ignore this aspect for simplicity.

1 // translation of precondition:

2 assume
0
∀ 𝜎0 ∈ 𝑆0.∃𝜎′0 ∈ 𝑆0. 𝜎(𝑙) ≠ 𝜎(𝑙)

3 // translation of y := nonDet():

4 assume
4, 8
∀ 𝜎1 ∈ 𝑆1.

5
∃ 𝜎′0 ∈ 𝑆0.∃𝑣. 𝜎1 = 𝜎0[𝑦 := 𝑣]

5 assume
6
∀ 𝜎0 ∈ 𝑆0. ∀𝑣.

7
∃ 𝜎′1 ∈ 𝑆1. 𝜎1 = 𝜎0[𝑦 := 𝑣]

6 // translation o := h + y:

7 assume
2
∀ 𝜎2 ∈ 𝑆2.

3
∃ 𝜎′1 ∈ 𝑆1. 𝜎2 = 𝜎1[𝑜 := 𝜎1(ℎ) + 𝜎(𝑦)]

8 assume
0
∀ 𝜎1 ∈ 𝑆1.∃𝜎′2 ∈ 𝑆2. 𝜎2 = 𝜎1[𝑜 := 𝜎1(ℎ) + 𝜎(𝑦)]

9 // translation of postcondition:

10 assert
1
∀ 𝜎2 ∈ 𝑆2.∃𝜎′2 ∈ 𝑆2. 𝜎(𝑦) = 𝜎(𝑦) ∧ 𝜎(𝑜) ≠ 𝜎(𝑜)

(b) A naive encoding of the method main into Viper.

// translation of precondition:

assume
6
∀ 𝜎0 ∈ 𝑆0

∀.
7
∃ 𝜎′0 ∈ 𝑆0

∃ . 𝜎(𝑙) ≠ 𝜎′(𝑙)
// translation of y := nonDet():

assume
4
∀ 𝜎1 ∈ 𝑆1

∀.
5
∃ 𝜎′0 ∈ 𝑆0

∀.∃𝑣. 𝜎1 = 𝜎0[𝑦 := 𝑣]

assume
8
∀ 𝜎′0 ∈ 𝑆0

∃ . ∀𝑣.
9
∃ 𝜎′1 ∈ 𝑆1

∃ . 𝜎
′
1 = 𝜎′0[𝑦 := 𝑣]

// translation of o := h + y:

assume
2
∀ 𝜎2 ∈ 𝑆2

∀.
3
∃ 𝜎′1 ∈ 𝑆1

∀. 𝜎2 = 𝜎1[𝑜 := 𝜎1(ℎ) + 𝜎(𝑦)]

assume
10
∀ 𝜎′1 ∈ 𝑆1

∃ .
11
∃ 𝜎′2 ∈ 𝑆2

∃ . 𝜎
′
2 = 𝜎′1[𝑜 := 𝜎′1(ℎ) + 𝜎(𝑦)]

// translation of postcondition:

assert
1
∀ 𝜎2 ∈ 𝑆2

∀.
12
∃ 𝜎′2 ∈ 𝑆2

∃ . 𝜎(𝑦) = 𝜎′(𝑦) ∧ 𝜎(𝑜) ≠ 𝜎′(𝑜)

(c) The actual Hypra encoding of the program main into Viper.

Figure 6.4.: A simple Hypra program (Figure 6.4a), and two potential encodings of this program into Viper. The naive encoding
(Figure 6.4b) leads to a matching loop (4-5-6-7-8), while the encoding performed by Hypra (Figure 6.4c) avoids this problem.

values 0 and 1. Hints are sometimes needed to instantiate the quantifier
in the encoding of non-deterministic assignments; all other quantifiers
are instantiated automatically.

6.3.2. Tracking Upper and Lower Bounds to Avoid
Matching Loops

The encoding described above and shown in Figure 6.4b is logically
sound, but it does not work in practice: Verification does not terminate
because of matching loops, where the SMT solver gets stuck in an infinite
instantiation of quantifiers, as we explain next.

Example 6.3.2 Matching loop in the simplified encoding.
Consider again the naive encoding of the method main shown in
Figure 6.4b, where the blue numbers indicate the order in which the
quantifiers are instantiated.9 9: We ignore some instantiations that do

not matter for our example.
1. The first quantifier to be instantiated is the universal quantifier

1 (Line 10), as the SMT solver tries to prove the postcondition,
which gives us a state 𝜎2 ∈ 𝑆2.

2. 𝜎2 then matches the universal quantifier 2 (Line 7),
3. which gives rise to a new state 𝜎′

1 ∈ 𝑆1 (via the existential
quantifier 3 on the same line).



6. Hypra 157

10: We also track lower and upper
bounds of the set of error states, but
we ignore this aspect here for simplicity.

11: In practice, we have four variables:
𝑆∀ and 𝑆∃, which represent the current
bounds, and 𝑆′∀ and 𝑆′∃, which represent
the next bounds, and our encoding is of
the form havoc S’; assume ...; S

:= S’. We use the superscripts 𝑖 and 𝑖+1
to denote the values of these variables
at different points in the encoding, to
simplify the explanations.

4. 𝜎′
1 matches the universal quantifier 4 (Line 4),

5. which gives rise to a new state 𝜎′
0 ∈ 𝑆0 (existential quantifier 5).

6. 𝜎′
0 matches the universal quantifier 6 (Line 5),

7. which gives rise to a new state 𝜎′′
1 ∈ 𝑆1 (existential quantifier 7).

8. 𝜎′′
1 matches the universal quantifier 4 (Line 4),

9. which gives rise to a new state 𝜎′′
0 ∈ 𝑆0 (existential quantifier 5).

10. 𝜎′′
0 matches the universal quantifier 6 (Line 5),

11. which gives rise to a new state 𝜎′′′
1 ∈ 𝑆1 (existential quantifier 7).

And so on and so forth, resulting in an infinite cycle of quantifier
instantiation.

To avoid matching loops, our key idea to track separately an upper bound

𝑆𝑖∃ and a lower bound 𝑆𝑖∀ of the set of reachable states.10 For an atomic
statement 𝐶, our translation ⟦𝐶⟧ updates the current lower bound 𝑆𝑖∀ to
the next lower bound 𝑆𝑖+1

∀ , and the current upper bound 𝑆𝑖∃ to the next
upper bound 𝑆𝑖+1

∃ , as follows:11

assume ∀𝜎 𝑖+1 . 𝜎 𝑖+1∈𝑆 𝑖+1
∀ ⇒ ∃𝜎 𝑖 . 𝜎 𝑖 ∈𝑆 𝑖∀ ∧ ⟨𝐶 , 𝜎 𝑖 ⟩→𝜎 𝑖+1 // (LB)

assume ∀𝜎 𝑖 , 𝜎 𝑖+1 . 𝜎 𝑖 ∈𝑆 𝑖∃ ∧ ⟨𝐶 , 𝜎 𝑖 ⟩→𝜎 𝑖+1 ⇒ 𝜎 𝑖+1∈𝑆 𝑖+1
∃ // (UB)

Starting with 𝑆𝑖∀ ⊆ 𝑆 ⊆ 𝑆𝑖∃, this encoding computes new values for
𝑆𝑖+1
∀ and 𝑆𝑖+1

∃ such that 𝑆𝑖+1
∀ ⊆ sem(𝐶, 𝑆) ⊆ 𝑆𝑖+1

∃ , maintaining the in-
variant 𝑆𝑖∀ ⊆ sem(𝐶, 𝑆) ⊆ 𝑆𝑖∃ for all 𝑖. Note that the lower bound 𝑆∀ is
sufficient to verify ∀∗-hyperproperties (safety hyperproperties), while
the upper bound 𝑆∃ is sufficient to verify ∃∗-hyperproperties. Our tool
uses this observation to optimize the encoding when only one kind of
reasoning is needed, emitting only the encoding corresponding to 𝑆∀
(for ∀∗-hyperproperties) or 𝑆∃ (for ∃∗-hyperproperties). Both types of
encoding are emitted when verifying both types of hyperproperties or
hyperproperties with quantifier alternations.

Encoding preconditions and postconditions using 𝑆∀ and 𝑆∃. We
apply the same encoding to preconditions and postconditions. We trans-
late universally-quantified states (i.e., ∀⟨𝜎⟩) as universal quantifiers with
range 𝑆𝑖∀ (i.e., ∀𝜎 ∈ 𝑆𝑖∀), and existentially-quantified states (i.e., ∃⟨𝜎⟩) as
existential quantifiers with range 𝑆𝑖∃ (i.e., ∃𝜎 ∈ 𝑆𝑖∃). For preconditions,
this encoding is necessary to establish 𝑆0

∀ ⊆ 𝑆0 ⊆ 𝑆0
∃, as universal state-

quantifiers express necessary conditions for states to belong to 𝑆0, whereas
existential state-quantifiers express sufficient conditions for states to be-
long to 𝑆0. For postconditions, we apply the same encoding because (LB)
is useful when we have 𝜎𝑖+1 ∈ 𝑆𝑖+1

∀ as an assumption, since we can then
derive the existence of a state 𝜎𝑖 such that 𝜎𝑖 ∈ 𝑆𝑖∀ and ⟨𝐶, 𝜎𝑖⟩ → 𝜎𝑖+1.
Conversely, (UB) is useful when our goal is to prove 𝜎𝑖+1 ∈ 𝑆𝑖+1

∃ , since we
can prove this goal by simply proving 𝜎𝑖 ∈ 𝑆𝑖∃ and ⟨𝐶, 𝜎𝑖⟩ → 𝜎𝑖+1 for
some state 𝜎𝑖 .

Example 6.3.3 Tracking upper and lower bounds separately avoids
matching loops.
We show the encoding of the method main from Figure 6.4a based on
upper and lower bounds in Figure 6.4c. The precondition (Line 2) and
postcondition (Line 10) are encoded as explained above.

As in Example 6.3.2, the first quantifier to be instantiated is the
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method simple(x,y:Int) returns (z:Int)
requires ∀⟨𝜎1 ⟩ . ∃⟨𝜎2 ⟩ . 𝜎2 (𝑥 )>𝜎1 (𝑥 )
requires ∀⟨𝜎1 ⟩ , ⟨𝜎2 ⟩ . 𝜎1 (𝑦 ) = 𝜎2 (𝑦 )
ensures ∀⟨𝜎1 ⟩ . ∃⟨𝜎2 ⟩ . 𝜎2 (𝑧 )>𝜎1 (𝑧 )

{
z := x + y

}

// next line is required to verify the program

assume 𝑆 0
∀ = 𝑆 0

∃
assume ∀𝜎1 . 𝜎1∈𝑆 0

∀ ⇒ ∃𝜎2 . 𝜎2∈𝑆 0
∃ ∧ 𝜎2 (𝑥 )>𝜎1 (𝑥 )

assume ∀𝜎1 , 𝜎2 . 𝜎1∈𝑆 0
∀ ∧ 𝜎2∈𝑆 0

∀ ⇒ 𝜎1 ( 𝑦 ) = 𝜎2 (𝑦 )
⟦z := x + y⟧
assert ∀𝜎1 . 𝜎1∈𝑆 1

∀ ⇒ ∃𝜎2 . 𝜎2∈𝑆 1
∃ ∧ 𝜎2 (𝑧 )>𝜎1 (𝑧 )

Figure 6.5.: A simple example that requires both overapproximation and underapproximation reasoning on the left, and its encoding on
the right.

universal quantifier 1 from the postcondition on Line 10, which gives
us a state 𝜎2 ∈ 𝑆2

∀. This state matches the universal quantifier 2 on
Line 7, which gives us a state 𝜎′

1 ∈ 𝑆1
∀. In turn, this state 𝜎′

1 matches
the universal quantifier 4 (Line 4), which gives us a state 𝜎′

0 ∈ 𝑆0
∀

(existential quantifier 5). Crucially, this state 𝜎′
0 does not match the

universal quantifier 8 (Line 8), because it belongs to 𝑆0
∀, whereas the

quantifier 8 requires a state from 𝑆0
∃, and thus the SMT solver avoids

the matching loop discussed in Example 6.3.2.

At this point, the SMT solver can only instantiate the universal quantifier
6 (Line 2) with the state 𝜎′

0, which produces a new state 𝜎′′
0 ∈ 𝑆0

∃ (via
the existential quantifier 7). This state then successfully gives rise to
a state 𝜎′

1 ∈ 𝑆1
∃ (quantifiers 8 and 9 on Line 5),12 12: For verification to succeed, the

universally-quantified 𝑣 on Line 5 can for
example be instantiated with the value
𝜎1(𝑦).

and then to a state
𝜎′

2 ∈ 𝑆2
∃ (quantifiers 10 and 11 on Line 8), which can be used as a

witness for the existential quantifier (12) in the postcondition (Line 10).

Soundness. After ⟦𝐶⟧, the sets 𝑆𝑖∀ and 𝑆𝑖∃ (and similarly for the lower
and upper bounds of the set of error states) are underspecified; ⟦𝐶⟧
ensures only that 𝑆𝑖∀ ⊆ sem(𝐶, 𝑆) ⊆ 𝑆𝑖∃. If the generated Viper program
is successfully verified, then it is correct for all possible values of 𝑆𝑖∀
and 𝑆𝑖∃ after ⟦𝐶⟧, provided that we started with a set 𝑆 such that
𝑃(𝑆,∅) holds. In particular, it is correct for 𝑆𝑖∀ = sem(𝐶, 𝑆) = 𝑆𝑖∃ (and
similarly for the set of error states). Thus, successful verification of the
generated Viper program implies that, for all 𝑆 such that 𝑃(𝑆,∅) holds,
𝑄(sem(𝐶, 𝑆), err(𝐶, 𝑆)) holds, which corresponds exactly to the validity
of the hyper-triple |=[𝑃] 𝐶 [𝑄] (Definition 6.2.2).

6.3.3. Encoding Preconditions

Tracking separately an upper bound and a lower bound of the set of
states as described in Section 6.3.2 avoids the matching loops described in
Example 6.3.2. However, this encoding is too restrictive for some examples,
where one wants to apply ∀∗-properties to existentially-quantified states.
This requires the additional assumption that 𝑆0

∀ = 𝑆0
∃, as we explain

next.

Example 6.3.4 Applying ∀∗-properties to existentially-quantified states.
Consider the method simple in Figure 6.5, with its encoding shown on
the right. The precondition tells us that for any state 𝜎1, there exists
a state 𝜎2 such that 𝜎2(𝑥) > 𝜎1(𝑥), and that all states agree on the
value of y. Thus, for any state 𝜎1, there should exist a state 𝜎2 such that
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∀+ ∃+∃+ ∀+

∃+

∀+

Figure 6.6.: Representation of the quantifier instantiations allowed by the chosen triggers.. Each node represents the shape of a possible
part of the precondition; for simplicity, we omit shapes with more than one quantifier alternation here. The blue arrows show the
existentially-quantified states that can be used to instantiate universal quantifiers, and the red arrow shows the instantiations our chosen
triggers prevent. The grey arrow shows how instantiating the ∀+-quantifiers in a ∀+∃+-hyperproperty produces existentially-quantified
states, which can subsequently be used to instantiate universal quantifiers. The acyclicity of the graph ensures the absence of matching
loops among the involved quantifiers.

[238]: Leino et al. (2009), Reasoning

about Comprehensions with First-Order

SMT Solvers

𝜎2(𝑧) > 𝜎1(𝑧) after the assignment. However, without the assumption
that 𝑆0

∀ = 𝑆0
∃ at the beginning of the method, this program would not

be verified, as 𝜎2 belongs to 𝑆0
∃, but not necessarily to 𝑆0

∀, and thus
one cannot prove that 𝜎1(𝑦) = 𝜎2(𝑦). We explain next how we can
equate the upper and lower bound for 𝑆0 without introducing another
matching loop.

Restricting quantifier instantiations for ∀∗∃∗-preconditions. Assum-
ing 𝑆0

∀ = 𝑆0
∃ at the beginning of a method may lead to matching loops

if the method precondition contains a ∀∗∃∗-hyperproperty, as shown by
the next example.

Example 6.3.5 A potential matching loop due to a ∀∗∃∗-precondition.
Consider the first precondition of the method in Figure 6.5, which is
interpreted as ∀𝜎1 ∈ 𝑆0

∀.∃𝜎2 ∈ 𝑆0
∃. 𝜎2(𝑥) > 𝜎1(𝑥). The ∀-quantifier in

the assertion introduces a new state 𝜎2 ∈ 𝑆0
∃ via the nested ∃-quantifier.

Since we assume 𝑆0
∀ = 𝑆0

∃, the new state 𝜎2 can trigger the instantiation
of the same ∀-quantifier, which in turn can introduce a new state
𝜎′

2 ∈ 𝑆0
∃, and so on, leading to a matching loop.

Our solution is to use limited and unlimited functions [238] to control
quantifier instantiations, to allow as many existentially-quantified states
as possible to instantiate universal quantifiers, while avoiding matching
loops. Concretely, when our tool translates a hyper-assertion with a
universal state-quantifier such as ∀⟨𝜎⟩. 𝑃 into Viper, it checks whether 𝑃
contains an existential state-quantifier: If so, the ∀-quantifier is encoded
with the most restrictive trigger, so that it can be instantiated only with
those existentially-quantified states that do not occur under a universal
quantifier. Otherwise, the ∀-quantifier is encoded with a more permis-
sive trigger, allowing it to be instantiated by all existentially-quantified
states.

The effect of our solution is represented visually on Figure 6.6. Each
node (∃+, ∃+∀+, ∀+∃+, ∀+) represents the shape of a possible part of the
precondition (the figure omits shapes with more than one quantifier
alternation for simplicity). The blue arrows show the instantiations enabled

by our tool, while the red dashed arrow shows the instantiation prevented

by our tool via a restrictive trigger, since those instantiations can lead to
matching loops. For example, states introduced by ∃+-quantifiers can be
used to instantiate the ∀+-quantifiers of a ∀+∃+-hyperproperty, which can
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[33]: Nipkow et al. (2002), Isabelle/HOL -

A Proof Assistant for Higher-Order Logic

13: In theory, we also need to check
that assume statements do not break this
property. By default, Hypra leaves this
responsibility to the user, since assume

statements are typically used to restrict
non-deterministic assignments to the
right range (as done in the example from
Figure 6.3), which does not break this
property. However, Hypra provides the
more conservative option, disabled by
default, to check the absence of assume
statements within statements whose ter-
mination is required.

in turn be used to instantiate the ∀+-quantifiers of a ∀+-hyperproperty.
As a more concrete example, to verify the method simple from Figure 6.5,
the state 𝜎2 coming from the existential quantifier of the first precondition
∀⟨𝜎1⟩.∃⟨𝜎2⟩. 𝜎2(𝑥) > 𝜎1(𝑥) can be used to instantiate a ∀-quantifier of
the second precondition ∀⟨𝜎1⟩, ⟨𝜎2⟩. 𝜎1(𝑦) = 𝜎2(𝑦), since there is a blue
arrow from the right of the node ∀+∃+ to the node ∀+.

Crucially, states introduced by existential quantifiers that are nested
under universal quantifiers cannot be used to instantiate the universal
quantifiers in ∀+∃+-hyperproperties (as represented by the red dotted
arrow), since this would create a cycle and thus lead to a matching loop,
as illustrated above with the first precondition of the method simple. As
can be seen in Figure 6.6, preventing this instantiation makes the graph
acyclic, which ensures the absence of matching loops.

6.4. Verification Conditions for Loops

In the previous section, we described the verification conditions generated
by our verifier for loop-free statements. In this section, we describe how
to generate verification conditions for while loops. We first describe, in
Section 6.4.1, the different rules offered by Hyper Hoare Logic to reason
about while loops, how we can derive verification conditions from them,
and how our verifier automatically selects the right rule(s) to apply,
based on the context. In Section 6.4.2, we discuss one such particular
rule, the rule While-∀∗∃∗ and show that it cannot be used directly for
our purpose; a naive encoding based on this rule would be unsound.
We then present and prove sound (in Isabelle/HOL [33]) a novel loop
rule suitable for automated deductive verification, WhileAuto-∀∗∃∗, which
can be used in the same context. Finally, in Section 6.4.3, we present a
technique to automatically frame information around the loop, which
overcomes a limitation of these loop rules, and leads to more succinct
loop invariants.

6.4.1. Automatically Generating Verification Conditions

Reasoning about loops in a relational setting is notoriously hard. In the
context of deductive verification, our goal is to automatically reason about
while loops, while keeping the amount of proof annotations needed from
the user to a minimum. As illustrated in Figure 6.3, this means that the
user should only provide a loop invariant, and optionally a loop variant
(decreases clause).

Figure 6.7 shows the four rules leveraged by Hypra to verify while
loops. The rules WhileSync and WhileSyncTot are the same as described in
Section 5.6, where the latter uses terminating hyper-triples |=⇓ [𝑃] 𝐶 [𝑄]
(formally defined at the end of Section 5.3.2). Terminating hyper-triples
are stronger than normal hyper-triples, in that they additionally require
the existence of a terminating execution from any initial state. In Hypra,
we ensure this requirement by proving that all loops in 𝐶 terminate,
through the use of well-founded loop variants.13 The third rule, WhileAuto-
∃, is adapted from the rule While-∃ presented in Section 5.6.3, as we’ll
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WhileSync
𝐼 |= low(𝑏) |=[𝐼 ∧ □𝑏] 𝐶 [𝐼]

|=[𝐼] while (𝑏) {𝐶} [(𝐼 ∨ □⊥) ∧ □(¬𝑏)]

WhileSyncTot
𝐼 |= low(𝑏) |=⇓ [𝐼 ∧ □(𝑏 ∧ 𝑒 = 𝑡)] 𝐶 [𝐼 ∧ □(𝑒 ≺ 𝑡)] 𝑡 ∉ fv(𝐼) ∪ mod(𝐶)

|=⇓ [𝐼] while (𝑏) {𝐶} [𝐼 ∧ □(¬𝑏)]

WhileAuto-∀∗∃∗
|=[𝐼] if (𝑏) {𝐶} [𝐼] no ∀⟨_⟩ after any ∃ in 𝐼

|=[𝐼] while (𝑏) {𝐶} [Θ¬𝑏(𝐼) ∧ □(¬𝑏)]

WhileAuto-∃
∀𝑣. |=[(∃⟨𝜎⟩. 𝑃𝜎 ∧ 𝑏(𝜎) ∧ 𝑣 = 𝑒(𝜎)) ∧ 𝑅] if (𝑏) {𝐶} [(∃⟨𝜎⟩. 𝑃𝜎 ∧ 𝑒(𝜎) ≺ 𝑣) ∧ 𝑅] ∀𝜎. |=[𝑃𝜎 ∧ 𝑅] while (𝑏) {𝐶} [𝑃𝜎 ∧ 𝑅]

|=[(∃⟨𝜎⟩. 𝑃𝜎) ∧ 𝑅] while (𝑏) {𝐶} [(∃⟨𝜎⟩. 𝑃𝜎) ∧ 𝑅 ∧ □(¬𝑏)]

Figure 6.7.: The rules applied by Hypra to reason about while loops. In the rules WhileSyncTot and WhileAuto-∃, the order ≺
must be well-founded. Moreover, low(𝑏) ≜ (∀⟨𝜎⟩, ⟨𝜎′⟩. 𝑏(𝜎) = 𝑏(𝜎′)) and □𝑏 ≜ (∀⟨𝜎⟩. 𝑏(𝜎)). Finally, |=⇓ [𝑃] 𝐶 [𝑄] corresponds to a
terminating hyper-triple. Terminating hyper-triples (defined at the end of Section 5.3.2) are stronger than normal hyper-triples, in that
they additionally require the existence of a terminating execution from any initial state.

discuss below. Finally, the rule WhileAuto-∀∗∃∗ is a novel rule for ∀∗∃∗-
hyperproperties, which we discuss in Section 6.4.2.

As shown by Figure 6.7, all four rules use a loop invariant: 𝐼 in the first
three loop rules, and ∃⟨𝜎⟩. 𝑃𝜎 in the last rule. Moreover, those rules are
non-obvious, which makes it hard for users to know which rule to apply
in which context.

In the following, we explain the role of the different rules, how we derive
verification conditions from them, and how our verifier automatically
chooses the relevant rule(s), based on the user-provided loop invariant
and optional loop variant. The Viper encodings of loops based on these
rules are shown in Figure 6.8.

Synchronized loop rules. The two first rules, WhileSync and WhileSync-
Tot, apply when all executions exit the loop simultaneously. The key
difference between the two rules can be seen in the postconditions of
their conclusions: On top of the fact that all states satisfy the negation of
the loop guard (□(¬𝑏)), the rule WhileSyncTot allows us to assume that
the relational invariant 𝐼 holds after the loop, whereas the rule WhileSync
allows us to assume only that 𝐼∨□⊥ holds after the loop, which is weaker
than 𝐼. The □⊥ disjunct, which corresponds to the case where the loop
does not terminate, is problematic when we want to prove postconditions
with top-level existentially-quantified states. In this case, we need to use
the rule WhileSyncTot, which requires us to prove that the loop terminates.
The latter can be achieved by proving that a well-founded variant 𝑒
strictly decreases after every iteration.

Verification conditions can be easily derived from these two rules, as
shown in Figure 6.8a and Figure 6.8b, respectively. First, for both rules, we
check that the user-provided loop invariant 𝐼 entails low(𝑏). Then, for the
rule WhileSync, we separately check the triple |=[𝐼 ∧ □𝑏] 𝐶 [𝐼 ∨ □⊥], as
described in Section 6.3. For the rule WhileSyncTot, we instantiate 𝑒 with the
user-provided loop variant (required to be an integer expression), and
separately check the triple |=⇓ [𝐼 ∧ □(𝑏 ∧ 𝑒 = 𝑡)] 𝐶 [𝐼 ∧ □(0 ≤ 𝑒 < 𝑡)],
where 𝑡 is a fresh variable. The check 0 ≤ 𝑒 ensures that the user-provided
variant is well-founded. To ensure that this triple is a terminating hyper-
triple, we check (syntactically) that all loops within 𝐶 are annotated with
decreases clauses, which ensures termination (provided that verification
is successful). Finally, for both rules, we assert that the loop invariant 𝐼
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assert 𝐼 (𝑆 , ∅)
𝑆 𝑝 := 𝑆
𝑆⊥

0 := 𝑆⊥

havoc 𝑆 , 𝑆⊥

assume 𝐼 (𝑆 , 𝑆⊥ )
assert low(𝑏 )
assume □𝑏
⟦C⟧

assert 𝐼 (𝑆 , 𝑆⊥ )
havoc 𝑆 , 𝑆⊥

assume 𝐹 (𝑆 𝑝 , 𝑆 )
assume 𝐼 (𝑆 , 𝑆⊥ ) ∨ □⊥
assume □(¬𝑏 )
𝑆⊥ := 𝑆⊥

0
⋃
𝑆⊥

(a)

assert 𝐼 (𝑆 , ∅)
𝑆 𝑝 := 𝑆
𝑆⊥

0 := 𝑆⊥

havoc 𝑆 , 𝑆⊥

assume 𝐼 (𝑆 , 𝑆⊥ )
assert low(𝑏 )
assume □(𝑏 ∧ 𝑒 = 𝑡 )
⟦C⟧

assert □(0 ≤ 𝑒 < 𝑡 )
assert 𝐼 (𝑆 , 𝑆⊥ )
havoc 𝑆 , 𝑆⊥

assume 𝐹 (𝑆 𝑝 , 𝑆 )
assume 𝐼 (𝑆 , 𝑆⊥ )
assume □(¬𝑏 )
𝑆⊥ := 𝑆⊥

0
⋃
𝑆⊥

(b)

assert 𝐼 (𝑆 , ∅)
𝑆 𝑝 := 𝑆
𝑆⊥

0 := 𝑆⊥

havoc 𝑆 , 𝑆⊥

assume 𝐼 (𝑆 , 𝑆⊥ )

⟦if (b) {C}⟧

assert 𝐼 (𝑆 , 𝑆⊥ )
havoc 𝑆 , 𝑆⊥

assume 𝐹 (𝑆 𝑝 , 𝑆 )
assume Θ¬𝑏 ( 𝐼 )
assume □(¬𝑏 )
𝑆⊥ := 𝑆⊥

0
⋃
𝑆⊥

(c)

assert (∃⟨𝜎 ⟩ . 𝑃𝜎 (𝑆 , ∅)) ∧ 𝑅 (𝑆 , ∅)
𝑆 𝑝 := 𝑆
𝑆⊥

0 := 𝑆⊥

havoc 𝑆 , 𝑆⊥

var v: Int
assume ∃⟨𝜎 ⟩ . 𝑃𝜎 (𝑆 , 𝑆⊥ ) ∧ 𝑏 (𝜎 ) ∧ 𝑣 = 𝑒 (𝜎 )
assume 𝑅 (𝑆 , 𝑆⊥ )
⟦if (b) {C}⟧
assert ∃⟨𝜎 ⟩ . 𝑃𝜎 (𝑆 , 𝑆⊥ ) ∧ 0 ≤ 𝑒 (𝜎 ) < 𝑣
assert 𝑅 (𝑆 , 𝑆⊥ )
havoc 𝑆 , 𝑆⊥

var 𝜎0: State
assume 𝑃𝜎0 (𝑆 , 𝑆⊥ ) ∧ 𝑅 (𝑆 , 𝑆⊥ )
⟦while (b) {C}⟧ // with invariant 𝑃𝜎0 ∧ 𝑅
assert 𝑃𝜎0 (𝑆 , 𝑆⊥ ) ∧ 𝑅 (𝑆 , 𝑆⊥ )
havoc 𝑆 , 𝑆⊥

assume 𝐹 (𝑆 𝑝 , 𝑆 )
assume ∃𝜎 . 𝑃𝜎 (𝑆 , 𝑆⊥ ) ∧ 𝑅 (𝑆 , 𝑆⊥ )
assume □(¬𝑏 )
𝑆⊥ := 𝑆⊥

0
⋃
𝑆⊥

(d)

Figure 6.8.: Viper encodings of loops based on (a) the rule WhileSync, (b) the rule WhileSyncTot, (c) the novel rule WhileAuto-∀∗∃∗

for ∀∗∃∗-hyperproperties and (d) the rule WhileAuto-∃. To avoid clutter, we use 𝑆 to represent both 𝑆∀ and 𝑆∃, and 𝑆⊥ to represent
both 𝑆⊥∀ and 𝑆⊥∃ . We also use the notation ⟦C⟧ to refer to the encoding of the command 𝐶. In the loop encodings, 𝑏 is the loop
guard, 𝐶 is the loop body, 𝑣 and 𝑡 are fresh variables, 𝑆𝑝 is an auxiliary variable recording the value of the set of states before the
loop (see Section 6.4.3), 𝑒 is the loop variant, 𝐼 and 𝑃𝜎 are loop invariants encoded as a predicate dependent on 𝑆 and 𝑆⊥. Moreover,
low(𝑏) ≜ (∀⟨𝜎⟩, ⟨𝜎′⟩. 𝑏(𝜎) = 𝑏(𝜎′)), □(𝑏) ≜ (∀⟨𝜎⟩. 𝑏(𝜎)), and 𝐹(𝑆𝑝 , 𝑆) corresponds to automatic framing as described in Section 6.4.3.

14: To apply this rule in practice, Hypra
checks whether any line of the user-
provided invariant has a top-level ex-
istential quantifier, and if so, treats the
conjunction of all other lines as 𝑅. If no
line has a top-level existential quantifier,
and no other rule is applicable, Hypra
emits an error message to inform the user
that the program cannot be verified.

holds before the loop, and assume that (𝐼 ∨ □⊥) ∧ □(¬𝑏) (rule WhileSync)
or 𝐼 ∧ □(¬𝑏) (rule WhileSyncTot) holds after the loop.

Non-synchronized loop rules. The two remaining loop rules from
Figure 6.7, WhileAuto-∀∗∃∗ and WhileAuto-∃, can be applied when different
executions exit the loop at potentially different times. In this case, our
premises are more complex: We need to reason about the unrollings

of the while loop, which we achieve by proving a loop invariant over
if (𝑏) {𝐶} (in contrast to 𝐶 for the synchronized rules). The novel
rule WhileAuto-∀∗∃∗, which we present in Section 6.4.2, is more suitable
for automated verification than the corresponding rule While-∀∗∃∗ from
Figure 5.5, as it requires only one user-provided invariant 𝐼, whereas the
latter additionally requires a user-provided postcondition 𝑄. We show
the encoding based on this rule in Figure 6.8c.

Similarly, the rule WhileAuto-∃ is adapted from the rule While-∃ presented in
Section 5.6.3, but it differs from the latter in two ways. First, it requires only
one invariant, whereas the rule While-∃ additionally requires a (potentially
different) postcondition ∃⟨𝜎⟩. 𝑄𝜎 . Second, while the rule While-∃ requires
the invariant to be of the form ∃⟨𝜎⟩. 𝑃𝜎 , the rule WhileAuto-∃ requires the
more flexible form (∃⟨𝜎⟩. 𝑃𝜎) ∧ 𝑅.14

The encoding based on the rule WhileAuto-∃ is shown in Figure 6.8d. As
before, Hypra specializes the well-founded order ≺ to be the canonical
well-founded order over natural numbers. Moreover, note that, in both
premises, 𝑣 and 𝜎 are meta-variables, i.e., there is not one value of 𝑣 (in the
first premise) or 𝜎 (in the second premise) per state, but rather there is
one per set of states. In practice, to check the first premise, we use a fresh
unconstrained variable 𝑣, and assume that the set of states and the variable
𝑣 together satisfy the precondition (∃⟨𝜎⟩. 𝑃𝜎 ∧ 𝑏(𝜎) ∧ 𝑣 = 𝑒(𝜎)) ∧ 𝑅, and
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Does 𝐼 |= low(𝑏)?

Is there a decreases
clause, and is 𝐼 of the
form (∃⟨𝜎⟩. 𝑃𝜎) ∧ 𝑅?

Is termination checked?

WhileSync WhileAuto-∀∗∃∗WhileSyncTot WhileAuto-∃

yes no

yesno yesno

recursive call with 𝐼 ≜ 𝑃𝜎 ∧ 𝑅

Figure 6.9.: Automatic loop rule selection to verify a loop while (𝑏) {𝐶} with the invariant 𝐼. The first choice checks whether all
executions perform the same number of loop iterations. The next choice is based on a subtle aspect of the loop’s termination: The branch
on the right checks whether the given loop performs a finite number of iterations, but does not require nested loops to terminate; this is
sufficient to apply WhileAuto-∃. In contrast, the branch on the left requires the loop and all nested loops to terminate, as required by the
rule WhileSyncTot. While the top-level choice is made semantically by the encoding, the next-level choices are determined syntactically
based on the presence of decreases clauses. The edge from WhileAuto-∃ back to the first choice reflects the second premise of this
rule, ∀𝜎. |=[𝑃𝜎 ∧ 𝑅] while (𝑏) {𝐶} [𝑃𝜎 ∧ 𝑅]: To check that this premise holds, Hypra recursively calls the rule selection procedure,
which will automatically select a new loop rule adapted to the new loop invariant 𝑃𝜎 ∧ 𝑅.

check (after the encoding of if (𝑏) {𝐶}) that the set of states and the
variable 𝑣 together satisfy the postcondition (∃⟨𝜎⟩. 𝑃𝜎∧0 ≤ 𝑒(𝜎) < 𝑣)∧𝑅.
Checking the second premise is more complicated, since it requires
reasoning about the same while loop. However, note that the precondition
(and postcondition) of this premise, 𝑃𝜎 ∧ 𝑅, is syntactically smaller
than the precondition (and postcondition) of the conclusion of the
rule, (∃⟨𝜎⟩. 𝑃𝜎) ∧ 𝑅. Hypra automatically generates the verification
conditions for this premise, using the approach described in this section,
by automatically selecting the right loop rule based on the new loop
invariant 𝑃𝜎 ∧ 𝑅 and the same loop variant 𝑒.

Automatically selecting the right loop rule(s). As explained at the
start of this section, using only the user-provided loop invariant 𝐼 and
optional loop variant 𝑒, Hypra automatically selects the right loop rule(s)
to apply, as depicted in Figure 6.9. First, we check (semantically in our
encoding) whether the loop invariant guarantees that all executions
will exit the loop simultaneously, that is, whether 𝐼 |= low(𝑏) holds.
If so, we apply one of the two synchronized loop rules, WhileSync or
WhileSyncTot, depending on whether the user provided a loop variant for
this loop and all loops nested within. Compared to non-synchronized
loop rules, these two rules, when applicable, have weaker premises (i.e.,
their premises can be derived from the premises of the non-synchronized
loop rules) and stronger conclusions (e.g., their postconditions after the
while loop are at least as strong as those of the non-synchronized loop
rules). Therefore, the synchronized loop rules are always better than
the non-synchronized loop rules when they are applicable. The rule
WhileSyncTot is the most powerful (when it applies), because its premise
only requires reasoning about 𝐶, which is easier than reasoning about
if (𝑏) {𝐶}, and the postcondition of its conclusion, 𝐼 ∧ □(¬𝑏), is not
weaker than the postcondition given by any other rule (Section 6.4.2 will
make clearer why the postcondition of the rule WhileAuto-∀∗∃∗ is weaker).
When termination is not checked (i.e., no loop variant is provided), the
choice is only between the rules WhileSync and WhileAuto-∀∗∃∗, and Hypra
applies WhileSync whenever possible, for similar reasons.
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When 𝐼 ̸|= low(𝑏), we apply one of the two non-synchronized loop
rules, WhileAuto-∀∗∃∗ or WhileAuto-∃, depending on the shape of the loop
invariant 𝐼. When 𝐼 is of the form ∀+∃∗, we can apply only the rule
WhileAuto-∀∗∃∗, because our invariant is not of the form ∃⟨𝜎⟩. 𝑃 ∧ 𝑅,
required by the rule WhileAuto-∃. Similarly, when 𝐼 is of the form ∃+∀+,
we can apply only the rule WhileAuto-∃, because 𝐼 does not satisfy the
syntactic restriction from the rule WhileAuto-∀∗∃∗. Thus, there exists a choice

between those two loop rules only when 𝐼 has the shape ∃+ and a loop
variant is provided (otherwise the rule WhileAuto-∃ cannot be applied).
In this case, the rule WhileAuto-∃ is more powerful, since it easily allows
proving that the existentially-quantified states in 𝐼 will still exist after
the while loop, thanks to the loop variant, as illustrated by the following
example.

Example 6.4.1 Using the rule WhileAuto-∃ for ∃+-invariants.
Let 𝐼 ≜ (∃⟨𝜎⟩. 𝜎(𝑥) = 𝜎(𝑦)). We can use the rule WhileAuto-∃ with 𝑃𝜎 ≜
(𝜎(𝑥) = 𝜎(𝑦)) (and 𝑅 ≜ ⊤), which gives us the desired postcondition
∃⟨𝜎⟩. 𝜎(𝑥) = 𝜎(𝑦) in its conclusion.

In contrast, the postcondition of the conclusion of the rule While-∀∗∃∗

(on which the rule WhileAuto-∀∗∃∗ is based) is some hyper-assertion 𝑄,
such that |=[∃⟨𝜎⟩. 𝜎(𝑥) = 𝜎(𝑦)] assume ¬b [𝑄] holds. In particular,
we can get our desired postcondition ∃⟨𝜎⟩. 𝜎(𝑥) = 𝜎(𝑦) only if 𝑥 = 𝑦

(in a state 𝜎) implies ¬𝑏, which will typically not be the case (because
∃⟨𝜎⟩. 𝜎(𝑥) = 𝜎(𝑦) is our loop invariant, which has to already hold
before the loop).

Thus, when applicable, Hypra applies the rule WhileAuto-∃ over the rule
WhileAuto-∀∗∃∗, which then recursively applies the same automatic loop
rule selection with the smaller loop invariant 𝑃, as shown in Figure 6.9.

6.4.2. ∀∗∃∗-Hyperproperties

When 𝐼 is of the form ∀+∃∗, and does not imply low(𝑏), the only loop rule
from Section 5.6 that can be applied is the rule While-∀∗∃∗. Automating this
rule is surprisingly not straightforward, as we explain next, which is why
we introduce the novel rule WhileAuto-∀∗∃∗. Checking the first premise
|=[𝐼] if (𝑏) {𝐶} [𝐼] of the rule While-∀∗∃∗ is easy, as it can be checked
separately using the user-provided loop invariant 𝐼. However, deriving
from the loop invariant 𝐼 a suitable postcondition 𝑄 that satisfies the
syntactic restriction is more challenging. In the following, we first show
why the naive semantic approach for deriving 𝑄 does not work, and then
discuss our solution, which derives 𝑄 syntactically from 𝐼.

Naively deriving 𝑄 semantically is unsound. A natural idea is to
check the syntactic restriction (no universal state-quantifier should occur
under an existential quantifier) on 𝐼 instead of 𝑄, and then to derive 𝑄
from 𝐼 semantically, i.e., we can obtain the postcondition 𝑄 implicitly by
considering a fresh set of states after the loop, assuming that it satisfies 𝐼,
and then encoding assume ¬b. We cannot check the syntactic restriction
on 𝑄 (as mandated by the rule) directly, since 𝑄 is not a syntactic hyper-
assertion. In essence, this naive encoding corresponds to the following
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method naive_encoding(t: Int, n: Int) returns (x: Int)
requires ∃⟨𝜎1 ⟩ . 𝜎1 ( 𝑡 ) = 1
requires ∀𝑣 . 𝑣 ≥ 0 ⇒ ∃⟨𝜎2 ⟩ . 𝜎2 ( 𝑡 ) = 2 ∧ 𝜎2 (𝑛 ) = 𝑣

ensures ∃𝑣 . ∀⟨𝜎 ⟩ . 𝜎 (𝑥 ) ≤ 𝑣 // this postcondition does not hold
{

x := 0
while (t = 1 ∨ x < n)

invariant ∃⟨𝜎1 ⟩ . 𝜎1 ( 𝑡 ) = 1
invariant ∀⟨𝜎1 ⟩ , ⟨𝜎2 ⟩ . 𝜎1 ( 𝑡 ) = 1 ⇒ 𝜎1 (𝑥 ) ≥ 𝜎2 (𝑥 )

{
x := x + 1

}
}

Figure 6.10.: An example showing why a naive encoding based on the rule While-∀∗∃∗ would be unsound.

rule:
WhileUnsound-∀∗∃∗

|=[𝐼] if (𝑏) {𝐶} [𝐼] |=[𝐼] assume ¬b [𝑄] no ∀⟨_⟩ after any ∃ in 𝐼

|=[𝐼] while (𝑏) {𝐶} [𝑄]

The key difference with the rule While-∀∗∃∗ is that the syntactic restriction
is checked on the loop invariant 𝐼 instead of the postcondition 𝑄. Unfor-
tunately, this alternative rule (and the encoding based on it) is unsound,
as illustrated by the following example.

Example 6.4.2 The naive encoding based on the rule WhileUnsound-∀∗∃∗

is unsound.
Consider the method naive_encoding from Figure 6.10.Depending on
the value of 𝑡, this method will either loop forever (if 𝑡 = 1) or simply
increment 𝑥 until 𝑥 = 𝑛 (if 𝑛 ≥ 0 and 𝑡 = 2). Our precondition 15 15: Note that the second conjunct of the

precondition is not required for the naive
encoding to be unsound on this example,
but we use it to convey more intuition.

requires the existence of a state that will loop forever (𝑡 = 1), and, for
all possible non-negative values 𝑣 of 𝑛, the existence of a state that
will do 𝑛 iterations until 𝑥 = 𝑛. The postcondition, which does not

hold, ensures the existence of an upper bound 𝑣 for the value of 𝑥 in
all states.16 16: In essence, this example is similar

to Example 5.6.4: The two conjuncts of
our invariant ensure the existence of an
upper bound (𝜎1(𝑥)) for the value of 𝑥
in all states.

To understand why this postcondition does not hold, consider a set of
states S that satisfies the precondition, i.e., 𝑆 contains at least one state
with 𝑡 = 1, and, for each natural number 𝑣, 𝑆 contains a state 𝜎 where
𝜎(𝑛) = 𝑣 and 𝜎(𝑡) = 2. Moreover, let 𝑆′ be the set of states after the
loop. For all states with 𝑡 = 2, 𝑥 will be equal to n after the while loop,
i.e., ∀𝜎′ ∈ 𝑆′. 𝜎′(𝑡) = 2 ⇒ 𝜎′(𝑥) = 𝜎′(𝑛). Thus, for each natural number
𝑣, 𝑆′ contains a state 𝜎′ where 𝜎′(𝑥) = 𝜎′(𝑛) = 𝑣 (and 𝜎′(𝑡) = 2). In
particular, this implies that the set of values {𝜎′(𝑥) | 𝜎′ ∈ 𝑆′} does
not have an upper bound. This contradicts the postcondition, which
expresses the existence of such an upper bound.

We now explain why the naive encoding described above accepts this
program. The first premise of the rule WhileUnsound-∀∗∃∗, |=[𝐼] if (𝑡 =
1 ∨ 𝑥 < 𝑛) {𝑥 := 𝑥 + 1} [𝐼], holds, since any state 𝜎1 with 𝑡 = 1 will
always enter the if-branch, and thus 𝜎1 will keep having the maximal
value (among all executions) for 𝑥. Moreover, the loop invariant 𝐼
satisfies the syntactic restriction (no ∀⟨_⟩ appears under any existential
quantifier), and 𝐼 clearly holds before the loop, since 𝑥 = 0 in all states.
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17: We overload the notation ⟨𝜎⟩ to mean
𝜆𝑆. 𝜎 ∈ 𝑆, i.e., the formula is equivalent
to 𝜆𝑆.∃𝜎. 𝑃 ∧ (¬𝑏(𝜎) ⇒ 𝜎 ∈ 𝑆).

[33]: Nipkow et al. (2002), Isabelle/HOL -

A Proof Assistant for Higher-Order Logic

Finally, let us consider what happens after the loop, and why this
encoding allows us to derive the wrong postcondition. Let 𝑆 be a set
of states that satisfies the loop invariant 𝐼, and let 𝑆′ be the set of states
obtained by executing assume ¬(t = 1 ∨ x < n) in all states from 𝑆.
Note that 𝑆′ corresponds to the subset of states from 𝑆 that satisfy
𝑡 ≠ 1∧ 𝑥 ≥ 𝑛. From 𝐼, we learn that there is a state 𝜎1 in 𝑆 where 𝑡 = 1,
and that this state 𝜎1 has the maximum value for 𝑥 among all states in
𝑆. Thus, there exists an upper bound 𝑣 for the value of 𝑥 in all states
from 𝑆, namely 𝑣 ≜ 𝜎1(𝑥). Since 𝑆′ is a subset of 𝑆, this upper bound
𝑣 is also an upper bound for the value of 𝑥 in all states from 𝑆′, which
corresponds to the invalid postcondition.

A new rule for automating ∀∗∃∗-hyperproperties. The previous exam-
ple shows that deriving the postcondition 𝑄 semantically from 𝐼, while
checking the syntactic restriction on the loop invariant 𝐼, is unsound (i.e.,
the rule WhileUnsound-∀∗∃∗ is unsound). Our novel loop rule WhileAuto-∀∗∃∗

solves this issue by deriving the postcondition 𝑄 syntactically from 𝐼

while enforcing the syntactic restriction on 𝐼. This rule can be automated
in a straightforward way, as shown by Figure 6.8c. We obtain the post-
condition from 𝐼, which we write Θ¬𝑏(𝐼), by recursively replacing all
instances of ∃⟨𝜎⟩. 𝑃 with ∃𝜎. 𝑃∧(¬𝑏(𝜎) ⇒ ⟨𝜎⟩).17 That is, the postcondi-
tion ensures that the existentially-quantified states in 𝐼 exist, but they are
not guaranteed to belong to the set of states after the loop: they belong to
the set of states after the loop if they satisfy the negation ¬𝑏 of the loop
guard. Although Θ¬𝑏(𝐼) is not a well-formed hyper-assertion according
to the syntax in Section 6.2.3, this is not an issue since Θ¬𝑏(𝐼) is not an
annotation in a user-written program but only appears in the generated
Viper program.

Example 6.4.3 The rule WhileAuto-∀∗∃∗ correctly rejects the invalid
example from Figure 6.10.
Using our new rule on the example from Figure 6.10, we obtain from
𝐼 the postcondition Θ¬𝑏(𝐼) = (∃𝜎1. 𝜎1(𝑡) = 1 ∧ (¬(𝜎1(𝑡) = 1 ∨ 𝜎1(𝑥) <
𝜎1(𝑛)) ⇒ ⟨𝜎1⟩)) ∧ (∀⟨𝜎1⟩, ⟨𝜎2⟩. 𝜎1(𝑡) = 1 ⇒ 𝜎1(𝑥) ≥ 𝜎2(𝑥)), which
does not entail the wrong postcondition anymore. Indeed, while we
still learn the existence of a state 𝜎1 where 𝑡 = 1, we do not learn
that 𝜎1 belongs to the set of states after the loop, because we cannot
prove ¬(𝜎1(𝑡) = 1∨ 𝜎1(𝑥) < 𝜎1(𝑛)), and, thus, we cannot conclude that
∀⟨𝜎2⟩. 𝜎1(𝑥) ≥ 𝜎2(𝑥).

We have proven in Isabelle/HOL [33] that this novel rule, which Hypra
leverages, is sound:

Theorem 6.4.1 Soundness of the novel loop rule for∀∗∃∗-hyperproperties.
The rule WhileAuto-∀∗∃∗

in Figure 6.7 is sound.

Proof. To prove this result, we use the fact that sem(while (𝑏) {𝐶}, 𝑆), the
semantics of the while loop given a set of initial states 𝑆, can be seen as
the limit of sem([if (𝑏) {𝐶}]𝑛 ; assume ¬b, 𝑆) as 𝑛 goes to infinity, where
[if (𝑏) {𝐶}𝑛] represents the statement if (𝑏) {𝐶} sequentially composed
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18: In our mechanization, we use de
Bruĳn indices to handle quantifiers,
which we ignore in this chapter for sim-
plicity.

19: Note that this argument only holds
because a disjunction has a finite number
of disjuncts (namely two). In contrast,
this argument does not apply to existen-
tial quantifiers (which is why we need the
syntactic restriction), as they informally
have infinitely many disjuncts.

with itself 𝑛 times. More formally:

sem(while (𝑏) {𝐶}, 𝑆) =
⋃
𝑛∈ℕ

sem([if (𝑏) {𝐶}]𝑛 ; assume ¬b, 𝑆) (*)

In other words, every state after the loop must have exited the loop after
𝑛 iterations, for some 𝑛. In particular, note that the sequence of sets
(sem([if (𝑏) {𝐶}]𝑛 ; assume ¬b, 𝑆))𝑛∈ℕ is non-decreasing. That is, the set
of states that exit the loop in the first 𝑛 iterations can only grow when 𝑛
grows.

We then prove the following property P(𝐼), by structural induction over
the syntactic hyper-assertion 𝐼: "For any non-decreasing sequence (𝑆𝑛)𝑛∈ℕ
of set of states, if 𝐼 contains no ∀⟨_⟩ after any ∃, and if ∀𝑛. 𝑆𝑛 |= Θ¬𝑏(𝐼),
then (⋃𝑛 𝑆𝑛) |= Θ¬𝑏(𝐼) holds". The theorem follows from this property
and the aforementioned identity (*). In the following, we discuss four
cases of the induction; all other cases are trivial.

Cases P(∃𝑦. 𝐼) and P(∃⟨𝜎⟩. 𝐼). These cases are straightforward: From
the syntactic restriction, we know that 𝐼 contains no ∀⟨_⟩, and so does
Θ¬𝑏(𝐼). Intuitively, this means that Θ¬𝑏(𝐼) only cares about the existence

of states, and thus Θ¬𝑏(𝐼) grows monotonically (which can be proven
by an additional trivial induction on 𝐼): If it is satisfied by a set of states,
then it will be satisfied by any superset of this set. Since it is satisfied by
all 𝑆𝑛 , it is also satisfied by their union.

Case P(∀⟨𝜎⟩. 𝐼). We assume (1) P(𝐼) and (2) ∀𝑛. 𝑆𝑛 |= ∀⟨𝜎⟩.Θ¬𝑏(𝐼),
and we want to prove (⋃𝑛 𝑆𝑛) |= ∀⟨𝜎⟩.Θ¬𝑏(𝐼). To prove this, let 𝜎 be
a state in

⋃
𝑛 𝑆𝑛 , and let us prove that (⋃𝑛 𝑆𝑛), 𝜎 |= Θ¬𝑏(𝐼) (which

informally means that the previously existentially-quantified state 𝜎 is
instantiated in Θ¬𝑏(𝐼) to the concrete state).18 Because 𝜎 ∈ ⋃

𝑛 𝑆𝑛 , there
exists a 𝑘 such that 𝜎 ∈ 𝑆𝑘 . Let 𝑆′ such that ∀𝑛. 𝑆′𝑛 ≜ 𝑆𝑛+𝑘 . Because
∀𝑛. 𝑆′𝑛 , 𝜎 |= Θ¬𝑏(𝐼), we can use the induction hypothesis P(𝐼) to get that
(⋃𝑛 𝑆

′
𝑛) |= Θ¬𝑏(𝐼). Finally, notice that (⋃𝑛 𝑆𝑛) = (⋃𝑛 𝑆

′
𝑛), because 𝑆 is

non-decreasing, which concludes the case.

Case P(𝐼1 ∨ 𝐼2). We assume (1) P(𝐼1), (2) P(𝐼2), and (3) ∀𝑛. 𝑆𝑛 |=
Θ¬𝑏(𝐼1) ∨ Θ¬𝑏(𝐼2), and we want to prove (⋃𝑛 𝑆𝑛) |= Θ¬𝑏(𝐼1) ∨ Θ¬𝑏(𝐼2).
By (3), we know that Θ¬𝑏(𝐼1) ∨ Θ¬𝑏(𝐼2) is true infinitely often, which
implies that either Θ¬𝑏(𝐼1) is true infinitely often, or Θ¬𝑏(𝐼2) is true
infinitely often.19 Without loss of generality, let us assume that Θ¬𝑏(𝐼1)
is true infinitely often, and let 𝑆′ be an infinite subsequence of 𝑆 such
that ∀𝑛. 𝑆′𝑛 |= Θ¬𝑏(𝐼1). By the induction hypothesis P(𝐼1), we get that
(⋃𝑛 𝑆

′
𝑛) |= Θ¬𝑏(𝐼1). Moreover, because 𝑆 is non-decreasing, we get that

(⋃𝑛 𝑆𝑛) = (⋃𝑛 𝑆
′
𝑛), which concludes the case.

6.4.3. Automatic Framing

In the previous subsections, we have shown how we derived verification
conditions from the loop rules offered by Hyper Hoare Logic. However,
using those loop rules on their own (and not in conjunction with other
rules as we show below) has the limitation that only the information
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method framing1(x: Int) returns (y: Int)
requires ∀⟨𝜎1 ⟩ , ⟨𝜎2 ⟩ . 𝜎1 (𝑥 ) = 𝜎2 (𝑥 )
requires ∀⟨𝜎 ⟩ . 𝜎 (𝑥 ) ≥ 0
ensures ∀⟨𝜎1 ⟩ , ⟨𝜎2 ⟩ . 𝜎1 (𝑦 ) = 𝜎2 (𝑦 )

{
y := 0
while (y < x)

invariant ∀⟨𝜎 ⟩ . 𝜎 (𝑦 ) ≤ 𝜎 (𝑥 )

{ y := y + 1 }
}

method framing2(x: Int) returns (y: Int)
requires ∃⟨𝜎 ⟩ . ∀⟨𝜎 ′ ⟩ . 𝜎 (𝑥 ) ≥ 𝜎 ′ (𝑥 )
requires ∀⟨𝜎 ⟩ . 𝜎 (𝑥 ) ≥ 0
ensures ∃⟨𝜎 ⟩ . ∀⟨𝜎 ′ ⟩ . 𝜎 (𝑦 ) ≥ 𝜎 ′ (𝑦 )

{
y := 0
while (y < x)

invariant ∀⟨𝜎 ⟩ . 𝜎 (𝑦 ) ≤ 𝜎 (𝑥 )
decreases x - y

{ y := y + 1 }
}

Figure 6.11.: An example from Hypra that requires automatic framing to be successfully verified.

provided by the loop invariant is preserved, as we illustrate with the
examples in Figure 6.11.

Example 6.4.4 The intuitive loop invariant is not enough.
Consider the method framing1 on the left of the figure, which incre-
ments 𝑦 in a loop until 𝑥 = 𝑦. We want to prove that if 𝑥 has the
same initial value in all executions, then 𝑦 will have the same final
value in all executions. Using the standard (unary) loop invariant
∀⟨𝜎⟩. 𝜎(𝑦) ≤ 𝜎(𝑥), we can easily prove that, after the loop, 𝑥 = 𝑦 in
all states (1). Moreover, since all executions have the same value for 𝑥
before the loop, and since 𝑥 is not modified by the loop, all executions
will still have the same value for 𝑥 after the loop (2). By conjoining (1)
and (2), we get the postcondition.

Unfortunately, the loop encodings presented so far are only able to
prove (1), but not (2), since they assume only (a property derived from)
the loop invariant after the loop. Because our loop invariant does
not mention that 𝑥 has the same value in all executions, this piece of
information is lost after the loop.

One way to solve this particular problem is to add this information to
the loop invariant, by conjoining ∀⟨𝜎1⟩, ⟨𝜎2⟩. 𝜎1(𝑥) = 𝜎2(𝑥) to it. This
solution is cumbersome for the user, who is required to write longer
invariants, by adding information not relevant for the loop (but only
for the postcondition later).

Another way to solve this issue is to use the following compositionality
rule from Hyper Hoare Logic (where mod(𝐶) represents the variables
modified by 𝐶 and fv(𝐹) the (program) variables that appear in 𝐹), which
allows propagating information about variables not modified by the loop
after the loop:

FrameSafe
|=[𝑃] 𝐶 [𝑄] no ∃⟨_⟩ in 𝐹 mod(𝐶) ∩ fv(𝐹) = ∅

|=[𝑃 ∧ 𝐹] 𝐶 [𝑄 ∧ 𝐹]

Since, in Example 6.4.4, 𝑥 is not modified by the loop, we can use this
rule with 𝐹 ≜ (∀⟨𝜎1⟩, ⟨𝜎2⟩. 𝜎1(𝑥) = 𝜎2(𝑥)) to solve our issue. Our goal
is to automatically use this rule to frame information around the loop,
without requiring the user to provide 𝐹.

We achieve this by adding (after the loop) the assumption that, for each
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state in the set of states after the loop, there must exist a state (before the
loop) with the same values for all variables not modified by 𝐶:

... // loop encoding

assume ∀𝜎 𝑗 ∈ 𝑆
𝑗

∀ . ∃𝜎 𝑖 ∈ 𝑆 𝑖∀ . (∀𝑥 ∉ fv(𝐶 ) . 𝜎 𝑖 (𝑥 ) = 𝜎 𝑗 (𝑥 )) // (F-OX)

where 𝑆𝑖∀ is the lower bound of the set of states before the loop, and 𝑆 𝑗∀ is
the lower bound of the set of states after the loop.

Intuitively, adding this assumption is sound because every state 𝜎𝑗 after
the loop corresponds to the final state of an execution of 𝐶 in an initial
state 𝜎𝑖 from before the loop, and thus 𝜎𝑖 and 𝜎𝑗 must have the same
values for the variables not modified by 𝐶. Formally, this encoding is
justified by the following straightforward lemma:

Lemma 6.4.2 Soundness of the framing encoding.
∀𝜎′ ∈ sem(𝐶, 𝑆).∃𝜎 ∈ 𝑆. ∀𝑥 ∉ mod(𝐶). 𝜎(𝑥) = 𝜎′(𝑥)

This encoding is stronger than any possible application of the rule
FrameSafe, since the former logically implies the latter (for any frame 𝐹). To
see why it solves the issue from Example 6.4.4, consider two states 𝜎′

1 and
𝜎′

2 that belong to the set of states 𝑆 𝑗∀ after the loop. From the assumption
(F-OX), we get the existence of two states 𝜎1 and 𝜎2 from 𝑆𝑖∀, such that
𝜎1(𝑥) = 𝜎′

1(𝑥) and 𝜎2(𝑥) = 𝜎′
2(𝑥). Because of the precondition, we know

that 𝜎1(𝑥) = 𝜎2(𝑥), and thus can conclude that 𝜎′
1(𝑥) = 𝜎′

2(𝑥).

Framing hyperproperties with existentially-quantified states. Note
that the rule FrameSafe has the restriction that 𝐹 is not allowed to existen-
tially quantify over states. This is a limitation, as shown by the following
example.

Example 6.4.5 A limitation of the rule FrameSafe.
Consider the method framing2 on the right of Figure 6.11. This method
has the same body and loop invariant as method framing1, but we
now want to prove that if there is an execution whose initial value 𝑥 is
maximal (among all executions), then there should exist an execution
whose final value for 𝑦 is also maximal. In this case, we would like to
apply the rule FrameSafe with the frame 𝐹 ≜ (∃⟨𝜎⟩. ∀⟨𝜎′⟩. 𝜎(𝑥) ≥ 𝜎′(𝑥)),
but cannot because this frame 𝐹 contains an existential quantifier over
states.

To overcome this limitation, Hyper Hoare Logic provides the following
rule, which lifts this restriction:

Frame
mod(𝐶) ∩ fv(𝐹) = ∅

|=⇓ [𝑃] 𝐶 [𝑄] 𝐹 is a syntactic hyper-assertion

|=⇓ [𝑃 ∧ 𝐹] 𝐶 [𝑄 ∧ 𝐹]

This rule requires however to prove a stronger triple, the terminating

hyper-triple |=⇓ [𝑃] 𝐶 [𝑄] (formally defined in Section 5.3.2), which
must ensure the existence of a terminating execution from any initial
state. In Hypra, we can ensure that a triple around a loop while (𝑏) {𝐶}
is terminating as long as 𝐶 contains no assume statements, and this loop
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20: As explained in Chapter 2, Viper ac-
tually provides two back-end verifiers,
one based on symbolic execution, and
one based on Boogie [12]. Hypra uses the
two Viper verifiers to verify the gener-
ated Viper program, and reports the first
successful verification result.

and all nested loops in 𝐶 terminate, i.e., have been annotated with a
decreases clause. This is for example the case for the loop in method
framing2. When those two conditions hold, it is sound to strengthen the
previous encoding with the additional assumption (F-UX), as follows:

𝑆 𝑝 := 𝑆

... // loop encoding

assume ∀𝜎 𝑗 ∈ 𝑆
𝑗

∀ . ∃𝜎 𝑖 ∈ 𝑆 𝑖∀ . (∀𝑥 ∉ fv(𝐶 ) . 𝜎 𝑖 (𝑥 ) = 𝜎 𝑗 (𝑥 )) // (F-OX)

assume ∀𝜎 𝑖 ∈ 𝑆 𝑖∃ . ∃𝜎 𝑗 ∈ 𝑆
𝑗

∃ . (∀𝑥 ∉ fv(𝐶 ) . 𝜎 𝑖 (𝑥 ) = 𝜎 𝑗 (𝑥 )) // (F-UX)

Together, those two assumptions are stronger than the application of the
rule Frame for any frame 𝐹. For example, emitting those two assumptions
together lets us automatically derive that ∃⟨𝜎⟩. ∀⟨𝜎′⟩. 𝜎(𝑥) ≥ 𝜎′(𝑥) holds
after the loop in our example. However, we have noticed in practice
that emitting the assumption (F-UX) does not interact well with the
encoding described in Section 6.3.2, and might result in matching loops.
Thus, Hypra provides an option to emit this second assumption (when
applicable), which is disabled by default.

Framing hyperproperties inside loop iterations. Finally, note that it
is sound to emit the assumption (F-OX) at the beginning of an arbitrary
loop iteration, which can lead to more concise invariants. Moreover, it is
sound to emit assumption (F-UX) as well, if the loop body 𝐶 contains no
assume statements, and loops nested within 𝐶 terminate (but the outer
loop is not required to terminate). In practice, our verifier can emit those
assumptions, but this also requires inlining the verification of the loop
body with the loop invariant inside the method containing the outer
loop (as opposed to verifying the loop body with the loop invariant in
a separate Viper method), which can worsen performance. Thus, our
verifier does not do it by default, but provides an option to do it.

6.5. Implementation and Evaluation

We implemented Hypra, a deductive program verifier for hyperproperties,
on top of Viper; that is, Hypra takes as input a text file, translates it into
a Viper program (as described in Section 6.3), calls the Viper verifier to
verify this program, and then translates the output (successful verification
or error messages) back to the user.20

We evaluated Hypra on a diverse set of examples, which includes many
examples from the literature, to answer the following questions:

(RQ1) Can Hypra (dis-)prove hyperproperties of different types, namely
∀∗, ∃∗, ∀∗∃∗, and ∃∗∀∗?

(RQ2) How many lines of proof annotations are needed by Hypra?
(RQ3) Can Hypra verify complex examples in a reasonable amount of

time?

In summary, our evaluation shows that Hypra can efficiently (dis-)prove
hyperproperties of different types with a reasonable amount of proof
annotations, and it can do so within a reasonable amount of time. In the
following, we describe how we selected our benchmarks, how we ran
the experiments, and present and discuss the results.
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Benchmarks. To evaluate Hypra, we used the benchmarks from HyPa [128],
Descartes [88], ORHLE [96], and PCSat [127]: We selected a subset of
their publicly-available benchmarks and translated them into the pro-
gramming language supported by Hypra to form our benchmarks. We
selected the benchmarks based on the following criteria:

1. For Descartes, ORHLE, HyPa, and PCSat, we ignored the bench-
marks that use data structures not supported by Hypra, such as
arrays.21

2. For Descartes, we ignored the benchmarks that use objects with
more than 3 fields, since translating fields into the language sup-
ported by Hypra is cumbersome.

3. For ORHLE, HyPa, and PCSat, we ignored the benchmarks that
prove relational properties (i.e., properties relating multiple execu-
tions of different programs), since Hypra only supports hyperproper-

ties.
4. For PCSat, we selected only the benchmarks that do not require

reasoning about co-termination, since Hypra does not support this.

For each selected benchmark, we translated it to the syntax accepted by
Hypra. To obtain hyper-triples semantically equivalent to the original
specifications, we used the formal translations presented in Appendix A.3.
In addition, we annotated the translated benchmarks with loop variants,
loop invariants and hints when necessary.

We additionally created new benchmarks, by taking existing benchmarks
that fail to prove ∀∗- or ∀∗∃∗-hyperproperties, and formally proving that
they violate these hyperproperties. To do so, we strengthened the precon-
ditions and proved the negation of the original postconditions, following
Theorem 5.3.4. In particular, this allows us to obtain benchmarks with
∃∗∀∗-hyperproperties, which are not included in the benchmark suites
we draw from.

In total, we obtained 84 benchmarks. Figure 6.1 provides more details
about the selected benchmarks.

Experimental Setup. We ran Hypra to verify the translated benchmarks
on a MacBook Pro running macOS Ventura 13.3 with a 2.3 GHz 8-Core
Intel Core i9 processor and 32 GB RAM. Each benchmark was run with
10 repetitions. For each run, we recorded the verification result and
runtime. In the end, we checked that the verification results in all runs
were consistent, and also computed the average verification time for each
benchmark.

Results. The results of our evaluation are shown in Figure 6.1. As we
can see, Hypra can handle not only all ∀∗−, ∃∗- and ∀∗∃∗-hyperproperties
that other verifiers can handle, but also ∃∗∀∗-hyperproperties, which no
other existing verifier supports.

Although verification using Hypra is not fully automatic, it only requires
a reasonable amount of proof annotations from users, which is evidenced
by the last column of Figure 6.1.

Moreover, Hypra is quite efficient in general. On average, it took Hypra
258 seconds to run the entire benchmark suite composed of 84 programs.
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Table 6.1.: Results of our evaluation. Benchmarks marked with † are obtained by strengthening the preconditions and negating the
postconditions of the original benchmarks that fail to prove ∀∗ or ∀∗∃∗-hyperproperties. We count use statements, loop variants and
loop invariants as annotations.

Type of Source Files Verification time Annotations
hyperproperty no. Mean (LoC) Mean (s) Median (s) Mean (LoC)

∀∗
Descartes 15 129 2.3 1.7 0.0

PCSat 3 23 1.1 1.1 2.7
Overall 18 111 2.1 1.6 0.4

∃∗
Descartes† 8 81 13.0 5.0 0.0

ORHLE 6 29 2.9 2.5 7.7
Overall 14 59 8.7 3.5 3.3

∀∗∃∗
ORHLE 28 20 2.3 1.4 1.2
HyPa 8 14 1.2 1.1 2.1
PCSat 1 22 1.2 1.2 2.0

Overall 37 19 2.0 1.3 1.4
∃∗∀∗ ORHLE† 15 25 1.6 1.2 1.7
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For 93% of the benchmarks, verification finished within 5 seconds. In
some rare cases, the runtime was relatively long, with the maximum
runtime around 35 seconds. This is not unexpected, since some of
those benchmarks have very complex commands (such as lots of nested
conditional statements) and specifications (such as preconditions and
postconditions of the shape ∃∃∃∀∀∀).

In summary, our evaluation demonstrates that Hypra can effectively
verify hyperproperties of different types with a reasonable amount of
proof annotations and within a reasonable amount of time.

6.6. Related Work

In this section, we only cover tools and approaches for automatically
verifying hyperproperties, as program logics for hyperproperties have
already been discussed in Section 5.8.

Deductive Verification. As explained in Chapter 1, deductive verifiers
are tools that, given as input a program, a specification, and proof hints
(such as loop invariants), try to automatically construct a proof in a
given program logic that the program satisfies the specification. Many
deductive verifiers based on SMT solvers (such as Z3 [52]) have been
developed for verifying safety properties, i.e., properties that should hold
for all individual executions, such as Boogie [12], Why3 [17], Dafny [13],
or Viper [16].

The problem of verifying that a program satisfies a 𝑘-safety hyperproperty
can be reduced to the problem of verifying that a product program [122,
123, 216] satisfies a safety property, where the product program is for
example obtained by composing sequentially 𝑘 renamed copies of the
original program. The product program can then be verified using deduc-
tive verifiers tailored for safety properties. Eilers et al. [124] show how to
treat method calls modularly in this context, allowing methods to have re-
lational preconditions and postconditions, similar to the ∀∗-specifications
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shown in Section 6.2 (for example in Figure 6.1). Barthe et al. [125] present
an asymmetric construction for product programs, which allows proving
relational ∀∃-properties such as program refinement [240].

Deductive verifiers specifically targeting hyperproperties have been devel-
oped as well. Those include WhyRel [126], SecC (based on SecCSL) [114],
and HyperViper (based on CommCSL) [115] for non-interference [208] (a
2-safety hyperproperty), Descartes (based on Cartesian Hoare Logic) [88]
for 𝑘-safety hyperproperties, and ORHLE (based on RHLE) [96] for ∀∗∃∗-
hyperproperties. As our evaluation shows, our tool handles well the
benchmarks from Descartes and ORHLE, and can even disprove invalid
ones. Another recent verifier for∀∗∃∗-hyperproperties is ForEx [121]. Com-
pared to ORHLE and ForEx, the closest to our work, our tool Hypra is
more expressive, since it also supports for example ∃∗∀∗-hyperproperties,
and supports reasoning about runtime errors. Our tool is also more
flexible, since it allows the user to write explicit quantifiers in the asser-
tion language itself, and thus allows one to combine different types of
hyperproperties in the same proof, whereas ORHLE and ForEx require
the user to fix the quantification scheme in advance. Moreover, even for
∀∗∃∗-hyperproperties, our tool supports reasoning about more complex
proof patterns, such as while loops where different executions might exit
at different iterations.

Other approaches have been developed to automatically verify hyper-
properties [127, 204, 233, 241, 242]. For example, Assaf et al. [204] use
abstract interpretation [234] to verify different hypersafety properties
related to information flow, including some safety hyperproperties that
are not 𝑘-safety for any 𝑘. To achieve this, they present a hypercollecting
semantics, similar in spirit to the function sem (Definition 6.2.2) from
Hyper Hoare Logic. Unno et al. [127] present PCSat, a tool based on
a generalization of constrained Horn clauses [243] to automatically ver-
ify 𝑘-safety hyperproperties, and more complex hyperproperties such
as termination-sensitive non-interference [244] and generalized non-
interference [210, 211]. As shown in our evaluation, our tool Hypra can
handle all the benchmarks from PCSat that fall in our supported subset
of programs, with a reasonable amount of proof annotations and in
reasonable time. Extending Hypra to reason about properties such as
termination-sensitive non-interference is future work.

Finally, temporal logics to express hyperproperties have been proposed,
such as HyperLTL and HyperCTL* [229], and model checking [245] algo-
rithms to check whether finite-state systems satisfy hyperproperties
expressed in these temporal logics have been proposed [246]. For ex-
ample, Hsu et al. [231] have proposed algorithms for bounded model
checking, Coenen et al. [230] proposed model checking algorithms for
∀∗∃∗-hyperproperties, and Beutner and Finkbeiner [232] proposed an
explicit-state model checking algorithm that is complete for HyperLTL
and for hyperproperties with arbitrary quantifier alternations. Beutner
and Finkbeiner [128] have also shown that model checking techniques
for ∀∗∃∗ can be applied to infinite-state systems, by using predicate
abstraction.





Conclusion 7.
S’agirait de grandir hein, s’agirait de grandir...

Hubert Bonisseur de la Bath, OSS 117 : Le

Caire, nid d’espions

In this thesis, we have addressed two key challenges faced by modern
verifiers: trustworthiness and expressiveness. In the first part, we have
addressed the trustworthiness challenge by developing novel formal
foundations to justify the soundness of automated verifiers based on
separation logic, in particular for translational verifiers (Chapter 2),
fractional predicates (Chapter 3), and magic wands (Chapter 4). In
the second part, we have addressed the expressiveness challenge by
developing a novel program logic for hyperproperties, Hyper Hoare
Logic (Chapter 5), which can express hyperproperties that no other
program logic supports, and by developing a novel automated verifier
for hyperproperties, Hypra (Chapter 6), based on Hyper Hoare Logic.

Our work highlights the importance of conducting research at the inter-
section of theory and automation for two key reasons, which we discuss
in Section 7.1: (1) automated verifiers require dedicated practical theory

(as opposed to what we call pure theory, i.e., theory developed without
automation in mind), and (2) insights from automation and practical
theory lead to new formal results that enrich pure theory. We then discuss
promising future work directions in Section 7.2.

7.1. Research at the Intersection of Theory and
Automation

Automated verifiers need dedicated practical theory

While pure theory provides the basis for automation (e.g., separation
logic provides the basis for Viper, and Hyper Hoare Logic provides
the basis for Hypra), it does not address many challenges faced by
automated verifiers, which require dedicated practical theory. For example,
intermediate verification languages (Chapter 2) are primarily motivated
by practical purposes such as reusing optimized automation across
different verifiers, and CoreIVL’s operational semantics is motivated by
the connection to the back-end verifiers. Similarly, automated verifiers
support fractional predicates (Chapter 3) with the syntactic multiplication
rather than the semantic one, because the former is straightforward to
automate.

Moreover, one of the key goals in the design of automated verifiers is to
minimize the number of hints required from the user, a requirement that
is not considered by pure theory. For example, package algorithms for
magic wands (Chapter 4) only make sense in the context of automation.
In pure theory, one can simply manually provide the footprint and the
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corresponding proof. Similarly, Hypra’s (Chapter 6) new rule WhileAuto-
∀∗∃∗ for loops (which requires one user-provided hyper-assertion only)
is advantageous compared to HHL’s rule While-∀∗∃∗ (which requires two

user-provided hyper-assertions) in the context of automated verifiers
only, as it reduces the number of required user-provided hints. The
motivation for the framing encoding presented in Section 6.4.3 is likewise
driven by the goal of reducing hints, as it reduces the size and complexity
of the required user-provided loop invariant. In contrast, in pure theory,
the same effect can be achieved with a single application of the FrameSafe
rule, which does not require such encoding.

Theory benefits from insights from automation

Building automated verifiers based on pure theory naturally leads to
new insights that benefit pure theory, as applying verifiers to large
programs allows us to identify gaps and limitations of existing theory.
As anecdotal evidence, the important limitation of HHL’s core rule Iter
for loops only became clear to us as we were trying out some examples
during the early development of Hypra (specifically, an example similar
to Example 5.6.3).

Perhaps surprisingly, practical theory (which primarily addresses chal-
lenges specific to automation) also yields insights that advance pure
theory. For instance, the verification primitives inhale and exhale (Chap-
ter 2), introduced by Leino and Müller [152] for automation, have proven
valuable in pure theory, to prove refinement [171]. Similarly, the angelism
in CoreIVL’s operational semantics, originally used to abstract over verifi-
cation algorithms and first applied in an SL context to describe VeriFast’s
symbolic execution [67], has proven useful in pure theory, to model
interactions between programs written in different languages [154, 170].
Implicit dynamic frames (IDF) [70], for which we have provided a novel
foundation via an IDF algebra (Chapter 2), were originally motivated
by practical concerns, namely letting programmers write specifications
in the programming language’s syntax, and facilitating automation via
verification condition generation. Recently, IDF have been integrated [172]
into Iris [31, 41], to reduce redundancy between specifications and im-
plementations. As yet another example, the syntactic multiplication for
fractional predicates (Chapter 3), primarily motivated by its amenability
to automation, yields a formal semantics with better theoretical proper-
ties (such as distributivity, factorizability, and combinability) compared
to existing pure theory [83, 84].

The role of syntax

Another important insight from this thesis is the importance of syntax.
Automated verifiers require a formal syntax for assertions, as users write
specifications in concrete syntax, which are then parsed by verifiers. But
beyond this necessity, we have found that a carefully designed assertion
language brings several theoretical and practical benefits.
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Universal properties for free. There are infinitely fewer syntactic as-
sertions than semantic ones, as there is a countable number of syntactic
assertions, while there are uncountably many semantic assertions [247].
While this may seem like a limitation (as infinity is often considered very

large), syntactic assertions provide a major benefit: they automatically
satisfy desirable properties that are difficult (or even impossible) to
guarantee for arbitrary semantic assertions. For instance, because Viper’s
assertion language disallows negations and disjunctions of impure as-
sertions (due to automation challenges), every assertion expressible in
Viper is combinable (Chapter 3).1 Similarly, all recursive predicate defi-
nitions that can be written in Viper are syntactically positive, and thus
admit well-defined least and greatest fixed points.2 As another example,
HHL’s rule Frame is sound for all syntactic hyper-assertions 𝐹, whereas it
would be unsound for arbitrary semantic ones. Moreover, by carefully
restricting syntax, we obtain semantic guarantees such as downward-
closure (needed to justify the rule FrameSafe), or the soundness of the
rules While-∀∗∃∗ and WhileAuto-∀∗∃∗, which rely on a non-trivial semantic
property.

Syntax facilitates automation. Because syntactic structures are ex-
plicitly available, automation can operate directly on the structure of
assertions. For example, the package logic (Chapter 4) leverages the syn-
tactic structure of assertions to deconstruct a magic wand’s right-hand
side into atomic parts, making it easier to infer the required resources for
the footprint. Similarly, the automation of fractional predicates (Chapter 3)
is straightforward, as it uses the syntactic multiplication, which operates
on the syntax of assertions rather than their semantics. Syntax also en-
ables powerful rules based on simple syntactic transformations (such
as the HHL rules AssumeS, AssignS, HavocS, and Specialize from Chapter 5),
which are easier to apply than their semantic counterparts.

7.2. Future Work

While this thesis advances the state of the art in both the trustworthiness
and expressiveness of automated verifiers, it also opens up many inter-
esting research directions for future exploration. Below, we outline future
work along two main axes: enhancing the trustworthiness of SL-based ver-
ifiers (Section 7.2.1), and advancing automated hyperproperty verification
(Section 7.2.2). Additional promising directions, which we do not cover
here, include developing formal foundations for automated verifiers
based on other program logics, such as Dafny [13] (which relies on dy-
namic frames [248]), and designing automated verifiers for probabilistic
programs [249] and their corresponding probabilistic properties.

7.2.1. Trustworthiness of SL-based Verifiers

Full certification of existing SL-based verifiers

Our long-term goal, building on this thesis and the work of Parthasarathy
[250], is to fully certify the soundness of practical automated verifiers
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based on separation logic, such as Viper [16]. This requires several
advances, which we outline below.

Extending ViperCore with advanced SL features. The first required
step is to extend our ViperCore instantiation of CoreIVL (and the cor-
responding formalization and certification of VCGSem [74]) to support
advanced SL features, including recursive predicates (Chapter 3), magic
wands (Chapter 4), heap-dependent recursive functions [251], iterated
separation conjunctions [151], higher-order predicates, and more. Sup-
porting higher-order predicates, that is, predicates taking other predicates
as arguments, may require incorporating step-indexing [191] into the
CoreIVL model.

Adapting CoreIVL to support permission introspection. Another
important step is adapting CoreIVL to support permission introspection
features, provided in different forms by verifiers like Viper and Veri-
Fast [15]. Viper’s permission introspection expression perm(x.f), where
x.f is a heap location, yields the permission amount of x.f currently
held by the Viper state. This allows programs to inspect and act on the
amount of permission held, enabling advanced verification strategies and
checks for permission leaks. However, as shown in work not presented
in this thesis [73], this feature is challenging to formalize. In particular, it
is not compatible with how CoreIVL models assertions, as it (1) behaves
differently for inhale and exhale,3 (2) makes the separating conjunction
non-commutative,4 and (3) has a non-local meaning (since the value of
perm(x.f) depends on the program location).

Handling the discrepancy of state models between front-ends and IVLs.
To support realistic Viper front-ends, such as VerCors [57], Nagini [58],
Prusti [59, 252], or Gobra [24], our approach must also be extended. For
example, the approach in Chapter 2 connects a front-end with the same
state model as our ViperCore instantiation, but in practice, front-end
state models often differ substantially from the IVL state model.

A formal framework for the sound composition of transformations.
Finally, many IVL features are implemented as IVL-to-IVL transfor-
mations, such as termination checking, method call inlining and loop
unrolling [73], modular product program transformations [124], invariant
inference [253], and more. The sound composition of these transforma-
tions is not always straightforward. It has for instance been shown that
applying a modular product program transformation after a front-end
translation is not always sound [124]. Developing a general formal frame-
work for the sound composition of verification transformations remains
an important open problem.

Extending SL-based verifiers

Beyond justifying the soundness of existing verifiers, formal foundations
also pave the way for extending SL-based verifiers with new features,
as discussed in Chapter 3 (e.g., allowing magic wands inside fractional
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predicates) and Chapter 4 (e.g., adapting package algorithms to support
combinable wands). Below, we describe several features that could be
formalized and then added to existing SL-based verifiers.

Loop contracts and 𝑘-induction. While the standard way to verify
loops in SL-based automated verifiers is to use inductive invariants,
alternatives exist, such as 𝑘-induction [254] or loop contracts [174]. As
we have proven sound the standard encoding of loops with inductive
invariants based inhale and exhale in Chapter 2, we could formalize and
prove sound, using CoreIVL, encodings for these alternative approaches,
before integrating them into existing SL-based verifiers.

Magic wands with bipartite graphs. As discussed in Chapter 4, magic
wands are useful for reasoning about Rust borrows (for example, in
Prusti [59]), but are limited to one left-hand side and one right-hand side.
To support more borrow patterns in Rust, one could generalize wands to
bipartite graphs and adapt the package logic accordingly.

Universal introduction. A universal introduction feature could also
be added to automated verifiers, simplifying the proof of universally
quantified postconditions. For example, to prove a postcondition∀𝑥. 𝑄(𝑥),
one can fix a variable 𝑥 with an arbitrary value at the start of the method,
and prove 𝑄(𝑥) at the end (instead of ∀𝑥. 𝑄(𝑥)). This allows the use of 𝑥
during the proof, for example to branch on its value.5 One interesting
use case for which this feature would be particularly helpful is the
correctness of the Sheartsort algorithm for sorting matrices [255], which
can be established with the 0-1 principle [256].6 Another benefit is
avoiding unnecessary quantifier instantiations, which would improve
performance. However, such a feature must be carefully designed to be
sound. For example, the value of 𝑥 should not influence parts of the
program that 𝑄 depends on, as well as termination.7

7.2.2. Hyperproperty Verification

We believe that Hyper Hoare Logic (Chapter 5) offers a promising
foundation for advancing automated hyperproperty verification, and
opens several interesting and promising research directions, both in
theory and automation, as outlined below.

Theory

Extending HHL to support relational properties for different programs.
A main limitation of HHL, compared to other relational program logics,
is that HHL only supports one program. That is, HHL only supports
proving hyperproperties [27] (relating multiple executions of a program),
as opposed to relational properties (relating executions of different
programs). This is also a limitation when verifying hyperproperties,
for example, when verifying a conditional statement where different
executions take different branches. We believe that the ideas behind HHL
could be extended to a relational setting.
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Termination reasoning in HHL. Currently, HHL does not support
proving termination,8, nor non-termination. Similarly to how quantifiers
over normal states in HHL can be used to reason about the presence and
absence of executions, and how quantifiers over error states in Hypra
can be used to reason about the presence and absence of errors, we
believe that an extension of HHL to reason about termination and non-
termination with quantifiers over non-terminating executions is possible,
and would be useful for reasoning about other advanced properties such
as termination-sensitive non-interference. Technically, such an extension
would require using a different type of semantics than the big-step
semantics we currently use, such as a small-step semantics, or the one
used by Li et al. [258].

(Concurrent) Hyper Separation Logic. In its current version, HHL only
supports simple programs without pointers or concurrency. A natural
next step would be to extend HHL to Hyper Separation Logic, combining
ideas from HHL with ideas from separation logic [10], to support local
reasoning for programs that manipulate the heap. This extension could
then be further developed into a concurrent version by adapting ideas
from concurrent separation logic [11].

Automation

Automating the compositionality rules. As discussed in Chapter 6,
Hypra automates verification by leveraging HHL’s core and loop rules.
However, it does not yet automate the compositionality rules from
Section 5.7,9 which means that examples requiring these rules cannot
be verified by Hypra. A natural next step is to develop methods for
automating compositionality rules. One key challenge is to design a hint
format that captures the essential insights needed for these proofs, while
still enabling automation.

An alternative SMT-based encoding based on predicate transformers.
Although our evaluation shows that Hypra performs well on benchmarks
from the literature, its scalability to larger programs remains unclear, as
these benchmarks are relatively small. One idea to improve performance
is to use a more lightweight encoding based on the syntactic rules from
Section 5.5, rather than tracking sets of states at each step. For a (loop-
free) program and postcondition, we could syntactically compute the
weakest (hyper-)precondition [259] and check whether the user-provided
precondition entails it. However, a key challenge is that the weakest
precondition for conditionals if (𝑏) {𝐶1} else {𝐶2} cannot be expressed
compositionally (that is, as a function of the weakest preconditions of 𝐶1
and 𝐶2) with our syntax for hyper-assertions.

Hypertypes. Another promising direction is to combine verification in
Hypra with a novel notion of hypertypes, i.e., types for hyperproperties,
which would allow for efficient, syntactic typing whenever possible.
While type systems for secure information flow have a long history [208],
extending them to cover a broader range of hyperproperties would
require developing new types (and corresponding type systems) and
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integrating them with SMT-based verification, since the typing rules may
be too restrictive. A further benefit of this approach is the potential to
reduce the number of user-provided hints; for example, typing rules for
loops can eliminate the need for explicit loop invariants.

Automating inference of loop invariants. Automatically inferring loop
invariants is another promising direction, as demonstrated by tools like
Descartes [88] and ForEx [121]. For Hypra, this task is more complex
because the quantification scheme is not fixed in advance, allowing
invariants to combine different types of hyperproperties, and because
Hypra can apply various rules. Addressing these challenges would
significantly enhance automation.
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Appendix A.
A.1. Small-Step Semantics of ParImp

The rules for the (small-step) operational semantics used in Chapter 2 and
Chapter 3 are shown in Figure A.1 (for non-failing executions, denoted
as ⟨𝐶, (𝑠, ℎ)⟩ → ⟨𝐶′, (𝑠′, ℎ′)⟩) and Figure A.2 (for failing executions,
denoted as ⟨𝐶, (𝑠, ℎ)⟩ → ⊥). These rules are standard and adapted from
Vafeiadis [157]. Typing details are omitted to avoid clutter.

To detect data races in the rules for failing executions (Figure A.2), we use
the functions accesses(𝐶, 𝑠) and writes(𝐶, 𝑠), defined as follows.

Definition A.1.1 Auxiliary functions to detect data races.
The function accesses(𝐶, 𝑠) returns the set of locations read from (in the next

execution step) by command 𝐶 in a state with store 𝑠 of local variables 𝑠:

accesses(skip, 𝑠) ≜ ∅
accesses(x ≔ e, 𝑠) ≜ ∅
accesses(x ≔ r.v, 𝑠) ≜ {𝑠(𝑟)}
accesses(r.v ≔ e, 𝑠) ≜ {𝑠(𝑟)}
accesses(r ≔ alloc(e), 𝑠) ≜ ∅
accesses(𝐶1;𝐶2 , 𝑠) ≜ accesses(𝐶1 , 𝑠)
accesses(𝐶1 || 𝐶2 , 𝑠) ≜ accesses(𝐶1 , 𝑠) ∪ accesses(𝐶2 , 𝑠)
accesses(if (𝑏) {𝐶1} else {𝐶2}, 𝑠) ≜ ∅
accesses(while (𝑒) {𝐶}, 𝑠) ≜ ∅
accesses(free(r), s) ≜ {𝑠(𝑟)}

The function writes(𝐶, 𝑠) returns the set of locations written to (in the next

execution step) by command 𝐶 in a state with store 𝑠 of local variables 𝑠:

writes(skip, 𝑠) ≜ ∅
writes(x ≔ e, 𝑠) ≜ ∅
writes(x ≔ r.v, 𝑠) ≜ ∅
writes(r.v ≔ e, 𝑠) ≜ {𝑠(𝑟)}
writes(r ≔ alloc(e), 𝑠) ≜ ∅
writes(𝐶1;𝐶2 , 𝑠) ≜ writes(𝐶1 , 𝑠)
writes(𝐶1 || 𝐶2 , 𝑠) ≜ writes(𝐶1 , 𝑠) ∪ writes(𝐶2 , 𝑠)
writes(if (𝑏) {𝐶1} else {𝐶2}, 𝑠) ≜ ∅
writes(while (𝑒) {𝐶}, 𝑠) ≜ ∅
accesses(free(r), s) ≜ {𝑠(𝑟)}
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Seq1
⟨skip;𝐶2 , (𝑠, ℎ)⟩ → ⟨𝐶2 , (𝑠, ℎ)⟩

Seq2
⟨𝐶1 , (𝑠, ℎ)⟩ → ⟨𝐶′

1 , (𝑠′, ℎ′)⟩
⟨𝐶1;𝐶2 , (𝑠, ℎ)⟩ → ⟨𝐶′

1;𝐶2 , (𝑠′, ℎ′)⟩

If1
⟦𝑏⟧(𝑠)

⟨if (𝑏) {𝐶1} else {𝐶2}, (𝑠, ℎ)⟩ → ⟨𝐶1 , (𝑠, ℎ)⟩

If2
¬⟦𝑏⟧(𝑠)

⟨if (𝑏) {𝐶1} else {𝐶2}, (𝑠, ℎ)⟩ → ⟨𝐶2 , (𝑠, ℎ)⟩

Par1
⟨𝐶1 , (𝑠, ℎ)⟩ → ⟨𝐶′

1 , (𝑠′, ℎ′)⟩
⟨𝐶1 || 𝐶2 , (𝑠, ℎ)⟩ → ⟨𝐶′

1 || 𝐶2 , (𝑠′, ℎ′)⟩

Par2
⟨𝐶2 , (𝑠, ℎ)⟩ → ⟨𝐶′

2 , (𝑠′, ℎ′)⟩
⟨𝐶1 || 𝐶2 , (𝑠, ℎ)⟩ → ⟨𝐶1 || 𝐶′

2 , (𝑠′, ℎ′)⟩

Par3
⟨skip || skip, (𝑠, ℎ)⟩ → ⟨skip, (𝑠, ℎ)⟩

Loop
⟨while (𝑏) {𝐶}, (𝑠, ℎ)⟩ → ⟨if (𝑏) {𝐶; while (𝑏) {𝐶}} else {skip}, (𝑠, ℎ)⟩

Assign
⟨x ≔ e, (𝑠, ℎ)⟩ → ⟨skip, (𝑠[𝑥 ↦→ ⟦𝑒⟧(𝑠)], ℎ)⟩

Alloc
(𝑙 , 𝑣) ∉ dom(ℎ)

⟨r ≔ alloc(e), (𝑠, ℎ)⟩ → ⟨skip, (𝑠[𝑟 ↦→ 𝑙], ℎ[(𝑙 , 𝑣) ↦→ ⟦𝑒⟧(𝑠)])⟩

Write
(𝑠(𝑟), 𝑣) ∈ dom(ℎ)

⟨r.v ≔ e, (𝑠, ℎ)⟩ → ⟨skip, (𝑠, ℎ[(𝑠(𝑟), 𝑣) ↦→ ⟦𝑒⟧(𝑠)])⟩

Read
(𝑠(𝑟), 𝑣) ∈ dom(ℎ)

⟨x ≔ r.v, (𝑠, ℎ)⟩ → ⟨skip, (𝑠[𝑥 ↦→ ℎ(𝑠(𝑟), 𝑣)], ℎ)⟩

Free
(𝑠(𝑟), 𝑣) ∈ dom(ℎ)

⟨free(𝑟), (𝑠, ℎ)⟩ → ⟨skip, (𝑠, ℎ[(𝑟, 𝑣) ↦→ ⊥])⟩

Figure A.1.: Small-step semantics rules for non-failing executions.

SeqA
⟨𝐶1 , (𝑠, ℎ)⟩ → ⊥

⟨𝐶1;𝐶2 , (𝑠, ℎ)⟩ → ⊥

ParA1
⟨𝐶1 , (𝑠, ℎ)⟩ → ⊥

⟨𝐶1 || 𝐶2 , (𝑠, ℎ)⟩ → ⊥

ParA2
⟨𝐶2 , (𝑠, ℎ)⟩ → ⊥

⟨𝐶1 || 𝐶2 , (𝑠, ℎ)⟩ → ⊥

RaceA1
accesses(𝐶1 , 𝑠) ∩ writes(𝐶2 , 𝑠) ≠ ∅

⟨𝐶1 || 𝐶2 , (𝑠, ℎ)⟩ → ⊥

RaceA2
writes(𝐶1 , 𝑠) ∩ accesses(𝐶2 , 𝑠) ≠ ∅

⟨𝐶1 || 𝐶2 , (𝑠, ℎ)⟩ → ⊥

ReadA
(𝑠(𝑟), 𝑣) ∉ dom(ℎ)

⟨x ≔ r.v, (𝑠, ℎ)⟩ → ⊥

WriteA
(𝑠(𝑟), 𝑣) ∉ dom(ℎ)

⟨r.v ≔ e, (𝑠, ℎ)⟩ → ⊥

FreeA
(𝑠(𝑟), 𝑣) ∉ dom(ℎ)

⟨free(𝑟), (𝑠, ℎ)⟩ → ⊥

ReadNullA
𝑠(𝑟) = null

⟨x ≔ r.v, (𝑠, ℎ)⟩ → ⊥

WriteNullA
𝑠(𝑟) = null

⟨r.v ≔ e, (𝑠, ℎ)⟩ → ⊥

FreeNullA
𝑠(𝑟) = null

⟨free(𝑟), (𝑠, ℎ)⟩ → ⊥

Figure A.2.: Small-step semantics rules for failing executions.
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A.2. An Example of Unsound Magic Wand
Packaging in Viper

As explained in Example 4.2.1 (Chapter 4), packaging the wand

𝑤 ≜ acc(𝑥. 𝑓 ) ∗ (𝑥. 𝑓 = 𝑦 ∨ 𝑥. 𝑓 = 𝑧) −∗ acc(𝑥. 𝑓 ) ∗ acc(𝑥. 𝑓 .𝑔)

using the FIA leads to unsound reasoning: Starting in a state with
permission to x.f, y.g, and z.g, we can prove the assertion acc(𝑥. 𝑓 ) ∗
(acc(𝑦.𝑔) ∨ acc(𝑧.𝑔)) ∗ 𝑤. However, a correct footprint of 𝑤 must either
have some permission to x.f, or permission to both y.g and z.g. Therefore,
acc(𝑥. 𝑓 ) ∗ (acc(𝑦.𝑔) ∨ acc(𝑧.𝑔)) ∗ 𝑤 is actually equivalent to false.

Viper currently implements the FIA, and it is possible to exploit the
unsoundness of the FIA when packaging the wand 𝑤 to prove the
postcondition false, as shown in Figure A.3. While Viper does not
directly support disjunctions of accessibility predicates, we can observe
in Figure A.3 that the assertion 𝑤 ∗acc(𝑥. 𝑓 ) ∗ (acc(𝑦.𝑔)∨acc(𝑧.𝑔)) holds
after packaging the wand 𝑤. This example relies on Viper’s permission

introspection feature: The expression perm(y.g) (for a reference y and a
field g) yields the permission amount of y.g held by the current execution,
not counting resources inside packaged wands.

1 field f: Ref

2 field g: Int

3

4 method main(x:Ref, y:Ref, z:Ref)

5 requires acc(x.f) && acc(y.g) && acc(z.g)

6 {

7 package acc(x.f) && (x.f == y || x.f == z) --* acc(x.f) && acc(x.f.g)

8 {

9 assert x.f == y ? acc(y.g) : acc(z.g)

10 }

11 assert (acc(x.f) && (x.f == y || x.f == z) --* acc(x.f) && acc(x.f.g))

12 && acc(x.f) && (perm(y.g) == write || perm(z.g) == write)

13 if (perm(y.g) == write) {

14 x.f := y

15 }

16 else {

17 x.f := z

18 }

19 apply acc(x.f) && (x.f == y || x.f == z) --* acc(x.f) && acc(x.f.g)

20 assert false

21 }

Figure A.3.: A small Viper program that
illustrates how to prove false using the
unsoundness of the FIA. This program re-
lies on Viper’s permission introspection fea-
ture, which allows to inspect the amount
of permission to a heap location owned
by the current execution: The expres-
sion perm(y.g) yields the permission
amount of y.g held by the current ex-
ecution, not counting resources inside
packaged wands. The Viper symbols &&
and || represent the separation conjunc-
tion ∗ and the disjunction ∨, respectively.

The program shown in Figure A.3 is currently verified by Viper. Method
main starts in a state with permission to x.f, y.g, and z.g. We then
package the wand 𝑤 (lines 7-10) using the FIA, and help the proof search
with the assertion on line 9 (the hints to guide a package statement
are called proof scripts, and we discuss them in the extended version of
Chapter 4 [198]). After the package statement, we assert 𝑤 ∗ acc(𝑥. 𝑓 ) ∗
(acc(𝑦.𝑔) ∨ acc(𝑧.𝑔)) (lines 11-12), using permission introspection to
express the disjunction.1 Using this magic wand, we can derive an explicit
contradiction. To do this, we assign y to x.f if the current execution owns
y.g, and z otherwise (lines 13-18), using permission introspection. Finally,
we apply the wand (line 19).
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Viper is able to prove false on line 20, because:

▶ Either the current execution owns y.g, in which case the permission
of z.g was computed as the footprint of 𝑤. Thus, the current
execution satisfies the assertion 𝑤 ∗ acc(𝑥. 𝑓 ) ∗ acc(𝑦.𝑔). Applying
the wand 𝑤 with x.f = y effectively exchanges ownership of x.f
with ownership of y.g, resulting in a state that owns y.g twice,
which is thus an inconsistent state.

▶ Or the current execution does not own y.g, which means that the
permission of y.g was computed as the footprint of 𝑤, and thus
the execution satisfies the assertion 𝑤 ∗ acc(𝑥. 𝑓 ) ∗ acc(𝑧.𝑔). In this
case, assigning z to x.f and then applying the wand 𝑤 leads to an
inconsistent state, which owns z.g twice.
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A.3. Expressiveness of Hyper Triples

In this section, we demonstrate the expressiveness of hyper-triples (and
thus Hyper Hoare Logic) by showing how they can express the judgments
of existing over- and underapproximating Hoare logics (Section A.3.1
and Section A.3.2) and enable reasoning about useful properties that go
beyond over- and underapproximation (Section A.3.3). All theorems and
propositions in this section have been proved in Isabelle/HOL.

A.3.1. Overapproximate Hoare Logics

The vast majority of existing Hoare logics prove the absence of bad (com-
binations of) program executions. To achieve this, they prove properties
for all (combinations of) executions, that is, they overapproximate the set
of possible (combinations of) executions. In this subsection, we discuss
overapproximate logics that prove properties of single executions or of 𝑘
executions (for a fixed number 𝑘), and show that Hyper Hoare Logic goes
beyond them by also supporting properties of unboundedly or infinitely
many executions.

Single executions

Classical Hoare Logic [8, 9] is an overapproximate logic for properties of sin-
gle executions. The meaning of triples can be defined as follows:

Definition A.3.1 Hoare Logic (HL).
Let 𝑃 and 𝑄 be sets of extended states. Then

|=HL {𝑃} 𝐶 {𝑄} ≜ (∀𝜑 ∈ 𝑃. ∀𝜎′. ⟨𝐶, 𝜑𝑃⟩ → 𝜎′ ⇒ (𝜑𝐿 , 𝜎′) ∈ 𝑄)

This definition reflects the standard partial-correctness meaning of Hoare
triples: executing 𝐶 in some initial state that satisfies 𝑃 can only lead to a
final state that satisfies 𝑄. This meaning can be expressed as a program
hyperproperty as defined in Definition 5.3.6:

Proposition A.3.1 HL triples express hyperproperties.
Given sets of extended states 𝑃 and 𝑄, there exists a hyperproperty H such

that, for all commands 𝐶, 𝐶 ∈ H iff |=HL {𝑃} 𝐶 {𝑄}.

Proof. We define

H≜ {𝐶 | ∀𝜑 ∈ 𝑃. ∀𝜎′. (𝜑𝑃 , 𝜎′) ∈ Σ(𝐶) ⇒ (𝜑𝐿 , 𝜎′) ∈ 𝑄}

and prove ∀𝐶. 𝐶 ∈ H⇐⇒|=HL {𝑃} 𝐶 {𝑄}.

This proposition together with completeness of Hyper Hoare Logic
(Theorem 5.4.2) implies the existence of a proof in Hyper Hoare Logic for
every valid classical Hoare triple. But there is an even stronger connection:
we can map any assertion in classical Hoare logic to a hyper-assertion in
Hyper Hoare Logic, which suggests a direct translation from classical
Hoare logic to Hyper Hoare Logic.
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The assertions 𝑃 and 𝑄 of a valid Hoare triple characterize all initial and
all final states of executing a command 𝐶. Consequently, they represent
upper bounds on the possible initial and final states. We can use this
observation to map classical Hoare triples to hyper-triples by interpreting
their pre- and postconditions as upper bounds on sets of states.

Proposition A.3.2 Expressing HL in Hyper Hoare Logic.
Let 𝑃 ≜ (𝜆𝑆. 𝑆 ⊆ 𝑃).
Then |=HL {𝑃} 𝐶 {𝑄} iff |=[𝑃] 𝐶 [𝑄].

Equivalently, |=HL {𝑃} 𝐶 {𝑄} iff |=[∀⟨𝜑⟩. 𝜑 ∈ 𝑃] 𝐶 [∀⟨𝜑⟩. 𝜑 ∈ 𝑄].

This proposition implies that some rules of Hyper Hoare Logic have a
direct correspondence in HL. For example, the rule Seq instantiated with
𝑃, 𝑅, and𝑄 directly corresponds to the sequential composition rule from
HL. Moreover, the upper-bound operator distributes over ⊗ and

⊗
, since

𝐴 ⊗ 𝐵 = 𝐴 ∪ 𝐵, and
⊗

𝑖 𝐹𝑖 =
⋃
𝑖 𝐹(𝑖). Consequently, we can for example

easily derive in Hyper Hoare Logic the classic while-rule from HL, using
the rule Iter from Figure 5.2. Moreover, as HL can be encoded using
syntactic hyper-assertions, we can also derive HL’s rules for assignments
and assume statements from HHl’s syntactic rules (Section 5.5).

𝑘 executions

Many extensions of HL have been proposed to deal with hyperproperties
of 𝑘 executions. As a representative of this class of logics, we relate
Cartesian Hoare Logic [88] to Hyper Hoare Logic. To define the meaning of
Cartesian Hoare Logic triples, we first lift our semantic relation → from
one execution on states to 𝑘 executions on extended states.

Definition A.3.2 Big-step semantics for 𝑘 executions.
Let 𝑘 ∈ ℕ. We write

▶
#»

𝜑 to represent the 𝑘-tuple of extended states (𝜑1 , . . . , 𝜑𝑘),
▶ ∀#»

𝜑 to represent ∀𝜑1 , . . . , 𝜑𝑘 ,
▶ ∃ #»

𝜑 to represent ∃𝜑1 , . . . , 𝜑𝑘 ,
▶ ∀⟨ #»

𝜑⟩ to represent ∀⟨𝜑1⟩, . . . , ⟨𝜑𝑘⟩,
▶ ∃⟨ #»

𝜑⟩ to represent ∃⟨𝜑1⟩, . . . , ⟨𝜑𝑘⟩,

Moreover, we define the relation

𝑘→ as

⟨𝐶, #»

𝜑⟩ 𝑘→ # »

𝜑′ ≜ (∀𝑖 ∈ [1, 𝑘]. ⟨𝐶, 𝜑𝑖𝑃⟩ → 𝜑′
𝑖
𝑃 ∧ 𝜑𝑖

𝐿 = 𝜑′
𝑖
𝐿)

Definition A.3.3 Cartesian Hoare Logic (CHL).
Let 𝑘 ∈ ℕ, and let 𝑃 and 𝑄 be sets of 𝑘-tuples of extended states. Then

|=
CHL(k) {𝑃} 𝐶 {𝑄} ≜(∀#»

𝜑 ∈ 𝑃. ∀# »

𝜑′. ⟨𝐶, #»

𝜑⟩ 𝑘→ # »

𝜑′ ⇒ # »

𝜑′ ∈ 𝑄)

|=
CHL(k) {𝑃} 𝐶 {𝑄} is valid iff executing 𝐶 𝑘 times in 𝑘 initial states that

together satisfy 𝑃 can only lead to 𝑘 final states that together satisfy 𝑄.
This meaning can be expressed as a program hyperproperty:
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Proposition A.3.3 CHL triples express hyperproperties.
Given sets of 𝑘-tuples of extended states 𝑃 and𝑄, there exists a hyperproperty

H such that, for all commands 𝐶, 𝐶 ∈ H⇐⇒|=
CHL(k) {𝑃} 𝐶 {𝑄}.

Proof. We define

H≜ {𝐶 | ∀#»

𝜑 ∈ 𝑃. ∀# »

𝜑′. (∀𝑖 ∈ [1, 𝑘]. 𝜑𝐿𝑖 = 𝜑′𝐿
𝑖 ∧ (𝜑𝑃𝑖 , 𝜑′𝑃

𝑖 ) ∈ Σ(𝐶)) ⇒ # »

𝜑′ ∈ 𝑄}

and prove ∀𝐶. 𝐶 ∈ H⇐⇒|=
CHL(k) {𝑃} 𝐶 {𝑄}.

Like we did for Hoare Logic, we can provide a direct translation from
CHL triples to hyper-triples in our logic. Similarly to HL, CHL as-
sertions express upper bounds, here on sets of 𝑘-tuples. However,
simply using upper bounds as in Proposition A.3.2 does not capture
the full expressiveness of CHL because executions in CHL are distin-

guishable. For example, one can express monotonicity from 𝑥 to 𝑦 as
|=

CHL(k) {𝑥(1) ≥ 𝑥(2)} y B x {𝑦(1) ≥ 𝑦(2)}. When going from (ordered)
tuples of states in CHL to (unordered) sets of states in Hyper Hoare Logic,
we need to identify which state in the set of final states corresponds to
execution 1, and which state corresponds to execution 2. As we did in
Section 5.7.2 to express monotonicity, we use a logical variable 𝑡 to tag a
state with the number 𝑖 of the execution it corresponds to.

Proposition A.3.4 Expressing CHL in Hyper Hoare Logic.
Let

𝑃′ ≜ (∀⟨ #»

𝜑⟩. 𝜑𝐿1 (𝑡) = 1 ⇒ . . . ⇒ 𝜑𝐿
𝑘
(𝑡) = 𝑘 ⇒ #»

𝜑 ∈ 𝑃)
𝑄′ ≜ (∀⟨ #»

𝜑⟩. 𝜑𝐿1 (𝑡) = 1 ⇒ . . . ⇒ 𝜑𝐿
𝑘
(𝑡) = 𝑘 ⇒ #»

𝜑 ∈ 𝑄)

where 𝑡 does not occur free in 𝑃 or 𝑄. Then

|=
CHL(k) {𝑃} 𝐶 {𝑄} ⇐⇒ |=[𝑃′] 𝐶 [𝑄′]

As an example, we can express the CHL assertion 𝑦(1) ≥ 𝑦(2) as the
hyper-assertion

∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑𝐿1 (𝑡) = 1 ⇒ 𝜑𝐿2 (𝑡) = 2 ⇒ 𝜑𝑃1 (𝑦) ≥ 𝜑𝑃2 (𝑦)

Such translations provide a direct way of representing CHL proofs in
Hyper Hoare Logic.

CHL, like Hyper Hoare Logic, can reason about multiple executions of
a single command 𝐶, which is sufficient for many practically-relevant
hyperproperties such as non-interference or determinism. Other logics,
such as Relational Hoare Logic [103], relate the executions of multiple
(potentially different) commands, for instance, to prove program equiv-
alence. In case these commands are all the same, triples of relational
logics can be translated to Hyper Hoare Logic analogously to CHL. We
explain how to encode relational properties relating different commands
to Hyper Hoare Logic in Section A.3.3.
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Unboundedly many executions

To the best of our knowledge, all existing overapproximate Hoare logics
consider a fixed number 𝑘 of executions. In contrast, Hyper Hoare Logic
can reason about an unbounded number of executions, as illustrated
in the extended version of Chapter 5 [207]. Moreover, since our hyper-
assertions are functions of potentially-infinite sets of states, Hyper Hoare
Logic can even express properties of infinitely-many executions, as we
illustrate in Section A.3.3.

A.3.2. Underapproximate Hoare Logics

Several recent Hoare logics allow proving the existence of certain (combi-
nations of) program executions, which is useful, for instance, to disprove
a specification, that is, to demonstrate that a program definitely has a
bug. These logics underapproximate the set of possible (combinations of)
executions. In this subsection, we discuss two forms of underapproximate

logics, backward underapproximate and forward underapproximate, and show
that both can be expressed in Hyper Hoare Logic.

Backward underapproximation

Reverse Hoare Logic [106] and Incorrectness Logic [89] are both underap-
proximate logics. Reverse Hoare Logic is designed to reason about the
reachability of good final states. Incorrectness Logic uses the same ideas
to prove the presence of bugs in programs. We focus on Incorrectness
Logic in the following, but our results also apply to Reverse Hoare Logic.
Incorrectness Logic reasons about single program executions:

Definition A.3.4 Incorrectness Logic (IL).
Let 𝑃 and 𝑄 be sets of extended states. Then

|=IL {𝑃} 𝐶 {𝑄} ≜ (∀𝜑 ∈ 𝑄.∃𝜎. (𝜑𝐿 , 𝜎) ∈ 𝑃 ∧ ⟨𝐶, 𝜎⟩ → 𝜑𝑃)

The meaning of IL triples is defined backward from the postcondition: any
state that satisfies the postcondition 𝑄 can be reached by executing 𝐶
in an initial state that satisfies the precondition 𝑃. This meaning can be
expressed as a program hyperproperty:

Proposition A.3.5 IL triples express hyperproperties.
Given sets of extended states 𝑃 and 𝑄, there exists a hyperproperty H such

that, for all commands 𝐶, 𝐶 ∈ H iff |=IL {𝑃} 𝐶 {𝑄}.

Proof. We define

H≜ {𝐶 | ∀𝜑 ∈ 𝑄.∃𝜎. (𝜑𝐿 , 𝜎) ∈ 𝑃 ∧ (𝜎, 𝜑𝑃) ∈ Σ(𝐶)}

and prove ∀𝐶. 𝐶 ∈ H⇐⇒|=IL {𝑃} 𝐶 {𝑄}.
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Hoare Logic shows the absence of executions by overapproximating
the set of possible executions, whereas Incorrectness Logic shows the
existence of executions by underapproximating it. This duality also leads
to an analogous translation of IL judgments into Hyper Hoare Logic,
which uses lower bounds on the set of executions instead of the upper
bounds used in Proposition A.3.2.

Proposition A.3.6 Expressing IL in Hyper Hoare Logic.
Let 𝑃 ≜ (𝜆𝑆. 𝑃 ⊆ 𝑆). Then |=IL {𝑃} 𝐶 {𝑄} iff |=[𝑃] 𝐶 [𝑄].

Equivalently, |=IL {𝑃} 𝐶 {𝑄} iff |=[∀𝜑 ∈ 𝑃. ⟨𝜑⟩] 𝐶 [∀𝜑 ∈ 𝑄. ⟨𝜑⟩].

Analogous to the upper bounds for HL, the lower-bound operator
distributes over ⊗ and

⊗
: 𝐴 ⊗ 𝐵 = 𝐴 ∪ 𝐵 and

⊗
𝑖 𝐹𝑖 =

⋃
𝑖 𝐹(𝑖). Using

the latter equality with the rules While and Cons, it is easy to derive the
loop rules from both Incorrectness Logic and Reverse Hoare Logic.

Murray [107] has recently proposed an underapproximate logic based
on IL that can reason about two executions of two (potentially different)
programs, for instance, to prove that a program violates a hyperproperty
such as non-interference. We use the name 2-Incorrectness Logic for the
restricted version of this logic where the two programs are the same (and
discuss relational properties between different programs in Section A.3.3).
The meaning of triples in 𝑘-Incorrectness Logic is also defined backward.
They express that, for any pair of final states (𝜑′

1 , 𝜑
′
2) that together satisfy

a relational postcondition, there exist two initial states 𝜑1 and 𝜑2 that
together satisfy the relational precondition, and executing command 𝐶 in
𝜑1 (resp. 𝜑2) leads to 𝜑′

1 (resp. 𝜑′
2). Our formalization lifts this meaning

from 2 to 𝑘 executions (and thus to 𝑘-Incorrectness Logic):

Definition A.3.5 𝑘-Incorrectness Logic (𝑘-IL).
Let 𝑘 ∈ ℕ, and 𝑃 and 𝑄 be sets of 𝑘-tuples of extended states. Then

|=k−IL {𝑃} 𝐶 {𝑄} ≜ (∀# »

𝜑′ ∈ 𝑄.∃ #»

𝜑 ∈ 𝑃. ⟨𝐶, #»

𝜑⟩ 𝑘→ # »

𝜑′)

Again, this meaning is a hyperproperty:

Proposition A.3.7 𝑘-IL triples express hyperproperties.
Given sets of 𝑘-tuples of extended states 𝑃 and𝑄, there exists a hyperproperty

H such that, for all commands 𝐶, 𝐶 ∈ H⇐⇒|=k−IL {𝑃} 𝐶 {𝑄}.

Proof. We define

H≜ {𝐶 | ∀# »

𝜑′ ∈ 𝑄.∃ # »

𝜑′ ∈ 𝑃. (∀𝑖 ∈ [1, 𝑘]. 𝜑𝐿𝑖 = 𝜑′𝐿
𝑖 ∧ (𝜑𝑃𝑖 , 𝜑′𝑃

𝑖 ) ∈ Σ(𝐶))}

and prove ∀𝐶. 𝐶 ∈ H⇐⇒|=k−IL {𝑃} 𝐶 {𝑄}.

Together with Theorem 5.3.2, this implies that we can express any 𝑘-IL
triple as hyper-triple in Hyper Hoare Logic. However, defining a direct
translation of 𝑘-IL triples to hyper-triples is surprisingly tricky. In particu-
lar, it is not sufficient to apply the transformation from Proposition A.3.4,
which uses a logical variable 𝑡 to tag each state with the number of the
execution it belongs to. This approach works for Cartesian Hoare Logic
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because CHL and Hyper Hoare Logic are both forward logics (see Defi-
nition 5.3.5 and Definition A.3.3). Intuitively, this commonality allows
us to identify corresponding tuples from the preconditions in the two
logics and relate them to corresponding tuples in the postconditions.

However, since 𝑘-IL is a backward logic, the same approach is not sufficient
to identify corresponding tuples. For two states 𝜑′

1 and 𝜑′
2 from the set of

final states, we know through the tag variable 𝑡 to which execution they
belong, but not whether they originated from one tuple (𝜑1 , 𝜑2) ∈ 𝑃, or
from two unrelated tuples.

To solve this problem, we use another logical variable 𝑢, which records
the “identity” of the initial 𝑘-tuple that satisfies 𝑃. To avoid cardinality
issues, we define the encoding under the assumption that 𝑃 depends
only on program variables. Consequently, there are at most |PStates

𝑘 |
such 𝑘-tuples, which we can represent as logical values if the cardinality
of LVals is at least the cardinality of PStates

𝑘 , as shown by the following
result:

Proposition A.3.8 Expressing 𝑘-IL in Hyper Hoare Logic.
Let 𝑡 , 𝑢 be distinct variables in LVars and

𝑃′ ≜ (∀#»

𝜑 ∈ 𝑃.𝜑𝐿1 (𝑡) = 1 ⇒ . . . ⇒ 𝜑𝐿
𝑘
(𝑡) = 𝑘

⇒(∃𝑣. ⟨𝜑1[𝑢 ↦→ 𝑣]⟩ ∧ . . . ∧ ⟨𝜑𝑘[𝑢 ↦→ 𝑣]⟩))
𝑄′ ≜ (∀# »

𝜑′ ∈ 𝑄.𝜑𝐿1 (𝑡) = 1 ⇒ . . . ⇒ 𝜑𝐿
𝑘
(𝑡) = 𝑘

⇒(∃𝑣. ⟨𝜑′
1[𝑢 ↦→ 𝑣]⟩ ∧ . . . ∧ ⟨𝜑′

𝑘[𝑢 ↦→ 𝑣]⟩))

If (1) 𝑃 depends only on program variables, (2) the cardinality of LVals is at

least the cardinality of PStates
𝑘
, and (3) 𝑡 , 𝑢 do not occur free in 𝑃 or𝑄, then

|=k−IL {𝑃} 𝐶 {𝑄} ⇐⇒ |=[𝑃′] 𝐶 [𝑄′].

This proposition provides a direct translation for some 𝑘-IL triples into
hyper-triples. Those that cannot be translated directly can still be verified
with Hyper Hoare Logic, according to Proposition A.3.7.

Forward underapproximation

Underapproximate logics can also be formulated in a forward way: Exe-
cuting command 𝐶 in any state that satisfies the precondition reaches at
least one final state that satisfies the postcondition. Forward underapproxi-

mation, sometimes also called Lisbon Logic, has recently been explored in
both Outcome Logic [102], a Hoare logic whose goal is to unify correctness
(in the sense of classical Hoare logic) and incorrectness reasoning (in the
sense of forward underapproximation) for single program executions,
and in Sufficient Incorrectness Logic (SIL) [214].

Forward underapproximation for single executions, which corresponds
to SIL, can be formalized as follows:

Definition A.3.6 Sufficient Incorrectness Logic (SIL).
Let 𝑃 and 𝑄 be sets of extended states. Then

|=SIL {𝑃} 𝐶 {𝑄} ≜
(
∀𝜑 ∈ 𝑃.∃𝜎′. ⟨𝐶, 𝜑𝑃⟩ → 𝜎′ ∧ (𝜑𝐿 , 𝜎′) ∈ 𝑄

)
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This meaning can be expressed in Hyper Hoare Logic as follows: If we
execute 𝐶 in a set of initial states that contains at least one state from 𝑃

then the set of final states will contain at least one state in 𝑄.

Proposition A.3.9 Expressing SIL in Hyper Hoare Logic.

|=SIL {𝑃} 𝐶 {𝑄} ⇐⇒ |= [𝜆𝑆. 𝑃 ∩ 𝑆 ≠ ∅] 𝐶 [𝜆𝑆. 𝑄 ∩ 𝑆 ≠ ∅]

Equivalently, |=SIL {𝑃} 𝐶 {𝑄} iff |= [∃⟨𝜑⟩. 𝜑 ∈ 𝑃] 𝐶 [∃⟨𝜑⟩. 𝜑 ∈ 𝑄].

The precondition (resp. postcondition) states that the intersection between
𝑆 and 𝑃 (resp. 𝑄) is non-empty. If instead it required that 𝑆 is a non-

empty subset of 𝑃 (resp. 𝑄), it would express the meaning of Outcome
Logic triples, i.e., the conjunction of classical Hoare Logic and forward
underapproximation.

While SIL reasons about single executions only, it is straightforward to
generalize forward underapproximation to multiple executions:

Definition A.3.7 𝑘-Forward Underapproximation (𝑘-FU).
Let 𝑘 ∈ ℕ, and let 𝑃 and 𝑄 be sets of 𝑘-tuples of extended states. Then

|=k−FU {𝑃} 𝐶 {𝑄} ≜ (∀#»

𝜑 ∈ 𝑃.∃ # »

𝜑′ ∈ 𝑄. ⟨𝐶, #»

𝜑⟩ 𝑘→ # »

𝜑′)

Again, this meaning can be expressed as a hyperproperty:

Proposition A.3.10 𝑘-FU triples express hyperproperties.
Given sets of 𝑘-tuples of extended states 𝑃 and𝑄, there exists a hyperproperty

H such that, for all commands 𝐶, 𝐶 ∈ H⇐⇒|=k−FU {𝑃} 𝐶 {𝑄}.

Proof. We define

H≜ {𝐶 | ∀#»

𝜑 ∈ 𝑃.∃ # »

𝜑′ ∈ 𝑄. (∀𝑖 ∈ [1, 𝑘]. 𝜑𝐿𝑖 = 𝜑′𝐿
𝑖 ∧ (𝜑𝑃𝑖 , 𝜑′𝑃

𝑖 ) ∈ Σ(𝐶))}

and prove ∀𝐶. 𝐶 ∈ H⇐⇒|=k−FU {𝑃} 𝐶 {𝑄}.

Since SIL corresponds exactly to 𝑘-FU for 𝑘 = 1, this proposition applies
also to SIL.

Because 𝑘-FU is forward underapproximate, we can use the tagging
from Proposition A.3.4 to translate 𝑘-FU triples into hyper-triples. The
following encoding intuitively corresponds to the precondition (𝑆1 ×
. . . × 𝑆𝑘) ∩ 𝑃 ≠ ∅ and the postcondition (𝑆1 × . . . × 𝑆𝑘) ∩𝑄 ≠ ∅, where
𝑆𝑖 corresponds to the set of states with 𝑡 = 𝑖:

Proposition A.3.11 Expressing 𝑘-FU in Hyper Hoare Logic.
Let

𝑃′ ≜ (∃⟨ #»

𝜑⟩. 𝜑𝐿1 (𝑡) = 1 ∧ . . . ∧ 𝜑𝐿
𝑘
(𝑡) = 𝑘 ∧ #»

𝜑 ∈ 𝑃)
𝑄′ ≜ (∃⟨ #»

𝜑⟩. 𝜑𝐿1 (𝑡) = 1 ∧ . . . ∧ 𝜑𝐿
𝑘
(𝑡) = 𝑘 ∧ #»

𝜑 ∈ 𝑄)



A. Appendix 194

[96]: Dickerson et al. (2022), RHLE

[240]: Abadi et al. (1991), The Existence of

Refinement Mappings

If 𝑡 does not occur free in 𝑃 or 𝑄, then

|=k−FU {𝑃} 𝐶 {𝑄} ⇐⇒ |=[𝑃′] 𝐶 [𝑄′]

A.3.3. Beyond Over- and Underapproximation

In the previous subsections, we have discussed overapproximate logics,
which reason about all executions, and underapproximate logics, which
reason about the existence of executions. In this subsection, we explore
program hyperproperties that combine universal and existential quan-
tification, as well as properties that apply other comprehensions to the
set of executions. We also discuss relational properties about multiple
programs (such as program equivalence).

∀∗∃∗-hyperproperties

Generalized non-interference (see Section 5.2.3) intuitively expresses that
for each execution that produces a given observable output, there exists
another execution that produces the same output using any other secret.
That is, observing the output does not reveal any information about the
secret. GNI is a hyperproperty that cannot be expressed in existing over- or
underapproximate Hoare logics. It mandates the existence of an execution
based on other possible executions, whereas underapproximate logics can
show only the existence of (combinations of) executions that satisfy
some properties, independently of the other possible executions. Generalized
non-interference belongs to a broader class of ∀∗∃∗-hyperproperties.

RHLE [96] is a Hoare-style relational logic that has been recently proposed
to verify ∀∗∃∗-relational properties, such as program refinement [240].
We call the special case of RHLE where triples specify properties of
multiple executions of the same command k-Universal Existential; we can
formalize its triples as follows:

Definition A.3.8 k-Universal Existential (k-UE).
Let 𝑘1 , 𝑘2 ∈ ℕ, and let 𝑃 and 𝑄 be sets of (𝑘1 + 𝑘2)-tuples of extended states.

Then

|=
k−UE(k1 ,k2) {𝑃} 𝐶 {𝑄} ≜ (∀( #»

𝜑 ,
#»

𝛾 ) ∈ 𝑃. ∀# »

𝜑′. ⟨𝐶, #»

𝜑⟩ 𝑘1→ # »

𝜑′

⇒(∃ #»

𝛾′. ⟨𝐶, #»

𝛾 ⟩ 𝑘2→ #»

𝛾′ ∧ ( # »

𝜑′,
#»

𝛾′) ∈ 𝑄))

Given 𝑘1 + 𝑘2 initial states 𝜑1 , . . . , 𝜑𝑘1 and 𝛾1 , . . . , 𝛾𝑘2 that together
satisfy the precondition 𝑃, for any final states 𝜑′

1 , . . . , 𝜑
′
𝑘1

that can be
reached by executing 𝐶 in the initial states 𝜑1 , . . . , 𝜑𝑘1 , there exist 𝑘2
final states 𝛾′

1 , . . . , 𝛾
′
𝑘2

that can be reached by executing 𝐶 in the initial
states 𝛾1 , . . . , 𝛾𝑘2 , such that 𝜑′

1 , . . . , 𝜑
′
𝑘1
, 𝛾′

1 , . . . , 𝛾
′
𝑘2

together satisfy the
postcondition 𝑄.

The properties expressed by k-UE assertions are hyperproperties:

Proposition A.3.12 k-UE triples express hyperproperties.
Given sets of (𝑘1 + 𝑘2)-tuples of extended states 𝑃 and 𝑄, there exists a
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hyperproperty H such that, for all commands 𝐶,

𝐶 ∈ H⇐⇒|=
k−UE(k1 ,k2) {𝑃} 𝐶 {𝑄}

Proof. We define

H≜ {𝐶 |∀( #»

𝜑 ,
#»

𝛾 ) ∈ 𝑃. ∀# »

𝜑′.
(
∀𝑖 ∈ [1, 𝑘1]. (𝜑𝑃𝑖 , 𝜑′𝑃

𝑖 ) ∈ Σ(𝐶) ∧ 𝜑𝐿𝑖 = 𝜑′𝐿
𝑖

)
⇒∃ #»

𝛾′. ( # »

𝜑′,
#»

𝛾′) ∈ 𝑄 ∧ (∀𝑖 ∈ [1, 𝑘2]. (𝛾𝑃𝑖 , 𝛾′𝑃
𝑖 ) ∈ Σ(𝐶) ∧ 𝛾𝐿𝑖 = 𝛾′𝐿

𝑖 )}

and prove ∀𝐶. 𝐶 ∈ H⇐⇒|=
k−UE(k1 ,k2) {𝑃} 𝐶 {𝑄}.

They can be directly expressed in Hyper Hoare Logic, as follows:

Proposition A.3.13 Expressing k-UE in Hyper Hoare Logic.
Let 𝑡 , 𝑢 be distinct variables in LVars, and

𝑇𝑛 ≜(𝜆
#»

𝜑 . ∀𝑖 ∈ [1, 𝑘𝑛]. ⟨𝜑𝑖⟩ ∧ 𝜑𝑖(𝑡) = 𝑖 ∧ 𝜑𝑖(𝑢) = 𝑛)
𝑃′ ≜(∀𝑖.∃⟨𝜑⟩. 𝜑𝐿(𝑡) = 𝑖 ∧ 𝜑𝐿(𝑢) = 2)

∧(∀#»

𝜑 ,
#»

𝛾 . 𝑇1(
#»

𝜑) ∧ 𝑇2(
#»

𝛾 ) ⇒ ( #»

𝜑 ,
#»

𝛾 ) ∈ 𝑃)
𝑄′ ≜(∀# »

𝜑′. 𝑇1(𝜑′) ⇒ (∃ #»

𝛾′. 𝑇2(
#»

𝛾′) ∧ ( # »

𝜑′,
#»

𝛾′) ∈ 𝑄))

where 𝑡 , 𝑢 do not occur free in 𝑃 or 𝑄. Then

|=
k−UE(k1 ,k2) {𝑃} 𝐶 {𝑄} ⇐⇒ |=[𝑃′] 𝐶 [𝑄′]

This proposition borrows ideas from the translations of other logics we
saw earlier. In particular, we use a logical variable 𝑡 to tag the executions,
and an additional logical variable 𝑢 that indicates whether a state is
universally (𝑢 = 1) or existentially (𝑢 = 2) quantified.

∃∗∀∗-hyperproperties

To the best of our knowledge, no existing Hoare logic can express ∃∗∀∗-
hyperproperties, i.e., the existence of executions in relation to all other
executions. As shown by the example in Section 5.5,∃∗∀∗-hyperproperties
naturally arise when disproving a ∀∗∃∗-hyperproperty (such as GNI),
where the existential part can be thought of as a counter-example, and the
universal part as the proof that this is indeed a counter-example. The exis-
tence of a minimum for a function computed by a command 𝐶 is another
simple example of an ∃∗∀∗-property, as illustrated in Section 5.6.3.

Properties using other comprehensions

Some interesting program hyperproperties cannot be expressed by quan-
tifying over states, but require other comprehensions over the set of
states, such as counting or summation. As an example, the hyperprop-
erty “there are exactly 𝑛 different possible outputs for any given input”
cannot be expressed by quantifying over the states, but requires counting
(see the extended version of Chapter 5 [207]). Other examples of such
hyperproperties include statistical properties about a program:
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[123]: Barthe et al. (2011), Relational Verifi-

cation Using Product Programs

[125]: Barthe et al. (2013), Beyond 2-Safety

[240]: Abadi et al. (1991), The Existence of

Refinement Mappings

[207]: Dardinier et al. (2024), Hyper Hoare

Logic

Example A.3.1 Mean number of requests.
Consider a command 𝐶 that, given some input 𝑥, retrieves and returns
information from a database. At the end of the execution of 𝐶, variable
𝑛 contains the number of database requests that were performed.
If the input values are uniformly distributed (and with a suitable
precondition 𝑃), then the following hyper-triple expresses that the
average number of requests performed by 𝐶 is at most 2:

[𝑃] 𝐶 [𝜆𝑆.mean
𝑥
𝑛({𝜑𝑃 | 𝜑 ∈ 𝑆}) ≤ 2]

where mean
𝑥
𝑛 computes the average (using a suitable definition for the

average if the set is infinite) of the value of 𝑛.

To the best of our knowledge, Hyper Hoare Logic is the only Hoare logic
that can prove this property; existing logics neither support reasoning
about mean-comprehensions over multiple execution states nor reasoning
about infinitely many executions at the same time (which is necessary if
the domain of input 𝑥 is infinite).

Relational program properties

Relational program properties typically relate executions of several differ-

ent programs and, thus, do not correspond to program hyperproperties
as defined in Definition 5.3.6. However, it is possible to construct a
single product program [123, 125] that encodes the executions of several
given programs, such that relational properties can be expressed as
hyperproperties of the constructed program and proved in Hyper Hoare
Logic.

We illustrate this approach on program refinement [240]. A command
𝐶2 refines a command 𝐶1 iff the set of pairs of pre- and post-states
of 𝐶2 is a subset of the corresponding set of 𝐶1. Program refinement
is a ∀∃-property, where the ∀ and the ∃ apply to different programs.
To encode refinement, we construct a new product program that non-
deterministically executes either 𝐶1 or 𝐶2, and we track in a logical
variable 𝑡 which command was executed. This encoding allows us to
express and prove refinement in Hyper Hoare Logic:

Example A.3.2 Expressing program refinement in Hyper Hoare Logic.
Let 𝐶 ≜ (t B 1; 𝐶1) + (t B 2; 𝐶2). If 𝑡 does not occur free in 𝐶1 or 𝐶2
then 𝐶2 refines 𝐶1 iff

|=[𝜆𝑆. |𝑆| = 1] 𝐶 [∀⟨𝜑⟩. 𝜑𝑃(𝑡) = 2 ⇒ ⟨(𝜑𝐿 , 𝜑𝑃[𝑡 B 1])⟩]

This example illustrates the general methodology to transform a relational
property over different programs into an equivalent hyperproperty for
a new product program, and thus to reason about relational program
properties in Hyper Hoare Logic. Relational logics typically provide
rules that align and relate parts of the different program executions; we
present such a rule for Hyper Hoare Logic in the extended version of
Chapter 5 [207].
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This section demonstrated that hyper-triples (and thus HHL) is suffi-
ciently expressive to prove and disprove arbitrary program hyperproper-
ties as defined in Definition 5.3.6. Thereby, it captures hyperproperties
that are beyond the reach of existing Hoare logics.
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A.4. Examples of Derivations in HHL

A.4.1. Monotonicity of the Fibonacci Sequence

In this subsection, we show the proof that the program 𝐶fib, described in
Example 5.2.3, is monotonic. Precisely, we prove the triple

[∀⟨𝜑1⟩,⟨𝜑2⟩. 𝜑1(𝑡)=1∧𝜑2(𝑡)=2⇒𝜑1(𝑛)≥𝜑2(𝑛)]
𝐶fib

[∀⟨𝜑1⟩,⟨𝜑2⟩. 𝜑1(𝑡)=1∧𝜑2(𝑡)=2⇒𝜑1(𝑎)≥𝜑2(𝑎)]

using the rule While-∀∗∃∗ with the loop invariant

𝐼 ≜□(𝑏≥𝑎≥0) ∧ (∀⟨𝜑1⟩,⟨𝜑2⟩. 𝜑1(𝑡)=1 ∧ 𝜑2(𝑡)=2
⇒(𝜑1(𝑛)−𝜑1(𝑖)≥𝜑2(𝑛)−𝜑2(𝑖) ∧ 𝜑1(𝑎)≥𝜑2(𝑎) ∧ 𝜑1(𝑏)≥𝜑2(𝑏)))

{
∀⟨𝜑1⟩,⟨𝜑2⟩. 𝜑1(𝑡)=1∧𝜑2(𝑡)=2⇒𝜑1(𝑛)≥𝜑2(𝑛)

}{
(∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1(𝑡)=1∧𝜑2(𝑡)=2 ⇒ (𝜑1(𝑛)−0 ≥ 𝜑2(𝑛)−0 ∧ 0 ≥ 0 ∧ 1 ≥ 1)) ∧ □(1 ≥ 𝑎 ≥ 0)

}
(Cons)

a B 0;{
(∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1(𝑡)=1∧𝜑2(𝑡)=2 ⇒ (𝜑1(𝑛)−0 ≥ 𝜑2(𝑛)−0 ∧ 𝜑1(𝑎) ≥ 𝜑2(𝑎) ∧ 1 ≥ 1)) ∧ □(1 ≥ 𝑎 ≥ 0)

}
(AssignS)

b B 1;{
(∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1(𝑡)=1∧𝜑2(𝑡)=2 ⇒ (𝜑1(𝑛)−0 ≥ 𝜑2(𝑛)−0 ∧ 𝜑1(𝑎) ≥ 𝜑2(𝑎) ∧ 𝜑1(𝑏) ≥ 𝜑2(𝑏))) ∧ □(𝑏 ≥ 𝑎 ≥ 0)

}
(AssignS)

i B 0;{
(∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1(𝑡)=1∧𝜑2(𝑡)=2 ⇒ (𝜑1(𝑛)−𝜑1(𝑖) ≥ 𝜑2(𝑛)−𝜑2(𝑖) ∧ 𝜑1(𝑎) ≥ 𝜑2(𝑎) ∧ 𝜑1(𝑏) ≥ 𝜑2(𝑏))) ∧ □(𝑏 ≥ 𝑎 ≥ 0)

}
(AssignS)

Figure A.4.: First part of the proof, which proves that the loop invariant 𝐼 holds before the loop.

Figure A.4 shows the (trivial) first part of the proof, which proves that the
loop invariant 𝐼 holds before the loop, and Figure A.5 shows the proof
of ⊢ [𝐼] if (𝑖 < 𝑛) {𝐶𝑏𝑜𝑑𝑦} [𝐼], the first premise of the rule While-∀∗∃∗ (the
second premise is trivial). In Figure A.5, we first record the initial values of
𝑎, 𝑏, and 𝑖 in the logical variables 𝑣𝑎 , 𝑣𝑏 , and 𝑣𝑖 , respectively, using the rule
LUpdateS presented in Section 5.7. We then split our new hyper-assertion
into a simple part, ∀⟨𝜑⟩. 𝜑(𝑖) = 𝜑(𝑣𝑖) ∧ 𝜑(𝑎) = 𝜑(𝑣𝑎) ∧ 𝜑(𝑏) = 𝜑(𝑣𝑏),
and a frame 𝐹 which stores the relevant information from the invariant
𝐼 with the initial values. The hyper-assertion 𝐹 is then framed around
the if-statement, using the rule FrameSafe from Section 5.7. The proof of
each branch is straightforward; the postconditions of the two branches
are combined via the rule Choice.

We finally conclude with the rule Choice. This last entailment is justified by
a case distinction. Let 𝜑1, 𝜑2 be two states such that 𝜑1(𝑡) = 1, 𝜑2(𝑡) = 2,
and ⟨𝜑1⟩ and ⟨𝜑2⟩ hold. From the frame 𝐹, we know that 𝜑1(𝑣𝑎) ≥ 𝜑2(𝑣𝑎),
and 𝜑1(𝑣𝑏) ≥ 𝜑2(𝑣𝑏). We conclude the proof by distinguishing the
following three cases (the proof for each case is straightforward):

1. Both 𝜑1 and 𝜑2 took the first branch of the if statement, i.e.,
𝜑1(𝑣𝑖) < 𝜑1(𝑛) and 𝜑2(𝑣𝑖) < 𝜑2(𝑛), and thus both are in the
set characterized by 𝑄1.

2. Both 𝜑1 and 𝜑2 took the second branch, i.e., 𝜑1(𝑣𝑖) ≥ 𝜑1(𝑛) and
𝜑2(𝑣𝑖) ≥ 𝜑2(𝑛), and thus both are in the set characterized by 𝑄2.
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{
∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1(𝑡)=1∧𝜑2(𝑡)=2 ⇒ (𝜑1(𝑛)−𝜑1(𝑖) ≥ 𝜑2(𝑛)−𝜑2(𝑖) ∧ 𝜑1(𝑎) ≥ 𝜑2(𝑎) ∧ 𝜑1(𝑏) ≥ 𝜑2(𝑏)) ∧ □(𝑏 ≥ 𝑎 ≥ 0)

}{
∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1(𝑡)=1∧𝜑2(𝑡)=2 ⇒ (𝜑1(𝑛)−𝜑1(𝑖) ≥ 𝜑2(𝑛)−𝜑2(𝑖) ∧ 𝜑1(𝑎) ≥ 𝜑2(𝑎) ∧ 𝜑1(𝑏) ≥ 𝜑2(𝑏)) ∧ □(𝑏 ≥ 𝑎 ≥ 0) ∧ □(𝑣𝑎 = 𝑎 ∧ 𝑣𝑏 = 𝑏 ∧ 𝑣𝑖 = 𝑖)

}
(LUpdateS)

{(∀⟨𝜑⟩. 𝜑(𝑖) = 𝜑(𝑣𝑖 ) ∧ 𝜑(𝑎) = 𝜑(𝑣𝑎 ) ∧ 𝜑(𝑏) = 𝜑(𝑣𝑏 ))
∧ (∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1(𝑡) = 1 ∧ 𝜑2(𝑡) = 2 ⇒ 𝜑1(𝑣𝑎 ) ≥ 𝜑2(𝑣𝑎 ) ≥ 0 ∧ 𝜑1(𝑣𝑏 ) ≥ 𝜑2(𝑣𝑏 ) ≥ 0 ∧ 𝜑1(𝑛) − 𝜑1(𝑣𝑖 ) ≥ 𝜑2(𝑛) − 𝜑2(𝑣𝑖 ))︸                                                                                                                                                           ︷︷                                                                                                                                                           ︸

𝐹

} (Cons)

{
∀⟨𝜑⟩. 𝜑(𝑖) = 𝜑(𝑣𝑖 ) ∧ 𝜑(𝑎) = 𝜑(𝑣𝑎 ) ∧ 𝜑(𝑏) = 𝜑(𝑣𝑏 )

}
if (∗) {{

∀⟨𝜑⟩. 𝜑(𝑖) = 𝜑(𝑣𝑖 ) ∧ 𝜑(𝑎) = 𝜑(𝑣𝑎 ) ∧ 𝜑(𝑏) = 𝜑(𝑣𝑏 )
}{

∀⟨𝜑⟩. 𝜑(𝑖) < 𝜑(𝑛) ⇒ 𝜑(𝑣𝑖 ) < 𝜑(𝑛) ∧ 𝜑(𝑖) + 1 = 𝜑(𝑣𝑖 ) + 1 ∧ 𝜑(𝑏) = 𝜑(𝑣𝑏 ) ∧ 𝜑(𝑎) + 𝜑(𝑏) = 𝜑(𝑣𝑎 ) + 𝜑(𝑣𝑏 )
}

(Cons)

assume i < n;{
∀⟨𝜑⟩. 𝜑(𝑣𝑖 ) < 𝜑(𝑛) ∧ 𝜑(𝑖) + 1 = 𝜑(𝑣𝑖 ) + 1 ∧ 𝜑(𝑏) = 𝜑(𝑣𝑏 ) ∧ 𝜑(𝑎) + 𝜑(𝑏) = 𝜑(𝑣𝑎 ) + 𝜑(𝑣𝑏 )

}
(AssumeS)

tmp B b;
b B a + b;
a B tmp;
i B i + 1

{∀⟨𝜑⟩. 𝜑(𝑣𝑖 ) < 𝜑(𝑛) ∧ 𝜑(𝑖) = 𝜑(𝑣𝑖 ) + 1 ∧ 𝜑(𝑎) = 𝜑(𝑣𝑏 ) ∧ 𝜑(𝑏) = 𝜑(𝑣𝑎 ) + 𝜑(𝑣𝑏 )︸                                                                                                   ︷︷                                                                                                   ︸
𝑄1

} (AssignS)

}
else {{

∀⟨𝜑⟩. 𝜑(𝑖) = 𝜑(𝑣𝑖 ) ∧ 𝜑(𝑎) = 𝜑(𝑣𝑎 ) ∧ 𝜑(𝑏) = 𝜑(𝑣𝑏 )
}{

∀⟨𝜑⟩. 𝜑(𝑖) ≥ 𝜑(𝑛) ⇒ 𝜑(𝑣𝑖 ) ≥ 𝜑(𝑛) ∧ 𝜑(𝑖) = 𝜑(𝑣𝑖 ) ∧ 𝜑(𝑎) = 𝜑(𝑣𝑎 ) ∧ 𝜑(𝑏) = 𝜑(𝑣𝑏 )
}

(Cons)

assume ¬(i < n)
{∀⟨𝜑⟩. 𝜑(𝑣𝑖 ) ≥ 𝜑(𝑛) ∧ 𝜑(𝑖) = 𝜑(𝑣𝑖 ) ∧ 𝜑(𝑎) = 𝜑(𝑣𝑎 ) ∧ 𝜑(𝑏) = 𝜑(𝑣𝑏 )︸                                                                                   ︷︷                                                                                   ︸

𝑄2

} (AssumeS)

}
{𝑄1 ⊗ 𝑄2} (Choice)

{(𝑄1 ⊗ 𝑄2) ∧ 𝐹} (FrameSafe){
∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1(𝑡)=1∧𝜑2(𝑡)=2 ⇒ (𝜑1(𝑛)−𝜑1(𝑖) ≥ 𝜑2(𝑛)−𝜑2(𝑖) ∧ 𝜑1(𝑎) ≥ 𝜑2(𝑎) ∧ 𝜑1(𝑏) ≥ 𝜑2(𝑏)) ∧ □(𝑏 ≥ 𝑎 ≥ 0)

}
(Cons)

Figure A.5.: Second part of the proof. This proof outline shows ⊢ [𝐼] if (𝑖 < 𝑛) {𝐶𝑏𝑜𝑑𝑦} [𝐼], the first premise of the rule While-∀∗∃, where
𝐶𝑏𝑜𝑑𝑦 refers to the body of the loop.

3. 𝜑1 took the first branch and 𝜑2 took the second branch, i.e., 𝜑1(𝑣𝑖) <
𝜑1(𝑛) and 𝜑2(𝑣𝑖) ≥ 𝜑2(𝑛), and thus 𝜑1 is in the set characterized
by 𝑄1 and 𝜑2 is in the set characterized by 𝑄2.

Importantly, the fourth case is not possible, because this would imply
𝜑2(𝑛) − 𝜑2(𝑣𝑖) > 0 ≥ 𝜑1(𝑛) − 𝜑1(𝑣𝑖), which contradicts the inequality
𝜑1(𝑛) − 𝜑1(𝑣𝑖) ≥ 𝜑2(𝑛) − 𝜑2(𝑣𝑖) from the frame 𝐹.



A. Appendix 200

A.4.2. Existence of a Minimum

This subsection contains the proof, using the rule While-∃, that the program
𝐶𝑚 from Example 5.6.5, satisfies the triple

[¬emp ∧ □(𝑘 ≥ 0)] 𝐶𝑚 [∃⟨𝜑⟩. ∀⟨𝛼⟩. 𝜑(𝑥) ≤ 𝛼(𝑥) ∧ 𝜑(𝑦) ≤ 𝛼(𝑦)]

Figure A.6 contains the (trivial) first part of the proof, which justifies that
the hyper-assertion ∃⟨𝜑⟩. 𝑃𝜑, where

𝑃𝜑 ≜ (∀⟨𝛼⟩. 0 ≤ 𝜑(𝑥) ≤ 𝛼(𝑥)∧0 ≤ 𝜑(𝑦) ≤ 𝛼(𝑦)∧𝜑(𝑘) ≤ 𝛼(𝑘)∧𝜑(𝑖) = 𝛼(𝑖))

holds before the loop, as required by the precondition of the conclusion
of the rule While-∃.

Figure A.7 shows the proof of the first premise of the rule While-∃, namely,
for all 𝑣,

[∃⟨𝜑⟩. 𝑃𝜑 ∧ 𝜑(𝑖) < 𝜑(𝑘) ∧ 𝑣 = 𝜑(𝑘) − 𝜑(𝑖)]
if (𝑖 < 𝑘) {𝐶𝑏𝑜𝑑𝑦}

[∃⟨𝜑⟩. 𝑃𝜑 ∧ 𝜑(𝑘) − 𝜑(𝑖) ≺ 𝑣]

where 𝐶𝑏𝑜𝑑𝑦 is the body of the loop.

Finally, Figure A.8 shows the proof of the second premise of the rule
While-∃. More precisely, it shows

∀𝜑. ⊢ [𝑄𝜑] if (𝑖 < 𝑘) {𝐶𝑏𝑜𝑑𝑦} [𝑄𝜑]

where
𝑄𝜑 ≜ ∀⟨𝛼⟩. 0 ≤ 𝜑(𝑥) ≤ 𝛼(𝑥) ∧ 0 ≤ 𝜑(𝑦) ≤ 𝛼(𝑦)

from which we easily derive the second premise of the rule While-∃, using
the rule Cons (since 𝑃𝜑 clearly entails 𝑄𝜑), and the rule While-∀∗∃∗.

{
¬emp ∧ □(𝑘 ≥ 0)

}{
∃⟨𝜑⟩. ∀⟨𝛼⟩. 0 ≤ 0 ≤ 0 ∧ 0 ≤ 0 ≤ 0 ∧ 𝜑(𝑘) ≤ 𝛼(𝑘) ∧ 0 = 0

}
(Cons)

x B 0;{
∃⟨𝜑⟩. ∀⟨𝛼⟩. 0 ≤ 𝜑(𝑥) ≤ 𝛼(𝑥) ∧ 0 ≤ 0 ≤ 0 ∧ 𝜑(𝑘) ≤ 𝛼(𝑘) ∧ 0 = 0

}
(AssignS)

y B 0;{
∃⟨𝜑⟩. ∀⟨𝛼⟩. 0 ≤ 𝜑(𝑥) ≤ 𝛼(𝑥) ∧ 0 ≤ 𝜑(𝑦) ≤ 𝛼(𝑦) ∧ 𝜑(𝑘) ≤ 𝛼(𝑘) ∧ 0 = 0

}
(AssignS)

i B 0;{
∃⟨𝜑⟩. ∀⟨𝛼⟩. 0 ≤ 𝜑(𝑥) ≤ 𝛼(𝑥) ∧ 0 ≤ 𝜑(𝑦) ≤ 𝛼(𝑦) ∧ 𝜑(𝑘) ≤ 𝛼(𝑘) ∧ 𝜑(𝑖) = 𝛼(𝑖)

}
(AssignS)

Figure A.6.: First part of the proof: Proving the first loop invariant ∃⟨𝜑⟩. 𝑃𝜑 .
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{
∃⟨𝜑⟩. (∀⟨𝛼⟩. 0 ≤ 𝜑(𝑥) ≤ 𝛼(𝑥) ∧ 0 ≤ 𝜑(𝑦) ≤ 𝛼(𝑦) ∧ 𝜑(𝑘) ≤ 𝛼(𝑘) ∧ 𝜑(𝑖) = 𝛼(𝑖)) ∧ 𝜑(𝑖) < 𝜑(𝑘) ∧ 𝑣 = 𝜑(𝑘)−𝜑(𝑖)

}
if (𝑖 < 𝑘) {{

∃⟨𝜑⟩. (∀⟨𝛼⟩. 0 ≤ 𝜑(𝑥) ≤ 𝛼(𝑥) ∧ 0 ≤ 𝜑(𝑦) ≤ 𝛼(𝑦) ∧ 𝜑(𝑘) ≤ 𝛼(𝑘) ∧ 𝜑(𝑖) = 𝛼(𝑖)) ∧ 𝜑(𝑖) < 𝜑(𝑘) ∧ 𝑣 = 𝜑(𝑘)−𝜑(𝑖) ∧ □(𝑖 < 𝑘)
}

{∃⟨𝜑⟩.∃𝑢. 𝑢 ≥ 2 ∧ (∀⟨𝛼⟩. ∀𝑣. 𝑣 ≥ 2 ⇒ 0 ≤ 2 ∗ 𝜑(𝑥) + 𝑢 ≤ 2 ∗ 𝛼(𝑥) + 𝑣 ∧ 0 ≤ 𝜑(𝑦) + 𝜑(𝑥) ∗ 𝑢 ≤ 𝛼(𝑦) + 𝛼(𝑥) ∗ 𝑣
∧𝜑(𝑘) ≤ 𝛼(𝑘) ∧ 𝜑(𝑖) + 1 = 𝛼(𝑖) + 1) ∧ 𝜑(𝑘)−(𝜑(𝑖)+1) ≺ 𝑣} (Cons (1))
r B nonDet();
assume r ≥ 2;
{∃⟨𝜑⟩. (∀⟨𝛼⟩. 0 ≤ 2 ∗ 𝜑(𝑥) + 𝜑(𝑟) ≤ 2 ∗ 𝛼(𝑥) + 𝛼(𝑟) ∧ 0 ≤ 𝜑(𝑦) + 𝜑(𝑥) ∗ 𝜑(𝑟) ≤ 𝛼(𝑦) + 𝛼(𝑥) ∗ 𝛼(𝑟) ∧ 𝜑(𝑘) ≤ 𝛼(𝑘) ∧ 𝜑(𝑖) + 1 = 𝛼(𝑖) + 1)
∧𝜑(𝑘)−(𝜑(𝑖)+1) ≺ 𝑣} (HavocS, AssumeS)
t B x;
x B 2 ∗ x + r;
y B y + t ∗ r;
i B i + 1{
∃⟨𝜑⟩. (∀⟨𝛼⟩. 0 ≤ 𝜑(𝑥) ≤ 𝛼(𝑥) ∧ 0 ≤ 𝜑(𝑦) ≤ 𝛼(𝑦) ∧ 𝜑(𝑘) ≤ 𝛼(𝑘) ∧ 𝜑(𝑖) = 𝛼(𝑖)) ∧ 𝜑(𝑘)−𝜑(𝑖) ≺ 𝑣

}
(AssignS)

}
else {{

∃⟨𝜑⟩. (∀⟨𝛼⟩. 0 ≤ 𝜑(𝑥) ≤ 𝛼(𝑥) ∧ 0 ≤ 𝜑(𝑦) ≤ 𝛼(𝑦) ∧ 𝜑(𝑘) ≤ 𝛼(𝑘) ∧ 𝜑(𝑖) = 𝛼(𝑖)) ∧ 𝜑(𝑖) < 𝜑(𝑘) ∧ 𝑣 = 𝜑(𝑘)−𝜑(𝑖) ∧ □(𝑖 ≥ 𝑘)
}{

∃⟨𝜑⟩. (∀⟨𝛼⟩. 0 ≤ 𝜑(𝑥) ≤ 𝛼(𝑥) ∧ 0 ≤ 𝜑(𝑦) ≤ 𝛼(𝑦) ∧ 𝜑(𝑘) ≤ 𝛼(𝑘) ∧ 𝜑(𝑖) = 𝛼(𝑖)) ∧ 𝜑(𝑘)−𝜑(𝑖) ≺ 𝑣
}

(Cons (2))

skip{
∃⟨𝜑⟩. (∀⟨𝛼⟩. 0 ≤ 𝜑(𝑥) ≤ 𝛼(𝑥) ∧ 0 ≤ 𝜑(𝑦) ≤ 𝛼(𝑦) ∧ 𝜑(𝑘) ≤ 𝛼(𝑘) ∧ 𝜑(𝑖) = 𝛼(𝑖)) ∧ 𝜑(𝑘)−𝜑(𝑖) ≺ 𝑣

}
(Skip)

}{
∃⟨𝜑⟩. (∀⟨𝛼⟩. 0 ≤ 𝜑(𝑥) ≤ 𝛼(𝑥) ∧ 0 ≤ 𝜑(𝑦) ≤ 𝛼(𝑦) ∧ 𝜑(𝑘) ≤ 𝛼(𝑘) ∧ 𝜑(𝑖) = 𝛼(𝑖)) ∧ 𝜑(𝑘)−𝜑(𝑖) ≺ 𝑣

}
(IfSync)

Figure A.7.: Second part of the proof. Proving the first premise of the rule While-∃,

∀𝑣.∃⟨𝜑⟩. ⊢ [𝑃𝜑 ∧ 𝜑(𝑖) < 𝜑(𝑘) ∧ 𝑣 = 𝜑(𝑘) − 𝜑(𝑖)] if (𝑖 < 𝑘) {𝐶𝑏𝑜𝑑𝑦} [∃⟨𝜑⟩. 𝑃𝜑 ∧ 𝜑(𝑘) − 𝜑(𝑖) ≺ 𝑣]

For Cons (1), we simply choose 𝑢 = 2. For Cons (2), we notice that 𝜑(𝑖) < 𝜑(𝑘) and □(𝑖 ≥ 𝑘) are inconsistent (this branch is not taken at
this stage), and thus the entailment trivially holds.
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{
∀⟨𝛼⟩. 0 ≤ 𝜑(𝑥) ≤ 𝛼(𝑥) ∧ 0 ≤ 𝜑(𝑦) ≤ 𝛼(𝑦)

}
if (∗) {{

∀⟨𝛼⟩. 0 ≤ 𝜑(𝑥) ≤ 𝛼(𝑥) ∧ 0 ≤ 𝜑(𝑦) ≤ 𝛼(𝑦)
}{

∀⟨𝛼⟩. 𝛼(𝑖) < 𝛼(𝑘) ⇒ ∀𝑣. 𝑣 ≥ 2 ⇒ 0 ≤ 𝜑(𝑥) ≤ 2 ∗ 𝛼(𝑥) + 𝑣 ∧ 0 ≤ 𝜑(𝑦) ≤ 𝛼(𝑦) + 𝛼(𝑥) ∗ 𝑣
}

(Cons)

assume i < k;{
∀⟨𝛼⟩. ∀𝑣. 𝑣 ≥ 2 ⇒ 0 ≤ 𝜑(𝑥) ≤ 2 ∗ 𝛼(𝑥) + 𝑣 ∧ 0 ≤ 𝜑(𝑦) ≤ 𝛼(𝑦) + 𝛼(𝑥) ∗ 𝑣

}
(AssumeS)

r B nonDet();{
∀⟨𝛼⟩. 𝛼(𝑟) ≥ 2 ⇒ 0 ≤ 𝜑(𝑥) ≤ 2 ∗ 𝛼(𝑥) + 𝛼(𝑟) ∧ 0 ≤ 𝜑(𝑦) ≤ 𝛼(𝑦) + 𝛼(𝑥) ∗ 𝛼(𝑟)

}
(HavocS)

assume r ≥ 2;{
∀⟨𝛼⟩. 0 ≤ 𝜑(𝑥) ≤ 2 ∗ 𝛼(𝑥) + 𝛼(𝑟) ∧ 0 ≤ 𝜑(𝑦) ≤ 𝛼(𝑦) + 𝛼(𝑥) ∗ 𝛼(𝑟)

}
(AssumeS)

t B x;
x B 2 ∗ x + r;
y B y + t ∗ r;
i B i + 1{
∀⟨𝛼⟩. 0 ≤ 𝜑(𝑥) ≤ 𝛼(𝑥) ∧ 0 ≤ 𝜑(𝑦) ≤ 𝛼(𝑦)

}
(AssignS)

}
else {{

∀⟨𝛼⟩. 0 ≤ 𝜑(𝑥) ≤ 𝛼(𝑥) ∧ 0 ≤ 𝜑(𝑦) ≤ 𝛼(𝑦)
}{

∀⟨𝛼⟩. 𝛼(𝑖) ≥ 𝛼(𝑘) ⇒ 0 ≤ 𝜑(𝑥) ≤ 𝛼(𝑥) ∧ 0 ≤ 𝜑(𝑦) ≤ 𝛼(𝑦)
}

(Cons)

assume i ≥ k;
skip{
∀⟨𝛼⟩. 0 ≤ 𝜑(𝑥) ≤ 𝛼(𝑥) ∧ 0 ≤ 𝜑(𝑦) ≤ 𝛼(𝑦)

}
(AssumeS, Skip)

}{
(∀⟨𝛼⟩. 0 ≤ 𝜑(𝑥) ≤ 𝛼(𝑥) ∧ 0 ≤ 𝜑(𝑦) ≤ 𝛼(𝑦)) ⊗ (∀⟨𝛼⟩. 0 ≤ 𝜑(𝑥) ≤ 𝛼(𝑥) ∧ 0 ≤ 𝜑(𝑦) ≤ 𝛼(𝑦))

}
(Choice){

∀⟨𝛼⟩. 0 ≤ 𝜑(𝑥) ≤ 𝛼(𝑥) ∧ 0 ≤ 𝜑(𝑦) ≤ 𝛼(𝑦)
}

(Cons)

Figure A.8.: Third part of the proof. This proof outline shows ∀𝜑. ⊢ [𝑄𝜑] if (𝑖 < 𝑘) {𝐶𝑏𝑜𝑑𝑦} [𝑄𝜑].
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