
ar
X

iv
:2

40
7.

20
00

2v
1

 [
cs

.P
L

]
 2

9
Ju

l 2
02

4

Formal Foundations for Translational Separation Logic
Verifiers (extended version)

THIBAULT DARDINIER, ETH Zurich, Switzerland

MICHAEL SAMMLER, ETH Zurich, Switzerland

GAURAV PARTHASARATHY, ETH Zurich, Switzerland

ALEXANDER J. SUMMERS, University of British Columbia, Canada

PETER MÜLLER, ETH Zurich, Switzerland

Program verification tools are often implemented as front-end translations of an input program into an inter-
mediate verification language (IVL) such as Boogie, GIL, Viper, or Why3. The resulting IVL program is then
verified using an existing back-end verifier. A soundness proof for such a translational verifier needs to relate
the input program and verification logic to the semantics of the IVL, which in turn needs to be connected with
the verification logic implemented in the back-end verifiers. Performing such proofs is challenging due to the
large semantic gap between the input and output programs and logics, especially for complex verification
logics such as separation logic.

This paper presents a formal framework for reasoning about translational separation logic verifiers. At
its center is a generic core IVL that captures the essence of different separation logics. We define its opera-
tional semantics and formally connect it to two different back-end verifiers, which use symbolic execution
and verification condition generation, resp. Crucially, this semantics uses angelic non-determinism to enable
the application of different proof search algorithms and heuristics in the back-end verifiers. An axiomatic
semantics for the core IVL simplifies reasoning about the front-end translation by performing essential proof
steps once and for all in the equivalence proof with the operational semantics rather than for each concrete
front-end translation.

We illustrate the usefulness of our formal framework by instantiating our core IVL with elements of Viper
and connecting it to two Viper back-ends as well as a front-end for concurrent separation logic. All our
technical results have been formalized in Isabelle/HOL, including the core IVL and its semantics, the semantics
of two back-ends for a subset of Viper, and all proofs.

1 Introduction

Many program verification tools are organized into a front-end, which encodes an input program
along with its specification and verification logic into an intermediate verification language (IVL),
and a back-end, which computes proof obligations from the IVL program and discharges them,
for instance, using an SMT solver. Examples of such translational verifiers include Civl [31] and
Dafny [33] based on the Boogie IVL [32], Creusot [18] and Frama-C [30] based on Why3 [21],
Gillian for C and JavaScript [35] and Rust [2] based onGIL [48], as well as Prusti [1] and VerCors [6]
based on Viper [38].
Developing a program verifier on top of an IVL has major engineering benefits. Most impor-

tantly, back-end verifiers, which often contain complex proof search algorithms, sophisticated op-
timizations, and functionality to communicate with solvers and to report errors, can be re-used
across different verifiers, which reduces the effort of developing a program verifier dramatically.

Authors’ Contact Information: Thibault Dardinier, ETH Zurich, Department of Computer Science, Zurich, Switzerland,
thibault.dardinier@inf.ethz.ch; Michael Sammler, ETH Zurich, Department of Computer Science, Zurich, Switzerland,
michael.sammler@inf.ethz.ch; Gaurav Parthasarathy, ETH Zurich, Department of Computer Science, Zurich, Switzer-
land, gaurav.parthasarathy@inf.ethz.ch; Alexander J. Summers, University of British Columbia, Vancouver, Canada, alex.
summers@ubc.ca; Peter Müller, ETH Zurich, Department of Computer Science, Zurich, Switzerland, peter.mueller@inf.
ethz.ch.

http://arxiv.org/abs/2407.20002v1
HTTPS://ORCID.ORG/0000-0003-2719-4856
HTTPS://ORCID.ORG/0000-0003-4591-743X
HTTPS://ORCID.ORG/0000-0002-1816-9256
HTTPS://ORCID.ORG/0000-0001-5554-9381
HTTPS://ORCID.ORG/0000-0001-7001-2566
https://orcid.org/0000-0003-2719-4856
https://orcid.org/0000-0003-4591-743X
https://orcid.org/0000-0002-1816-9256
https://orcid.org/0000-0001-5554-9381
https://orcid.org/0000-0001-7001-2566

1:2 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

On the other hand, formal reasoning about translational verifiers, in particular, proving their
soundness, is more difficult than for verifiers developed by embedding a program logic in an inter-
active theorem prover (such as Bedrock [11], VST [10], and RefinedC [46]). Proving that a trans-
lational verifier is sound requires (1) a formal semantics of the IVL as well as proofs that connect
the IVL program (2) to the verification back-end and (3) to the input program. While these steps
have been studied for IVLs based on standard first-order logic [43, 12, 27], they pose additional
challenges for IVLs that natively support more-complex widely-used reasoning principles such
as those of separation logic [45] (and variations such as implicit dynamic frames (IDF) [51]). We
focus on these IVLs, which are commonly-used and especially useful for building verifiers for
heap-manipulating and concurrent programs.

Challenge 1: Defining the semantics of the IVL. Standard programming languages and the
intermediate languages used in compilers come with a notion of execution that can naturally be
captured by an operational semantics. In contrast, IVLs are typically not designed to be executable,
but instead to capture a wide range of verification problems and strategies for solving them.
To capture different verification problems, IVLs contain features that enable the encoding of a

diverse set of input programs (e.g., by offering generic operations suitable for encoding different
concurrency primitives), specifications (e.g., by offering rich assertion languages), and verification
logics (e.g., by supporting concepts such as framing). An IVL semantics must reflect this generality.
For instance, separation logic-based IVLs provide complex primitives for manipulating separation
logic resources, which can be used to encode separation logic rules into the IVL. As a result, these
primitives can be used to encode a large variety of input program features including procedure
calls, loops, and concurrency.
To capture different verification strategies, an IVL’s semantics must not prescribe how to con-

struct a proof. Back-ends should have the freedom to apply various techniques to compute proof
obligations (e.g., symbolic execution or verification condition generation), to resolve trade-offs
between completeness and automation (e.g., by over-approximating proof obligations), and to dis-
charge proof obligations (e.g., using automatic or interactive provers). For instance, existing al-
gorithms for computing proof obligations have different performance characteristics for different
classes of verification problems [20]; an IVL semantics should provide the freedom to choose the
best one for the problem at hand.

Challenge 2: Connecting the IVL to back-ends. Soundness requires that successful verifica-
tion of an IVL program by a back-end verifier implies the correctness of the IVL program. Since
a back-end verifier’s algorithm ultimately decides the outcome of a verification run, a soundness
proof needs to formally connect the concrete verification algorithm to the IVL’s semantics. In par-
ticular, this soundness proof needs to consider the proof search strategies and optimizations per-
formed by a concrete verification back-end and show that they produce correct results according to
the IVL semantics. However, different back-ends typically use a diverse range of strategies to (for
example) represent the program state, unroll recursive definitions, choose existentially-quantified
permission amounts, and select the footprints of magic wands [16].

Challenge 3: Connecting the IVL to front-ends. Soundness also requires that the correctness
of the IVL program implies the correctness of the input program with respect to its intended veri-
fication logic. Such soundness proofs are difficult due to the large semantic gap between input and
IVL programs. The two programs may use different reasoning concepts and proof rules, which
need to be connected by a soundness proof. This gap is particularly large for typical encodings
into IVLs based on separation logic, because the verification logic for the source of this translation
is typically different from the one for the IVL program, e.g., one of the vast wealth of concurrent

Formal Foundations for Translational Separation Logic Verifiers (extended version) 1:3

separation logics. For instance, a parallel composition of two threads in the input program is typ-
ically encoded as three sequential IVL programs: two for the parallel branches, each of which is
verified using a separate specification provided by the user, and one for the enclosing code, which
composes the two specifications to encode the behavior of the parallel composition overall. Such
a translation of front-end proof rules into multiple sequential verification problems is not obvious;
a soundness proof must bridge this gap.

Prior work. Several works formalize aspects of translational verifiers with IVLs based on separa-
tion logic, but none of them addresses all three challenges outlined above. For Viper, Parthasarathy
et al. [42] build a proof-producing version of Viper’s verification condition generation back-end,
but do not attempt to connect it to front-end languages nor give a general semantics for Viper that
would also capture Viper’s symbolic execution back-end. Similarly, Zimmerman et al. [62] formal-
ize a version (only) of Viper’s symbolic execution back-end; their focus is on adapting it to gradual
verification. Vogels et al. [60] show the soundness of the symbolic execution of VeriFast [28] w.r.t.
an input C program.1 However, VeriFast has only a single (symbolic execution) back-end that is
used as the basis for multiple front-end languages (C, Java, Rust) and thus the formalization does
not abstract over different verification algorithms.
Maksimovic et al. [36] briefly describe a soundness framework for GIL [35], a parametric pro-

gram representation used by the Gillian project. GIL needs to be instantiated with a state model,
primitive assertions, and memory actions to obtain specific intermediate representations (essen-
tially, multiple IVLs) useful for different verification projects (e.g., for JavaScript [35] and Rust [2]).
However, each GIL instantiation also determines the back-end verification algorithm (strategy). As
such, there is no common semantics that abstracts over different verification strategies.

This work. In this paper, we present a framework for formally justifying translational sepa-
ration logic verifiers. At its center is a generic IVL, called CoreIVL, that captures the essence of
different IVLs based on separation logics. In particular, CoreIVL can be instantiated with different
statements, assertion languages, and separation algebras; we use a generalized notion of separation
algebra that allows us to also model the implicit dynamic frames logic used in Viper.
To address Challenge 1 above, we define the semantics of CoreIVL (and correspondingly, each of

its instantiations) using dual (i.e., demonic and angelic) non-determinism. Demonic non-determinism
is a standard technique to verify properties for all inputs, thread schedules, etc. Our novel in-
sight is to complement it with angelic non-determinism to abstract over the different proof search
strategies employed by back-ends. Intuitively, the IVL program verifies if any of these strategies
succeeds, which is an angelic behavior.
To address Challenge 2, we define an operational semantics for CoreIVL, which incorporates

these notions of dual non-determinism and, like CoreIVL itself, is parametric in the separation
algebra to support both separation logic and IDF. An operational semantics facilitates proving a
formal connection to the concrete verification algorithms used in back-ends. Separation logic veri-
fiers typically perform symbolic execution, which is typically described operationally [17] and (as
we show) can be connected to our operational semantics via a standard simulation proof. Similarly,
an operational IVL semantics is well-suited for formalizing the connections to back-ends that en-
code IVL programs into a further, more basic IVL, such as Viper’s verification condition generator,
which encodes Viper programs into Boogie.

1VeriFast itself is not an IVL, but must address similar challenges to IVLs based on separation logic since VeriFast’s symbolic
execution is used to justify multiple front-end languages (C, Java, Rust) using separation logic reasoning; its symbolic
execution also has strong similarities with IVL back-ends.

1:4 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

To address Challenge 3, we define an axiomatic semantics for CoreIVL and prove its equivalence
to our operational semantics. An axiomatic semantics facilitates proving a formal connection to
the program logic used on the front-end level because both deal with derivations, which are often
structurally related due to the compositional nature of most IVL translations. In addition, we are
able to prove some powerful generic results about idiomatic encoding patterns once-and-for-all,
further minimizing the instantiation-specific gap that a formal soundness proof needs to bridge.
We illustrate the practical applicability of our formal framework by instantiating CoreIVL with

elements of Viper. We use the resulting operational semantics to prove the soundness of two veri-
fication back-ends: a formalization of the central features of Viper’s symbolic execution back-end,
and a pre-existing formalization of Viper’s verification condition generator [42]. These proofs
demonstrate, in particular, that our use of angelic non-determinism allows us to capture these
two rather disparate (and representative) back-ends. At the other end, we prove soundness of
a front-end based on concurrent separation logic using our axiomatic semantics. These proofs
demonstrate that our framework effectively closes the large semantic gap between front-ends and
back-ends and enables formal reasoning about the entire chain.

Contributions and outline. We make the following technical contributions:

• We present a formal framework for reasoning about translational separation logic verifiers,
via a parametric language CoreIVL, for which we define a novel operational semantics com-
bining core separation-logic reasoning principles and dual non-determinism. We define an
alternative axiomatic semantics, and show its equivalence with our operational semantics.

• We define a Viper instantiation of CoreIVL. We formalize and prove the soundness of the
core of Viper’s symbolic execution back-end. Similarly, we show soundness of an exist-
ing formalization of Viper’s back-end based on verification condition generation. These
proofs illustrate how angelic non-determinism can abstract over these different algorith-
mic choices.

• We formalize a front-end for a simple concurrent language to be verified with concurrent
separation logic, as well as its standard encoding as employed in translational verifiers, and
prove this encoding sound with respect to our axiomatic semantics for CoreIVL.

We give an overview of our key ideas in §2.We define the operational and axiomatic IVL semantics
in §3.We discuss how to prove back-end soundness in §4 and front-end soundness in §5.We discuss
related work in §6 and conclude in §7.
All formalizations and proofs in this paper are mechanized in the Isabelle proof assis-

tant [39].

2 Key Ideas

In this section, we present the key ideas behind our work. Our formal framework bridges the
substantial gap between proofs of high-level programs using custom verification logics at the front-
end level and verification algorithms for SL-based IVLs at the back-end level.
§2.1 introduces a general core language called CoreIVL for representing SL-based IVLs. This

core language is parametric in its state model and assertions, so that it can represent multiple vari-
ants of separation logic (e.g., those on which VeriFast and Gillian are based), including implicit
dynamic frames (on which Viper is based). §2.2 illustrates how to check for the existence of a Con-
current Separation Logic [40] front-end proof for a parallel program by encoding the verification
problem into our sequential CoreIVL, mimicking the approach of modern translational verifiers.
§2.3 presents a formal operational semantics for CoreIVL, which is designed to enable soundness
proofs for diverse existing back-end verification algorithms. §2.4 presents an alternative axiomatic

Formal Foundations for Translational Separation Logic Verifiers (extended version) 1:5

� F inhale � | exhale � | havoc G | �;� | if(1) {�} else {�} | G := 4 | skip | custom �′

Fig. 1. Syntax of statements in CoreIVL.� is an assertion, G a variable,1 a Boolean expression, 4 an arbitrary
expression. Assertions and expressions are represented semantically as sets of states and partial functions
from states to values, respectively.�′ represents custom statements and is a parameter of the language.

semantics for CoreIVL and shows how it can be leveraged to prove a front-end translation into
CoreIVL sound.

2.1 A Core Language for SL-Based IVLs

In this section, we first motivate and then define a core language for SL-based IVLs, called Cor-

eIVL, which captures central aspects of SL-based verifiers, such as Viper [38], Gillian [48, 35], or
VeriFast [28].

Manipulating SL states via inhale and exhale. At the core of these verifiers is the SL state
they track throughout the verification, typically containing a heap (a mapping from heap locations
to values) and SL resources (such as fractional permissions to heap locations). This SL state is
manipulated with two verification primitives: inhale � (also called assume* and produce) and
exhale � (also called assert* and consume), where � is a separation logic assertion. inhale �

assumes the logical constraints in � (e.g., constraints on integer values), and adds the resources
(e.g., ownership of heap locations) specified by � to the current state. Dually, exhale � asserts
that the logical constraints in � hold, and removes the resources specified by � from the current
state. These two primitives can encode the verification conditions for a wide variety of program
constructs. For instance, a procedure call is encoded as exhaling the call’s precondition (to check its
logical constraints and transfer ownership of resources from caller to callee), followed by inhaling
the postcondition (to assume logical constraints and gain resources back from the call).

Diversity of logics and their semantics. While SL-based IVLs all employ some version of
these two inhale and exhale primitives, their actual logics are surprisingly diverse in both core
connectives and their semantics. GIL and VeriFast support different separation logics, while Viper
uses implicit dynamic frames (IDF), a variation of separation logic that allows for heap-dependent
expressions in assertions (e.g., separation logic’s points-to predicate 4.5 ↦→ E is expressed as
acc(4.5) ∗ 4.5 = E in IDF, in which the ownership of the heap location and a logical constraint on
its value are expressed as two separate conjuncts)2.
IVLs also support different SL connectives: Viper supports iterated separating conjunctions [37],

Viper and Gillian support magic wands [16, 50], Viper and VeriFast support fractional recursively-
defined predicates [8, 14], and VeriFast supports arbitrary existential quantification.
A standard approach for generic reasoning over large classes of separation logics is to build

reasoning principles based on a separation algebra (built over a partial commutative monoid) [9,
19]. We extend this classic concept to a novel notion of IDF algebra, which can model separation
logics and IDF alike. In particular, IDF algebras allow asserting knowledge about the value of heap
locations 4.5 without asserting ownership of the heap location itself.

Core Language. The syntax of CoreIVL is shown in Fig. 1. To capture the diversity of assertions
supported in existing SL-based IVLs, assertions � in our core language are semantic, i.e., assertions
are sets of states (as opposed to fixing a syntax, and having the semantics for this syntax determine

2This difference also affects the semantic models; separation logic is typically formalized using partial heaps, whereas IDF
typically uses a total heaps model [41].

1:6 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

method main(p: Cell)

// requires acc(p.v, _)

{

q := new Cell

// {%; } {%A }

q.v := p.v || tmp := p.v

// {&; } {&A }

tmp := tmp + q.v

free(q)

assert tmp = p.v + p.v

}

method main_ivl(p: Ref) {

inhale acc(p.v, _)

havoc q

inhale acc(q.v)

exhale %; * %A
havoc tmp

inhale &; * &A

tmp := tmp + q.v

exhale acc(q.v)

exhale tmp = p.v + p.v

}

method l(p,q:Ref){

inhale %;
q.v := p.v

exhale &;

}

method r(p,q:Ref){

inhale %A
tmp := p.v

exhale &A

}

Fig. 2. A simple parallel program (le�), annotated with a method precondition, as well as pre- and post-
conditions for the parallel branches, and its encoding into CoreIVL (instantiated to model Viper), consist-
ing of a main IVL method (middle) and two further methods (right) modeling the parallel branches (that
is, the premises of CSL’s parallel composition rule). We use the shorthands %; , acc(?.E, _) ∗ acc(@.E),
&; , acc(?.E, _) ∗ acc(@.E) ∗ p.v = q.v, %A , acc(?.E, _), and &A , acc(?.E, _) ∗ tmp = p.v, where the IDF

assertion acc(4, _) expresses non-zero permission to 4 (corresponding to the SL assertion ∃?, E . 4
?
↦→ E).

the set of states in which a syntactic assertion is true); states themselves are taken from any cho-
sen IDF algebra. Similarly, expressions 4 are semantically represented as partial functions from
states to values. Moreover, although we assume some core statements in our language, we allow
these to be arbitrarily extended via a parameter for custom statements �′, for instance, to add field
assignments. The statements of our core language contain the key verification primitives inhale
and exhale described above, as well as havoc, which non-deterministically assigns a value to a
variable. Combined with conditional branching, inhale, exhale, and havoc allow us to encode
many important statements, such as while loops, procedure calls, and even proof rules for parallel
programs, as we show in the next subsection.

2.2 Background: Translational Verification of a Parallel Program

We use the parallel program on the left in Fig. 2 to illustrate how translational verification works,
and the challenges that arise in formalizing this widely-used approach. This program takes as input
a Cell p (an object with a value field v), allocates a new Cell q, assigns the value of p.v in parallel
to q.v and to the variable tmp, then adds the value of q.v to tmp, deallocates q, and finally asserts
that tmp is equal to p.v + p.v. Our goal is to verify this program in Concurrent Separation Logic
(CSL) [40], that is, by encoding the program and the proof rules of CSL into CoreIVL. In particular,
we want to prove that the assertion on its last line holds.

Although the original CSL is presented via standard separation logic syntax, we use the syntax
of IDF to annotate this example. The syntax acc(e.v, f) denotes fractional permission (ownership)
of the heap location e.v (where 5 = 1 allows reading and writing, and a fraction 0 < 5 < 1
allows reading) [8]. The syntax acc(p.v, _) (used as precondition in our example) denotes a so-
called wildcard permission (or wildcard in short); it is shorthand for ∃5 > 0. acc(p.v, 5), which
guarantees read access while abstracting the precise fraction.

Formal Foundations for Translational Separation Logic Verifiers (extended version) 1:7

Correctness of our example means proving a CSL triple Δ ⊢CSL [acc(p.v, _)] � [⊤], where� is
the body of themethod main in the front-end (left) program (⊤ is the trivial postcondition). Instead
of constructing a proof directly, a translational verifier maps this to an IVL program (shown as a
CoreIVL program to the middle and right of Fig. 2) whose correctness implies the existence of a
CSL proof for the original program.

Encoding the program into CoreIVL. Our encoding models each proof task of the CSL verifi-
cation problem as a separate IVL method, whose statements reflect the individual proof steps [34].
The IVL methods main_ivl, l and r are constructed such that the correctness of all three implies
the existence of a valid CSL proof for main.
The precondition acc(p.v, _) of main is modeled by the first inhale statement in main_ivl,

reflecting that the proof of the main method may rely on the resources and assumptions guar-
anteed by this precondition. The allocation q := new Cell is then encoded via a havoc and an
inhale statement to non-deterministically choose a memory location and obtain a full (i.e., 1) per-
mission. Dually, the deallocation free(q) after the parallel composition is encoded via an exhale
statement, which removes this (full) permission from the IVL state. Since permissions are non-
duplicable (technically, affine) resources, this encoding guarantees that no permission can remain
and so any attempt to later access this location would cause a verification failure.
To understand the encoding of a source-level parallel composition, we recall the CSL proof rule3:

Par
Δ ⊢CSL [%;] �; [&;] Δ ⊢CSL [%A] �A [&A]

Δ ⊢CSL [%; ∗ %A] �; | | �A [&; ∗&A]

From the point of view of the outer thread (forking and joining the parallel branches), the overall
effect of the parallel composition can be seen as giving up the separating conjunction %; ∗ %A of the
preconditions of the parallel branches, and obtaining the corresponding postconditions&; ∗&A be-
fore resuming any remaining code4. This exchange of assertions across the triple in the conclusion
of the rule (as well as the intervening modification of tmp) is modeled in the IVL program by the
sequence exhale %; ∗ %A ; havoc tmp; inhale &; ∗&A .
The premises of the parallel rule are checked by verifying two extra methods l and r, whose

pre- and postconditions correspond to the Hoare triples from the rule premises directly.
The encoded bodies of l and r follow the standard pattern: an inhale of their preconditions

(which can be seen as the other “half” of the transfer from the outer thread, modeled by exhale %; ∗
%A), the translation of their source implementations, and finally an exhale of their postconditions.

If running a back-end verifier for the IVL on the three encoded methods succeeds, we have
demonstrated that a CSL proof for the original program exists—provided that the translational
verification is sound. Soundness depends on a non-trivial translation, the subtle semantics of an
IVL, and the algorithms employed by back-end verifiers. In the rest of this section, we explain our
formal framework for establishing the soundness of translational verifiers.

2.3 Operational Semantics and Back-End Verifiers

To make formal claims about an IVL program, we need a formal semantics and notion of cor-
rectness for the IVL itself. As explained in the introduction, an operational semantics facilitates
a formal connection to various back-end algorithms, which typically have an operational flavor.
Since our semantics needs to capture verification algorithms that make heavy use of (demonic)

3We omit technical side-conditions from the original rule that restrict mutation of variables shared amongst threads; these
are taken care of properly in real verifiers and our formalizations.
4We assume (as is common for modular verifiers) that each thread’s specification is explicitly annotated, as in main.

1:8 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

InhaleOp

〈inhale �,l 〉 →Δ {l } ∗�

ExhaleOp

l = l′ ⊕ l� l� ∈ �

〈exhale �,l 〉 →Δ {l′ }

SeqOp

〈�1,l 〉 →Δ (′ ∀l′ ∈ (′ . 〈l′,�2 〉 →Δ 5 (l′)

〈�1 ;�2,l 〉 →Δ ∪l ′∈(′ 5 (l′)

(a) Selected operational semantics rules.

InhaleAx

Δ ⊢ [%] inhale � [% ∗�]

ExhaleAx
% |= & ∗�

Δ ⊢ [%] exhale � [&]

SeqAx

Δ ⊢ [%] �1 ['] Δ ⊢ ['] �2 [&]

Δ ⊢ [%] �1;�2 [&]

(b) Selected axiomatic semantic rules.

Fig. 3. Selected simplified operational and axiomatic semantic rules.

non-determinism (to model concurrency, allocation, or abstract modularly over the precise behav-
ior of program elements), our operational semantics embraces such non-determinism. Moreover,
to account for the diversity of the verification algorithms used in back-ends, our semantics also
incorporates the dual notion of angelic non-determinism.
Consider verifying the statement exhale acc(a.v) ∨ acc(b.v), which requires giving up (full)

permission to either a.v or b.v; if the original state holds both permissions, either choice avoids
a failure here, but results in different successor states, and so might affect whether subsequent
statements verify successfully. Such algorithmic choices occur for other IVL constructs, such as for
choosing the values of existentials (including the amount of permission for a wildcard permission),
or determining the footprints of magic wands. Our operational semantics makes all algorithmic

choices possible and defines a program as correct if any such choice avoids failure.

Operational semantics. To capture the dual non-determinism, we define our operational se-
mantics as a multi-relation [44, 26]

〈�,l〉 →Δ (

where� is an IVL statement, l an initial state, (a set of final states, and Δ a type context (mapping
for example variables to types, i.e., to sets of values). The set (captures the demonic choices, i.e.,
contains the resulting state for each possible demonic choice. On the other hand, angelic choices
are reflected by different result sets derivable in our semantics. Returning to our previous example,
if l is a state with full permission to both a.v and b.v, our semantics allows for both transitions
〈exhale acc(a.v) ∨ acc(b.v), l〉 →Δ {l−0} and 〈exhale acc(a.v) ∨ acc(b.v), l〉 →Δ {l−1 }

(where l−0 and l−1 are identical to l but with the permission to a.v resp. b.v removed).
A successful verification by a back-end is represented by an execution in our operational seman-

tics, leading to the following definition of correctness of a CoreIVL statement:

Definition 1. A CoreIVL statement � is correct for a well-formed initial state l iff � executes
successfully in l , i.e., ∃(. 〈�,l〉 →Δ (. � is valid iff it is correct for all well-formed initial states.

Fig. 3a shows simplified rules for the operational semantics of inhale �, exhale �, and se-
quential composition. The (non-simplified) rules for all statements are shown in §3. Inhaling A in
state l leads to the set of all possible combinations l ⊕ l� for l� ∈ �, capturing the demonic
non-determinism of inhale: All possible states satisfying � must be considered in the rest of the
program. Dually, the rule ExhaleOp allows any choice of state l� satisfying � (that is, uses angelic
non-determinism), and to remove it from l . In our previous example, l can be decomposed into
l = l−0 ⊕ l0 or l = l−1 ⊕ l1 , where l0 and l1 respectively contain the permission to a.v and
b.v (and thus l0 and l1 both satisfy the exhaled assertion acc(a.v) ∨ acc(b.v)). The rule SeqOp

Formal Foundations for Translational Separation Logic Verifiers (extended version) 1:9

for sequential composition is more involved, since it needs to deal with the dual non-determinism:
It requires a function 5 that maps every state from (′ (the set of states obtained after executing�1

in l) to a set of states it can reach by executing �2. The function 5 captures the angelic choices.

Connection to back-end verifiers. To show that this operational semantics for CoreIVL is in-
deed suitable to capture different verification algorithms, we connect it to formalizations of the
two main back-ends used by Viper. First, we formalize a version of Viper’s symbolic execution
back-end [49] in Isabelle/HOL and prove it sound against the operational semantics of CoreIVL.
Second, we connect the formalization of Viper’s verification condition generation back-end by
Parthasarathy et al. [42] to CoreIVL by constructing a CoreIVL execution from a successful verifi-
cation by their back-end. The soundness proofs of these back-ends are described in §4. There we
will also see that the angelic choice described earlier in this section is crucial for enabling these
proofs since the two back-ends use different heuristics, in particular around exhaling wildcard
permissions.

2.4 Axiomatic Semantics

The previously-introduced definition of correctness (Def. 1) based on the operational semantics is
well-suited to connect to back-end verifiers. However, connecting it to front-end programs, and
especially logics such as CSL in our example from Fig. 2, requires substantial effort due to the large
semantic gap between the operational IVL semantics and the front-end logic. The IVL semantics
presented previously is operational, describes the execution from a single state, and exposes low-
level details (such as handling the dual non-determinism in the rule SeqOp). In contrast, the program
logic is axiomatic, describes the behavior of sets of states (via assertions), and is more high-level
(e.g., it uses an intermediate assertion in the rule SeqAx instead of the semantic function 5). To
bridge this gap, we present an alternative (and, as we later prove, equivalent) axiomatic semantics
for CoreIVL, which is closer to the separation logics typically used for front-end programs and,
thus, simplify the proof that a front-end translation is sound.
Our axiomatic semantics uses judgments of the form

Δ ⊢ [%] � [&]

where % and & are semantic assertions (sets of states), � is an IVL statement, and Δ is a type
context. Intuitively, this triple expresses that � can be executed successfully in any state from %

(with the right angelic choices), and& is (precisely) the set of all states reached by these executions.
Formally, we want the following soundness property (we will present the completeness theorem
in §3):

Theorem 2 (Operational-to-Axiomatic Soundness.). If the CoreIVL statement � is well-typed and

valid (Def. 1) then there exists a set of states � such that Δ ⊢ [⊤] � [�] holds.

Note that, in contrast to when one defines a proof system for a pre-existing operational se-
mantics, the desired implication here is from operational to axiomatic semantics; this is due to
the connection we are aiming for from back-end algorithms (defined operationally) to front-end
proofs.
The rules for the axiomatic semantics of inhale �, exhale �, and sequential composition are

shown in Fig. 3b. The rule InhaleAx for inhale � corresponds to the operational rule InhaleOp,
where l has been lifted to the set of states % (since % ∗ � =

⋃
l∈% ({l} ∗ �)). The rule ExhaleAx

for exhale � is more involved, as it first requires weakening the set of initial states % to & ∗ �.
Weakening is in general necessary to disentangle the states in & and �: For example, to exhale
acc(a.v) from a precondition acc(a.v) ∗ acc(b.v) ∗ a.v = b.v, we have to first drop the equal-
ity a.v = b.v because otherwise the resulting postcondition would refer to a memory location

1:10 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

Frame

Δ ⊢CSL [%] � [&] fv (�) ∩mod(�) = ∅

Δ ⊢CSL [% ∗ �] � [& ∗ �]

Par

Δ ⊢CSL [%;] �; [&;] Δ ⊢CSL [%A] �A [&A] . . .

Δ ⊢CSL [%; ∗ %A] �; | | �A [&; ∗&A]

Seq

Δ ⊢CSL [%] �1 ['] Δ ⊢CSL ['] �2 [&]

Δ ⊢CSL [%] �1;�2 [&]

Cons

Δ ⊢CSL [% ′] � [&′] % |= % ′ &′ |= &

Δ ⊢CSL [%] � [&]

NewCell

Δ ⊢CSL [⊤] q := new Cell [acc(q.v)]

Free

Δ ⊢CSL [acc(q.v)] free(q) [⊤]

Fig. 4. Selected CSL rules. In the rule Frame, fv (�) and mod (�) denote the set of variables free in � and the
set of variables potentially modified by � , respectively.

that is no longer owned. Moreover, similarly to how Hoare logic hides the induction necessary
to reason about unbounded while loops behind a loop invariant, our axiomatic semantics hides
the dual non-determinism of the operational semantics behind high-level connectives such as the
separating conjunction. Intuitively, in the rule ExhaleAx, the angelic choice is hidden in the choice
of & and the split of every state in % into a state in & and a state in �. In our previous exam-
ple exhale acc(a.v) ∨ acc(b.v), we could choose & to be either acc(a.v) or acc(b.v), i.e., we
could derive both Δ ⊢ [acc(a.v) ∗ acc(b.v)] exhale acc(a.v) ∨ acc(b.v) [acc(a.v)] and
Δ ⊢ [acc(a.v) ∗ acc(b.v)] exhale acc(a.v) ∨ acc(b.v) [acc(b.v)].
Finally, the rule SeqAx for sequential composition illustrates how the axiomatic semantics ab-

stracts over the low-level details of the dual non-determinism in the operational semantics, such
as the existence of the semantic function 5 in rule SeqOp. Instead, the axiomatic rule SeqAx uses an
intermediate assertion '; its relation to 5 is proved once and for all in the soundness proof and,
thus, does not have to be proved for each front-end.
Crucially, we have designed the axiomatic semantics such that it contains exactly one rule per

statement. In particular, it contains no structural rules such as a frame rule or a consequence
rule, which are not necessary in our setting. This allows us to deconstruct an axiomatic semantic
derivation into smaller blocks, to then reconstruct a proof in the front-end logic. For example, one
can derive from Δ ⊢ [%] �1;�2 [&] the existence of some assertion ' such that Δ ⊢ [%] �1 ['] and
Δ ⊢ ['] �2 [&] hold. Using this axiomatic semantics, we can now easily connect the correctness
of the IVL program to the correctness of the front-end program, as we explain next.

Connecting to front-end programs and logics. Let us now see how the axiomatic semantics
enables us to construct a CSL proof for the front-end program from Fig. 2. Concretely, we build a
CSL proof of the triple Δ ⊢CSL [acc(p.v, _)] � [⊤], where� corresponds to the body of themethod
main. To do this, we use the CSL rules shown in Fig. 4 and the CoreIVL triples Δ ⊢ [⊤] � [�] for
the methods l, r, and main_ivl that we obtain from Thm. 2.
The first step of proving the CSL triple for main is to pair each statement in main with the

corresponding code in main_ivl. For this, we use CSL’s Seq rule and (the inversion of) SeqAx to

Formal Foundations for Translational Separation Logic Verifiers (extended version) 1:11

split the proofs for main and main_ivl into smaller parts:

Δ ⊢ [⊤] inhale acc(p.v, _) [�0]

Δ ⊢CSL [�0] q := new Cell [�1] Δ ⊢ [�0] havoc q; inhale acc(q.v) [�1]

Δ ⊢CSL [�1] q.v := p.v || tmp := p.v [�2] Δ ⊢ [�1] exhale %; ∗ %A ; havoc tmp; inhale &; ∗&A [�2]

Δ ⊢CSL [�2] tmp := tmp + q.v [�3] Δ ⊢ [�2] tmp := tmp + q.v [�3]

Δ ⊢CSL [�3] free(q) [�4] Δ ⊢ [�3] exhale acc(q.v) [�4]

Δ ⊢CSL [�4] assert tmp = p.v + p.v [�] Δ ⊢ [�4] exhale tmp = p.v + p.v [�]

Note how deconstructing the applications of SeqAx in the proof of main_ivl gives us interme-
diate assertions �0−4, which we use to instantiate the intermediate assertion ' in Seq.5 Matching
statements of the front-end program to segments of the CoreIVL program is straightforward since
the front-end translation is typically defined statement by statement.
After decomposing the sequential compositions, we justify the CSL triple for each primitive

front-end statement from the correspondingCoreIVL triple. For some statements like tmp := tmp + q.v,
this is trivial as the triples (and corresponding logic rules) match. Let us now focus on the most
interesting cases: q := new Cell, q.v := p.v || tmp := p.v, and free(q).

The exhale-havoc-inhale pa�ern. To derive the CSL triples for these statements, we observe
that their encoding follows a pattern: The CoreIVL code first exhales the precondition % of the CSL
rule (omitted if % = ⊤), then havocs the variables modified by the statement (q for q := new Cell

and tmp for q.v := p.v || tmp := p.v), and finally inhales the postcondition& of the CSL rules
(omitted if& = ⊤), leading to the pattern exhale % ; havoc G1; . . . ; havoc G=; inhale & . To handle
this general pattern, we can use the following lemma, which holds for any separation logicL with
a consequence rule and a frame rule (see §5 for the proof):

Lemma 1 (Exhale-inhale). For any separation logic L that has a frame rule and a consequence rule,
if Δ ⊢L [%] � [&] holds and Δ ⊢ [�] exhale % ; havoc G1; . . . ; havoc G= ; inhale & [�] holds,

where {G1, . . . , G=} = mod (�), then Δ ⊢L [�] � [�] holds.

Intuitively, this lemma shows that a CoreIVL triple for the exhale-havoc-inhale pattern allows
us to obtain the corresponding CSL triple. In the case of q := new Cell, this lets us lift NewCell

to the precondition �0 and postcondition �1, giving us exactly the triple we need. To justify
the triple for q.v := p.v || tmp := p.v, we need to establish the premises of the rule Par,
Δ ⊢CSL [%;] q.v := p.v [&;] and Δ ⊢CSL [%A] tmp := p.v [&A], which can be derived from the
correctness of the methods l and r using a lemma similar to Lemma 1, as we formally show in §5.

Summary. We have now seen how to justify the translational verification of the program from
Fig. 2 in CSL in three steps. First, we showed that the successful verification of its CoreIVL en-
coding in a back-end implies that the CoreIVL program is valid. Second, we used the soundness
theorem for the axiomatic IVL semantics to derive judgments in the axiomatic semantics. Third,
we use those judgments to prove the desired CSL triple. Each of these steps is well-suited for its
task: The operational semantics allows us to connect to the back-end verifiers, while the axiomatic
semantics facilitates the reconstruction of the front-end logic proof—both linked by Thm. 2.

3 Semantics

In this section, we present an operational and an axiomatic semantics for the CoreIVL language
defined in Fig. 1. We first define in §3.1 an IDF algebra that captures both separation logic and
5Note that the CSL we use in this paper has the same state model as the IVL, and thus the IVL assertions do not need to
be converted to CSL assertions. Our axiomatic semantics can also be used to reconstruct proofs in program logics with
different state models, but this goes beyond the scope of this paper.

1:12 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

0 ⊕ 1 = 1 ⊕ 0 0 ⊕ (1 ⊕ 2) = (0 ⊕ 1) ⊕ 2 2 = 0 ⊕ 1 = 2 ∧ 2 = 2 ⊕ 2 ⇒ 0 = 0 ⊕ 0

G = G ⊕ |G | |G | = |G | ⊕ |G | G = G ⊕ 2 ⇒ |G | � 2 |0 ⊕ 1 | = |0 | ⊕ |1 |

0 = 1 ⊕ G ∧ 0 = 1 ⊕ ~ ∧ |G | = |~ | ⇒ G = ~ stable(l) ⇒ l = stabilize(l) stable(stabilize(l))

stabilize(0 ⊕ 1) = stabilize(0) ⊕ stabilize(1) G = stabilize(G) ⊕ |G | 0 = 1 ⊕ stabilize(|2 |) ⇒ 0 = 1

Fig. 5. Axioms for our IDF algebra (Σ, ⊕, |_|, stable, stabilize). We define (l′ � l) , (∃A . l′
= l ⊕ A).

implicit dynamic frames state models. We then formalize the operational semantics of CoreIVL in
§3.2 and define its axiomatic semantics and prove their equivalence in §3.3. We instantiate CoreIVL
for key features of Viper in §3.4.

3.1 An Algebra for Separation Logic and Implicit Dynamic Frames

A standard way to capture different separation logic state models is to use a separation alge-

bra [9, 19], i.e., a partial commutative monoid (Σ,⊕), where Σ is the set of all states, and ⊕ is
a partial, commutative, and associative binary operator, used to combine states (e.g., via the sep-
arating conjunction operator ∗). In SL, assertions about values of heap locations must also assert
ownership of those heap locations. In particular, asserting that a heap location x.f has a value 5
requires using the points-to predicate x.f ↦→ 5), which also expresses ownership of the location
x.f. This requirement is embedded in the SL state model. For example, a typical SL state with a
heap and fractional permissions (ignoring local variables for now) is ΣSL , (! ⇀ (+ × (0, 1])),
i.e., a partial function from a set ! of heap locations to pairs of values from a set + and positive
fractional permissions. That is, any value for a heap location is associated with a strictly positive
permission.
In contrast, in implicit dynamic frames, an assertion may constrain the value of a heap loca-

tion independently of expressing ownership. For example, x.f = 5 is a valid IDF assertion that
expresses that x.f stores the value 5 without expressing ownership of x.f. However, IDF requires
assertions used as pre- and postconditions, loop invariants, frames (for the frame rule), etc. to
be self-framing, that is, to express ownership of all heap locations they mention. For example,
acc(x.f) ∗ x.f = 5 is self-framing, while x.f = 5 is not. To capture IDF states with fractional per-
missions, we define the state model ΣIDF , (! ⇀ +) × (! ⇀ [0, 1]). In contrast to ΣSL, values and
permissions are separated in ΣIDF , which allows states (ℎ, c) where ℎ(x.f) = 5 but c (x.f) = 0.
We call a state (ℎ, c) ∈ ΣIDF stable iff it contains values exactly for the heap locations with

non-zero permission, i.e., dom(ℎ) = {; | c (;) > 0}. Stable states are exactly those that can be
represented as states in ΣSL; By construction, all states in ΣSL are stable.
To capture arbitrary SL and IDF states, we define an IDF algebra as follows:

Definition 3. An IDF algebra is a tuple (Σ,⊕, |_|, stable, stabilize) that satisfies all axioms in Fig. 5,
where Σ is a set of states, ⊕ is a partial, commutative, and associative addition on Σ (i.e., a partial
function from Σ× Σ to Σ), |_| and stabilize are endomorphisms of Σ, and stable is a predicate on Σ.

The set Σ and the partial addition ⊕ are the standard components of a separation algebra. Using
⊕, we define the standard partial order � induced by ⊕ as (l ′ � l) , (∃A . l ′

= l ⊕ A). We require
positivity (2 = 0 ⊕ 1 = 2 ∧ 2 = 2 ⊕ 2 ⇒ 0 = 0 ⊕ 0) to ensure that the partial order is antisymmetric
(0 � 1 ∧ 1 � 0 ⇒ 0 = 1). Intuitively, the endomorphism |_| projects a state l on its largest
duplicable part, i.e., |l | is the largest state smaller than l such that |l | = |l | ⊕ |l |. Similarly, the
endomorphism stabilize projects a state l on its largest stable part, i.e., stabilize(l) is the largest
stable state smaller than l .

Formal Foundations for Translational Separation Logic Verifiers (extended version) 1:13

Instantiations. For our concrete IDF state model ΣIDF , the combination (ℎ1, c1) ⊕ (ℎ2, c2) is
defined iff ℎ1 and ℎ2 agree on the locations to which both states hold non-zero permission and the
sums of their permissions pointwise is at most 1, i.e., iff ∀; . (c1 (;) + c2(;) ≤ 1) ∧ (; ∈ dom(ℎ1) ∩

dom(ℎ2) ⇒ ℎ1 (;) = ℎ2(;)). When the combination is defined, (ℎ1, c1) ⊕ (ℎ2, c2) , (ℎ1 ∪ ℎ2, c1 +

c2). Knowledge about heap values is duplicable, whereas permissions are not. Thus, |_| puts all
permissions to 0 but preserves the heap, i.e., | (ℎ, c) | , (ℎ, _; . 0). Moreover, stabilize erases all
values for heap locations to which the state does not hold any permission, i.e., stabilize((ℎ, c)) ,
((_; . if c (;) > 0 then ℎ(;) else ⊥), c).
Separation algebra instances can also be instantiated as IDF algebras, by defining stable to be

true for all states, and stabilize to be the identity function on Σ. For example, ΣSL (defined above)
can be instantiated as an IDF algebra with these definitions of stable and stabilize, and with |_|
mapping every state to the unit state (where all permissions are 0, and the domain of the heap is
empty). Moreover, like separation algebras [19, 29], IDF algebras support standard constructions
like the agreement algebra (where only l = l ⊕ l holds), and can be constructed by combining
smaller algebras, via combinators such as product and sum types (where both types must be IDF
algebras), function types (where only the codomain must be an IDF algebra), etc.

State model for CoreIVL. Our CoreIVL framework can be instantiated for any IDF algebra with
set Σ0. We obtain the state model by extending this IDF algebra with a store of local variables, i.e.,
a partial mapping from variables in Var to values in Val. Concretely, we define our state model as
the product algebra for Σ , ((Var ⇀ Val) × Σ0), where the store Var ⇀ Val is instantiated to the
agreement algebra, i.e., addition on stores is defined for identical stores (as the identity). Using the
agreement algebra for the store ensures that inhale and exhale have no effect on local variables.

Self-framing IDF assertions. Given an arbitrary IDF algebra, we can define a general notion
of self-framing assertions and assertions framing other assertions as follows.

Definition 4. Let % be an IDF assertion (i.e., a set of states from an IDF algebra).
% is self-framing, written selfFraming(%), iff ∀l.l ∈ % ⇔ stabilize(l) ∈ % .
A state l frames % , written frames(l, %), iff selfFraming({l} ∗ %).
An assertion � frames % , written frames(�, %), iff ∀l ∈ �. stable(l) ⇒ frames(l, %).
Finally, an assertion % frames an expression (i.e., a partial function from states to values) 4 , written
frames(%, 4), iff 4 (l) is defined for all states l ∈ % .

Those different notions are tightly connected: If � is self-framing and � frames � then � ∗ � is
self-framing. For example, the assertion � , (acc(x.f) ∗ x.f = 5) is self-framing, because any
state l� ∈ � has full permission to x.f, and thus stabilize(l�) will retain the knowledge that x.f
is 5, and hence stabilize(l�) ∈ �. In contrast, the assertion � , (x.f = 5) is not self-framing,
since a state l� with no permission to x.f but with the knowledge that x.f is 5 satisfies �, but
stabilize(l�) will not retain the knowledge that x.f = 5, and hence will not satisfy �. Moreover,
any state that satisfies acc(x.f) frames �, thus the assertion acc(x.f) frames �. Note that, in an
instantiation with SL states (e.g., ΣSL), all assertions are self-framing, since all SL states are stable.

3.2 Operational Semantics

We now formally define the operational semantics of CoreIVL for the state model described above
(given an arbitrary IDF algebra). As explained in §2.3, our operational semantics has judgments
of the form 〈�,l〉 →Δ (, where Δ is a type context,6 � is a statement, l is a state, and (is a
6In this section, we do not discuss typing in details, but our Isabelle formalization includes it. In particular, it ensures that
our operational and axiomatic semantics deal only with well-typed states, i.e., states whose local store and heap contain
values of the right types (defined by the type context Δ). By default, all states discussed in this section are well-typed.

1:14 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

InhaleOp

frames(l,�)

〈inhale �,l 〉 →Δ {l′ | ∃l� ∈ �.l′
= l ⊕ l� ∧ stable(l′) }

ExhaleOp

l = l′ ⊕ l� l� ∈ � stable(l′)

〈exhale �,l 〉 →Δ {l′ }

SeqOp

〈�1,l 〉 →Δ (′ ∀l′ ∈ (′ . 〈l′,�2〉 →Δ 5 (l′)

〈�1 ;�2,l 〉 →Δ

⋃

l ′∈(′

5 (l′)

AssignOp

Δ(G) = g 4 (l) = E E ∈ g

〈G := 4,l 〉 →Δ {l [G ↦→ E] }

SkipOp

〈skip, l 〉 →Δ {l }

HavocOp

Δ(G) = g

〈havoc G,l 〉 →Δ {l [G ↦→ E] | E ∈ g }

IfTOp

1 (l) = ⊤ 〈�1, l 〉 →Δ (1

〈if(1) {�1 } else {�2 }, l 〉 →Δ (1

IfFOp

1 (l) = ⊥ 〈�2,l 〉 →Δ (2

〈if(1) {�1 } else {�2 }, l 〉 →Δ (2

Fig. 6. Operational semantics rules.

set of states (to capture demonic non-determinism; angelic non-determinism is captured by the
existence of different derivations 〈�,l〉 →Δ (1 and 〈�,l〉 →Δ (2).
The rules for the operational semantics are given in Fig. 6. As shown by the rule InhaleOp,

inhale � can reduce in a state l only if l frames �. In our concrete instantiation ΣIDF , this
means that l or � must contain the permission to any heap location mentioned in �. For exam-
ple, inhale x.f = 5 can reduce correctly only in a state l that has some permission to x.f. If
l has a different value than 5 for x.f, the statement will reduce to an empty set of states, i.e.,
〈inhale x.f = 5, l〉 →Δ ∅, capturing the fact that we inhaled an assumption inconsistent with
our state. In this case, the rest of the program is trivially correct (because it will be executed in
no state). If l has value 5 for x.f, then the statement will reduce to the singleton set {l}, i.e.,
〈inhale x.f = 5, l〉 →Δ {l}. Finally, inhaling acc(x.f) in a state l with no permission and no
value to x.fwill result in a set with multiple states (potentially infinitely many), one state for each
possible value of x.f. We require stable(l ′) in the rule to ensure that executing a statement in any
stable state leads to a set of stable states, i.e., ∀l. stable(l) ∧〈l,�〉 →Δ (⇒ (∀l ′ ∈ (. stable(l ′)).
In other words, the operational semantics preserves the stability of states.
Dually, the rule ExhaleOp requires the final state l ′ to be stable. This ensures that values of heap

locations for which the state lost all permission will be erased. For example, exhale acc(G.5)

succeeds only in a state with full permission to x.f, and results in a final state without any per-
mission nor value for x.f. Note that the rule ExhaleOp is the only atomic rule that uses angelic
nondeterminism, because the rule can be applied with different l ′ (corresponding to different an-
gelic choices). (The rules InhaleOp and HavocOp use demonic non-determinism, while AssignOp and
SkipOp are deterministic.) The rule SeqOp first executes�1 in l , which yields a set of states (′. Since
(′ captures demonic choices,�2 must be executed in all states from (′, but the angelism in�2 can
be resolved differently for each state, which is captured by the choice of the function 5 .
Finally, note that expressions in CoreIVL are semantic, i.e., they are partial functions from states

to values. We model them as partial functions because they might be heap-dependent, and thus
might not be defined for all states. For example, the expression x.f = 5 is only meaningful in
states where x.f has a value. The rules AssignOp, IfTOp, and IfFOp require that the expressions are
defined in the initial state l .

3.3 Axiomatic Semantics

Using the same extended state model as in the operational semantics, we define an axiomatic
semantics with judgments of the form Δ ⊢ [%] � [&], where Δ is a type context, % and & are
assertions (sets of states), and� is a CoreIVL statement. All rules are shown in Fig. 7. Multiple rules

Formal Foundations for Translational Separation Logic Verifiers (extended version) 1:15

SkipAx

selfFraming(%)

Δ ⊢ [%] skip [%]

InhaleAx

selfFraming(%) frames(�, %)

Δ ⊢ [%] inhale � [% ∗�]

ExhaleAx

selfFraming(%) % |= & ∗� selfFraming(&)

Δ ⊢ [%] exhale � [&]

IfAx

selfFraming(%) frames(%, 1) Δ ⊢ [% ∧ 1] �1 [�1] Δ ⊢ [% ∧ ¬1] �2 [�2]

Δ ⊢ [%] if(1) {�1 } else {�2 } [�1 ∨ �2]

HavocAx

selfFraming(%) Δ(G) = g

Δ ⊢ [%] havoc G [∃G ∈ g. %]

SeqAx

Δ ⊢ [%] �1 ['] Δ ⊢ ['] �2 [&]

Δ ⊢ [%] �1 ;�2 [&]

AssignAx

selfFraming(%) frames(%, 4)

Δ ⊢ [%] G := 4 [∃E. % [E/G] ∧ G = 4 [E/G]]

Fig. 7. Axiomatic semantic rules.

have side-conditions requiring the preconditions and postconditions to be self-framing, ensuring
that if we have Δ ⊢ [%] � [&], % and & are self-framing.
As explained in §2.4, our operational and axiomatic semantics are equivalent. The soundness

property expressed in Thm. 2 (in §2.4) allows one to bridge the gap between a valid CoreIVL pro-
gram (according to Def. 1) and the front-end program logic. The proof of Thm. 2 is not straightfor-
ward. In particular, our proof explicitly tracks the angelic choices made based on the sequence of
past states of each execution, as shown by the following lemma, which implies Thm. 2:

Lemma 2. Let ≪�≫ , {l ′ | stabilize(l ′) ∈ �} for an arbitrary set of states �. Given a set
Ω ∈ P(Σ∗ × Σ) of lists of past states paired with current states, a CoreIVL statement � , and a function

(mapping elements from Ω to sets of states, if for all (;, l) ∈ Ω we have stable(l) and 〈�,l〉 →Δ

((;, l), then Δ ⊢ [≪{l | (;, l) ∈ Ω}≫] � [≪
⋃

(;,l) ∈Ω ((;, l)≫].

An element ([l0, . . . , l=], l=+1) ∈ Ω represents all the intermediate states of one execution up
to now, which we use to resolve the future angelism. The function (maps each such element to a
set of states that can be reached froml=+1 by executing� . Intuitively, the precondition collects all
the current states from Ω, and the postcondition collects all the states they can reach by executing
� . The proof proceeds by structural induction over the statement � .

The reason for tracking sequences of past states. The reader might bewonderingwhyLemma 2
keeps track of the list of all past states, instead of only keeping track of the current state. The reason
is that only keeping track of the current state would not allow proving the case for sequential com-
position. To understand why, assume that Ω is a set of single states, and (is a function from single

states to a set of states. Consider as an example for this scenario Ω0 , {l�, l�}, (0(l�) , {l ′
�},

and (0(l�) , {l ′
�}, and thus 〈�1;�2, l�〉 →Δ {l ′

�} and 〈�1;�2, l�〉 →Δ {l ′
�} hold by assump-

tion. It might be the case that executing�1 in either l� orl� yields the same set of states {l ′}, i.e.,
〈�1, l�〉 →Δ {l ′} and 〈�1, l�〉 →Δ {l ′}, but that the angelic non-determinism when executing
�2 in state l ′ was resolved differently in both executions, leading to l ′

� in the execution from l�

and l ′
� in the execution from l� . More concisely, the executions of �1;�2 in l� and l� might

have been constructed as follows:

〈�1, l�〉 →Δ {l ′} ∧ 〈�2, l
′〉 →Δ {l ′

�} ⇒ 〈�1;�2, l�〉 →Δ {l ′
�}

〈�1, l�〉 →Δ {l ′} ∧ 〈�2, l
′〉 →Δ {l ′

�} ⇒ 〈�1;�2, l�〉 →Δ {l ′
�}

In this case, our intermediate set of states between�1 and�2 is Ω , {l ′}. To apply our induction
hypothesis for �2, we need to find a function (that maps l ′ to both {l ′

�} and {l ′
� }, as required

by our assumption. To solve this issue, we explicitly keep track of all past states. In this way, our

1:16 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

intermediate set of states for the previous example is Ω , {([l�], l
′), ([l�], l

′)}, which allows
us to define a function (such that (([l�], l

′) = {l ′
�
} and (([l�], l

′) = {l ′
�
}, allowing us to

apply our induction hypothesis and prove the sequential composition case.

Completeness. To show that our operational and axiomatic semantics are equivalent, we also
prove the following completeness property (whose proof is less involved than for soundness):

Theorem 5 (Completeness). Assume Δ ⊢ [%] � [&], and let l ∈ % such that stable(l). Then there

exists (such that 〈�,l〉 →Δ (and (⊆ & .

3.4 ViperCore: Instantiating CoreIVL with Viper

To show the practical usefulness of CoreIVL, we instantiated it for the Viper language. We call
this instantiation ViperCore, and we use it in §4 and §5. To instantiate the framework presented
in this section, one needs (1) an IDF algebra, (2) a type of custom statements �′, (3) operational
and axiomatic semantic rules for each custom statement, and (4) proofs that those operational and
axiomatic semantic rules are compatible with our framework (i.e., soundness and completeness
for the custom semantic rules, and a proof that the operational semantics of custom statements
preserves stability).
We instantiate (1) with the IDF algebra ΣIDF defined in §3.1, where the set ! of heap locations is

the set of pairs of a reference and a field (represented by a string). For (2), we add field assignments
as �′

F (41 .5 := 42), where 41 and 42 are semantic expressions that evaluate to a reference and
a value, respectively, and 5 is a field. The field assignment 41.5 := 42 is deterministic. In an initial
state (f, (ℎ, c)), it reduces to the singleton set {(f, (ℎ[(A , 5) ↦→ E], c))} if 41 evaluates to a reference
A , 42 evaluates to a value E , and c ((A , 5)) = 1. This semantics is reflected both in its corresponding
operational and axiomatic semantic rules (3), and the associated proofs (4) are straightforward.
Moreover, we have also connected the deep embedding of the Viper language developed by

Parthasarathy et al. [42] (which we leverage in the next section) to ViperCore, by defining a func-
tion ↓� that converts their syntactic statements, expressions and assertions into semantic Viper-
Core statements, expressions and assertions.

4 Back-End Soundness

In this section, we show how our framework enables formalizing the soundness of different back-
end verifiers. We prove the soundness of two fundamentally different verification algorithms com-
monly used in practice: symbolic execution and verification condition generation.We connect both
to the same instantiation of CoreIVL, namely ViperCore introduced in §3.4. This demonstrates that
CoreIVL’s semantics can accommodate fundamentally different verification algorithms.
Symbolic execution is a common verification strategy of separation logic-based verifiers [5, 28,

48]. §4.1 introduces a symbolic execution back-end for ViperCore. Its design follows Viper’s sym-
bolic execution back-end [49], but it is formalized as a function inside Isabelle/HOL. The main
result of §4.1 is a soundness proof of this symbolic execution against the operational semantics
of ViperCore, showing how CoreIVL is general enough to justify widely-used symbolic execution
algorithms.
In §4.2 we connect ViperCore to the formalization by Parthasarathy et al. [42] of Viper’s verifi-

cation condition generation (VCG) back-end, which translates an input Viper program to Boogie.7

This formalization includes a formal operational semantics of Viper that we call VCGSem. Unlike
ViperCore, which is designed to capture the verification strategies of multiple back-ends, VCGSem

7This work provides a proof-producing version of Viper’s VCG back-end that generates a certificate in Isabelle for each
successful verification, but not a general soundness proof.

Formal Foundations for Translational Separation Logic Verifiers (extended version) 1:17

f : SymState ::= {store : Var ⇀ SymExpr, pc : SymExpr, heap : List(Chunk)}

C ::= G | ; | ⊙ C | C ⊕ C where ⊙ ∈ {¬,−, . . .} and ⊕ ∈ {∧,∨,=, +,−, . . .}

2 : Chunk ::= {recv : SymExpr, field : FieldName, perm : SymExpr, val : SymExpr}

sexec f � ,

sproduce f � if � = inhale �

sconsume f � (_f. scleanup f) if � = exhale �

sexp f 4 (_f C . sexec pc_add(f, C) �1 if � = (if 4 then �1 else �2)

∧ sexec pc_add(f, ¬C) �2)

. . .

sproduce f (acc(4A .5 , 4?)) , sexp f 4A (_f CA . sexp f 4? (_f C? . chunk_add f {CA , 5 , C? , fresh}))

sconsume f (acc(4A .5 , _)) , sexp f 4A (_f CA . extract f CA 5 _ (_f 2. chunk_add f 2{perm := 2.perm/2}))

Fig. 8. Symbolic states and excerpts of sexec, sproduce, and sconsume. The full definition is in Appendix A.

is specific to the verification strategy of the VCG back-end. For example, VCGSem uses a total heap
(i.e., all possible locations on the heap store a value), while ViperCore is based on a partial heap
(which is important to capture existing symbolic execution algorithms). Moreover, VCGSem uses
(constrained) demonic choice when exhaling wildcard permissions, while ViperCore uses angelic
choice. Despite these differences, we show that ViperCore’s (and thus also CoreIVL’s) operational
semantics is general enough to capture VCGSem, which embodies Viper’s VCG back-end.
We have chosen these two back-ends since they implement very different proof search algo-

rithms: The symbolic execution algorithm manipulates a symbolic state including a list of heap
chunks, while the VCG back-endmaps to Boogie codewhose operations are embodied byVCGSem,
a big-step operational semantics with a total heap. These back-ends show CoreIVL’s generality
for justifying multiple common verification strategies. A key aspect that enables this generality
is CoreIVL’s use of angelic choice. Concretely, the two back-ends use different strategies for ex-
haling wildcard permissions (the symbolic execution halves the permission of one heap chunk
while VCGSem demonically chooses a suitably-constrained permission amount). Yet, CoreIVL can
capture both strategies thanks to its use of angelic choice.

4.1 Symbolic Execution

We formalized a symbolic execution back-end for ViperCore in Isabelle/HOL based on the descrip-
tion of Viper’s back-end by Schwerhoff [49] while also taking inspiration from the (on paper)
formalization of symbolic execution by Zimmerman et al. [62].

Symbolic states. The symbolic state tracked during verification is defined in Fig. 8. It consists of
the following components:8 (1) A symbolic store (store) mapping variables to symbolic expressions,
(2) a path condition (pc)—which is a symbolic expression tracking logical facts that hold in the
current branch of the program—, and (3) a symbolic heap (heap) given by a list of heap chunks.
Symbolic expressions C consist of symbolic variables G , literals ; (e.g., for concrete integers, booleans
or permission amounts), unary operations ⊙ C , and binary operations C ⊕ C . We define a function
pc_add(f, C) that adds the (boolean) symbolic expression C to the path condition of f .
The most crucial part of symbolic states is the symbolic heap. As is common [4, 28, 49], we rep-

resent the symbolic heap as a list of (heap) chunks. Conceptually, each heap chunk corresponds

8For simplicity, we omit components for generating fresh symbolic variables and tracking type information.

1:18 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

to an acc(4A .5 , 4?) resource, which we call an acc-resource in this section, together with an asso-
ciated value. Concretely, a chunk 2 is a record with four fields, as shown in Fig. 8. recv and field
describe the heap location that the chunk belongs to, perm describes the permission of the chunk,
and val gives the (symbolic) value of the heap location. A symbolic heap is a list of chunks. Note
that this list can contain multiple chunks for the same location (cf. state consolidation, described
shortly).

Defining the symbolic execution. Our symbolic execution is defined via the sexec function
for symbolically executing a statement � . It delegates calls to: the sproduce function (for inhaling
an assertion �), the sconsume function (for exhaling an assertion �), the scleanup function (for
removing empty heap chunks after exhaling an assertion), and the sexp function (for symbolically
evaluating an expression 4). Each of these functions are formalized as functions in Isabelle/HOL
and can be executed inside the prover to verify a concrete program. The parts of these functions
relevant to this chapter are shown in Fig. 8. The full definition can be found in Appendix A. Follow-
ing Schwerhoff [49], these functions are written in continuation passing style with continuation
 . This allows us to easily split the verification in multiple branches as shown e.g., by the if-case
of sexec. We now highlight the most important aspects of the symbolic execution.

Representing different state consolidation algorithms. After inhaling an acc-resource and
adding it to the list of heap chunks, the symbolic execution might try to merge chunks for the same
location and deduce additional information (e.g., that for chunks of the same location their permis-
sions sum to at most 1 and their values match). This process, called state consolidation [49], is in-
corporated into the chunk_add function, used to model inhaling an acc-resource during sproduce:

chunk_add f 2 , consolidate f{heap := 2 :: f.heap}

Since there are many possible ways to implement state consolidation [49] (e.g., merging chunks
eagerly or lazily), we do not prescribe a specific implementation of the consolidate function, but
instead characterize consolidate semantically:9

consolidate f , ∀l. l ∼sym f ⇒ ∃f ′. l ∼sym f ′ ∧ f ′

Concretely, when executing consolidate, one is given a ViperCore state l related to the current
symbolic execution state f (using the ∼sym relation) and one can pick an arbitrary new state f ′ as
long as it is related to the same ViperCore state l . Intuitively, l ∼sym f is defined by stating that
there exists a mapping from symbolic variables to concrete values, which can be simply extended
to a mapping from f to l . The existential quantifier allows us to represent many different state
consolidation algorithms. However, this generality also means that consolidate cannot be executed
directly. Instead, one can provide a concrete algorithm and prove it sound against consolidate (our
implementation uses the trivial algorithm that does not consolidate at all). However, the soundness
proof of our symbolic execution works for any valid consolidation algorithm.

Soundness. We prove sexec sound against the operational semantics of ViperCore:10

Theorem 6 (Soundness of sexec). For each (syntactic) statement � , ViperCore state l and symbolic
state f related via l ∼sym f , if sexec f � evaluates to true, then ↓� is correct for the initial state l .

↓� is the compilation function from syntactic statements to ViperCore statements described
in §3.4. The operational semantics of CoreIVL is well-suited for this soundness proof since the
symbolic execution also traverses the statements in an operational way, and it is straightforward
to relate one ViperCore state to one symbolic execution state via l ∼sym f .

9The actual definition of consolidate is slightly different to decouple the definition of the symbolic execution and ViperCore.
10We omit side-conditions about typing to avoid clutter.

Formal Foundations for Translational Separation Logic Verifiers (extended version) 1:19

Soundness of exhaling wildcards via angelic choice. Let us highlight the most interesting
part of this soundness proof: exhaling wildcards. Exhaling assertions is handled by the sconsume
function in Fig. 8. When exhaling an acc-resource with a wildcard permission amount, sconsume
finds and removes a matching chunk from the symbolic heap using the extract function.11 Then it
adds the chunk back with its permission amount halved. Representing this algorithm directly in
ViperCore would be impossible since there might be multiple heap chunks for the same location
and thus the amount of permissions removed depends on the structure of the symbolic heap. This
structure is not visible in ViperCore, which tracks only a single concrete heap. However, we can
still prove this algorithm sound against ViperCore. The angelic choice in the operational semantics
allows us to pick any non-zero permission amount to remove when constructing the ViperCore
execution, in particular, the amount that was chosen by the execution of sexec. This shows how an-
gelic choice gives CoreIVL the flexibility to be used in the soundness proof for different verification
algorithms, even some that cannot be represented directly in the CoreIVL.

4.2 Verification Condition Generation

We now describe how we connect the ViperCore instantiation of CoreIVL to the VCGSem formal-
ization of Viper’s VCG, which is expressed as an operational big-step semantics 〈�, fC 〉 →VCG A .
Here, � is a (deeply embedded) Viper statement, fC the initial VCGSem state consisting of a total
heap (mapping all locations to values) and a permission mask (mapping all locations to permission
amounts), and A is an outcome, which can be either failure F,magicM, or a normal outcome N(f ′C).

12

The key result of Parthasarathy et al. [42] is that for each successful verification run of the VCG
algorithm, they provide a proof that the VCGSem execution does not fail: ¬(〈�, fC 〉 →VCG F).
Whatmakes the connection betweenVCGSem and ViperCore interesting is that VCGSemmakes

various design choices that are specific to the Viper back-end that it was designed to represent. For
instance, VCGSem defines the exhale of a wildcard to demonically remove a non-zero permission
amount smaller than the currently held amount, which precisely mimics Viper’s VCG. Morever,
VCGSem chooses a total heap representation for the Viper states, where all locations store a value
(VCGSem checks that only locations with non-zero permission are accessed), because this is how
Viper’s VCG back-end represents the heap. In contrast, ViperCore uses a more standard partial
heap introduced in §3.1. By proving VCGSem sound against ViperCore, we show that CoreIVL as
a general semantics for verification algorithms can capture this preexisting verification algorithm.
The most significant challenge in the proof connecting VCGSem and ViperCore is the difference
in their heap representations. We explain this challenge and our solutions next.

Total vs. partial heap. The seemingly superficial difference between VCGSem’s total heap and
ViperCore’s partial heap has far-reaching ramifications: fundamentally it means that a ViperCore
execution does not correspond to a single VCGSem execution but a set of VCGSem executions.
The reason for this mismatch is in the semantics of exhale. When exhaling all permissions to

a location and later inhaling permissions to this location again, a Viper semantics needs to pick
a fresh value for the location such that one cannot unsoundly assume that the value remained
unchanged between the inhale and the exhale. This requirement is naturally expressed with the
partial heap of ViperCore: when exhaling all permissions to a location in ViperCore, the location
is removed from the partial heap and when new permissions for the location are inhaled, it gets
re-added with a (non-deterministically chosen) fresh value. However, since VCGSem uses a total
heap, it cannot remove locations. Instead, VCGSem non-deterministically assigns these locations

11Similar to consolidate, extract is characterized semantically and we provide a default implementation of extract that
queries Isabelle/HOL’s solvers to find the first matching chunk.
12We omit typing contexts in this section to avoid clutter.

1:20 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

new values after the exhale and leaves the heap unchanged in the inhale. Consequently, VCGSem
and ViperCore apply non-deterministic choice at different program points: VCGSem already picks
a fresh value during the exhale, while ViperCore chooses it during the inhale. To address this
mismatch13, we relate a ViperCore execution not to a single VCGSem execution but to a set of
VCGSem executions that represent all possible choices for the non-determinism.

Soundness. We prove the following soundness statement for VCGSem:14

Theorem 7 (Soundness of VCGSem). For all (syntactic) statements � and ViperCore states l , if we

have ¬(〈�, fC 〉 →VCG F) for all VCGSem states fC related to l , ↓� is correct for the state l .

Intuitively, this theorem allows us to transform a proof about a successful verification by the
VCG back-end into a verification proof according to the ViperCore semantics. Note that the theo-
rem relates the ViperCore state to a set of VCGSem states. In fact, to prove Thm. 7 via induction, we
need to prove a stronger lemma that also requires us to construct all possible VCGSem executions
for the statement corresponding to the ViperCore execution.

Summary. Wehave demonstrated in this section howCoreIVL’s operational semantics helps us
solve Challenge 2, by being general enough to capture the two predominant verification algorithms
back-ends implemented in practice: our new formalization of symbolic execution in §4.1 and the
preexisting formalization of Viper’s VCG back-end [42] in §4.2.

5 Front-End Soundness

In this section, we show how our axiomatic semantics addresses Challenge 3 from §1, by formaliz-
ing and proving sound a concrete front-end translation into ViperCore for a parallel programming
language ParImp with loops, shared memory, and dynamic memory allocation and deallocation.
We define the language and an IDF-based program logic in §5.1. In §5.2, we define the translation
of annotated ParImp programs into ViperCore and prove it sound using the axiomatic semantics
of ViperCore. While the soundness proof is specific to this translation, it highlights key reusable
ingredients and demonstrates how our axiomatic semantics for CoreIVLmakes such proofs simple.

5.1 An IDF-Based Concurrent Separation Logic

Our parallel programming language ParImp is defined as

� F G := 4 | G := A .E | A .E := 4 | A := alloc(4) | free(A) | �;� | if(1) {� } else {� } | � | | � | while (1) {� } | skip

� ranges over ParImp statements, 4 over arithmetic expressions,1 over boolean expressions, G over
integer variables, A over reference variables, and E is a fixed field (for simplicity). The statement
G := A .E loads the value of the field E of the reference A into the variable G , while A .E := 4 stores the
value of the expression 4 in the field E of the reference A . The statement A := alloc(4) allocates
a new reference with the value of the expression 4 , and free(A) deallocates the reference A . The
other statements are standard. We use a standard small-step semantics 〈�, f〉 → 〈�′, f ′〉 where
f and f ′ are pairs of a store (a partial mapping from variables to values) and a heap (a partial
mapping from pairs of an address and a field to values).

An IDF-based program logic for ParImp. We build and prove sound a program logic analo-
gous to CSL for ParImp based on our IDF state model ΣIDF (defined in §3.1). Our framework also
supports standard separation logic, but connecting an IDF logic to ViperCore allows us to focus
on the most interesting aspects of the soundness proof.

13The mismatch could also be addressed by changing VCGSem to assign a fresh value during inhale. However, our goal
is to capture the verification strategies of existing back-ends.
14For readability, we omit some technical assumptions about stability of l and well-typedness.

Formal Foundations for Translational Separation Logic Verifiers (extended version) 1:21

Frame

Δ ⊢CSL [%] � [&] selfFraming(%) selfFraming(�) fv (�) ∩mod (�) = ∅

Δ ⊢CSL [% ∗ �] � [& ∗ �]

Par

mod (�;) ∩ (fv (�A) ∪ fv (&A)) = ∅ mod (�A) ∩ (fv (�;) ∪ fv (&;)) = ∅

Δ ⊢CSL [%;] �; [&;] Δ ⊢CSL [%A] �A [&A] selfFraming(%;) selfFraming(%A)

Δ ⊢CSL [%; ∗ %A] �; | | �A [&; ∗&A]

Seq

Δ ⊢CSL [%] �1 ['] Δ ⊢CSL ['] �2 [&]

Δ ⊢CSL [%] �1 ;�2 [&]

Cons

Δ ⊢CSL [% ′] � [& ′] % |= % ′ & ′ |= &

Δ ⊢CSL [%] � [&]

If
Δ ⊢CSL [% ∧ 1] �1 [&] Δ ⊢CSL [% ∧ ¬1] �2 [&]

Δ ⊢CSL [%] if(1) {�1 } else {�2 } [&]

Alloc

A ∉ fv (4)

Δ ⊢CSL [⊤] r := alloc(e) [acc(r.v) ∗ r.v = e]

While

Δ ⊢CSL [� ∧ 1] � [�]

Δ ⊢CSL [�] while (1) {� } [� ∧ ¬1]

Load

% |= acc(r.v, _)

Δ ⊢CSL [%] x := r.v [∃D. % [D/G] ∗ x = r.v]

Store

Δ ⊢CSL [acc(r.v)] r.v := e [acc(r.v) ∗ r.v = e]

Free

Δ ⊢CSL [acc(q.v)] free(q) [⊤]

Assign

Δ ⊢CSL [% [G/4]] x := e [%]

Skip

Δ ⊢CSL [%] skip [%]

Fig. 9. Inference rules of our IDF-based CSL.

Our program logic judgment is written Δ ⊢CSL [%] � [&], where % and & are ViperCore asser-
tions (i.e., sets of IDF states). The most important rules of our program logic are given in Fig. 9.
The rules Seq, Cons, If, While, Free, Assign, and Skip, are standard. The rules Alloc, Store, Load, Frame,
and Par are analogous to the standard CSL rules, but adapted to our IDF setting. In particular, the
rule Frame requires the precondition % and the frame � to be self-framing. Without this restriction,
one could for example use % , (acc(r.v)) and � , (r.v = 5) to unsoundly derive the invalid
triple Δ ⊢CSL [(acc(r.v)) ∗ (r.v = 5)] r.v := 3 [(acc(r.v) ∗ r.v = 3) ∗ (r.v = 5)] (whose
postcondition is not satisfiable) using the rules Frame and Store. Similarly, the rule Par requires the
preconditions %; and %A to be self-framing. Finally, the rule Load allows arbitrary preconditions % ,
as long as % asserts some permission to read r.v.
We have proved in Isabelle the soundness of this IDF-based program logic, which we state as

follows (the proof of this theorem is an adaption of the proof fromVafeiadis [56] to our IDF setting):

Theorem 8 (Adequacy). Let� be a well-typed program, and % and& be predicates on ParImp states

(i.e., without permissions). If the triple Δ ⊢CSL [%] � [&] holds, and if f is a well-typed state such

that % (f), then executing � in the state f will not abort nor encounter any data race, and for all f ′

such that 〈�, f〉 →∗ 〈skip, f ′〉, we have & (f ′).

5.2 A Sound Front-End Translation

Building on the previously-defined IDF-based program logic, we define a standard front-end trans-
lation from ParImp programs with annotations into ViperCore programs, shown in Fig. 10. This
translation was illustrated in the example in Fig. 2 from §2. The translation function J_K takes as

1:22 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

JA := alloc(4)K , ((havoc A ; inhale acc(A .E) ∗ A .E = 4), ∅)

Jfree(A)K , (exhale acc(A .E),∅)

J�1 ;�2K , ((J�1K.1; J�2K.1), (J�1K.2 ∪ J�2K.2))

Jif(1) {�1 } else {�2 }K , (if(1) {J�1K.1} else {J�2K.1}), (J�1K.2 ∪ J�2K.2))

JskipK , (skip,∅)

JG := 4K , (G := 4,∅)

JA .E := 4K , (A .E := 4,∅)

JG := A .EK , (G := A .E,∅)

J�; | | �A K , ((exhale %; ∗ %A ; havoc mod (�;) ∪mod (�A) ; inhale &; ∗&A),

{inhale %; ; J�; K.1; exhale &; } ∪ {inhale %A ; J�A K.1; exhale &A } ∪ J�; K.2 ∪ J�A K.2)

Jwhile (1) {� }K , ((exhale � ; havoc mod (�) ; inhale � ∧ ¬1),

{inhale � ∧ 1; J�K.1; exhale � } ∪ J�K.2)

Fig. 10. Front-end translation from ParImp to ViperCore. The translation function J_K takes as input an
annotated ParImp statement� and returns a pair of a ViperCore statement and a set of ViperCore statements.
We write J�K.1 and J�K.2 to denote its first and second components, respectively. Assertions %; , %A , &; , and
&A for the parallel composition and � for the while loop are annotations provided by the user, which are all
required to be self-framing. The notation havoc + , where+ is a set of variables {G1, . . . , G=}, is a shorthand
for havoc G1; . . . ; havoc G= .

input an annotated ParImp statement � and yields a pair of a ViperCore statement and a set of

ViperCore statements. The first component, written J�K.1, corresponds to the main translation of
� , while the second component, written J�K.2, corresponds to the set of auxiliary Viper methods
generated by the translation along the way. Auxiliary methods are generated for loops and parallel
compositions only. Methods l and r in Fig. 2 are examples of such auxiliary methods.
The translation of field and variable assignments is straightforward. The translation of sequen-

tial composition and conditional statements is also straightforward since they use the correspond-
ing sequential composition and conditional statements of ViperCore, and collect the auxiliary
methods generated by the translation of the sub-statements. The translation of allocation and
deallocation statements corresponds to the rules Alloc and Free from Fig. 9.
The translation of parallel composition and while loops is more involved, but they follow the

same pattern. First, the premises of the relevant rules (Par andWhile) are checkedby generating aux-
iliary methods, which first inhale the relevant precondition, then translate the relevant statement,
and finally exhale the relevant postcondition. For example, the premise Δ ⊢CSL [� ∧1] � [�] of the
ruleWhile is checked by generating the auxiliary method inhale �∧1; J�K.1; exhale � . We call this
pattern the inhale-translation-exhale pattern. Then, the main translation follows the conclusion of
the rule, by exhaling the precondition, havocking the modified variables, and inhaling the postcon-
dition. For example, themain translation of the loop while (1) {�} is (exhale � ; havoc mod (�); inhale �∧
¬1), reflecting the conclusion Δ ⊢CSL [�] while (1) {�} [� ∧ ¬1] of the rule While. We call this
pattern, which we have already seen in §2.4, the exhale-havoc-inhale pattern. Those two patterns
are not specific to our translation, but are general patterns that can be found in many front-end
translations.

Soundness. We assume that the ParImp statement � we want to verify is annotated with a
precondition % and a postcondition & . In this case, we add inhale % before the main translation
(as we did in Fig. 2), and exhale & afterwards, following the inhale-translation-exhale pattern. Our
complete front-end translation yields the set of Viper statements {inhale % ; J�K.1; exhale &} ∪
J�K.2. Our translation is sound, as stated in the following theorem:

Theorem9 (Soundness of the front-end translation). Let� be a front-end statement, and % and& be

assertions. If (1) the Viper statement inhale % ; J�K.1; exhale & is valid, and (2) all Viper statements
in J�K.2 are valid, then Δ ⊢CSL [%] � [&] holds.

Formal Foundations for Translational Separation Logic Verifiers (extended version) 1:23

To prove this theorem, we show that the translation of every front-end statement� is backward-
convertible (or convertible in short), which we write as convertible(C) . Intuitively, this means that if
the translation of the front-end statement into ViperCore is valid (including all auxiliary ViperCore
methods) thenwe can convert the axiomatic semantics triple Δ ⊢CSL [%] J�K.1 [&] into a front-end
triple Δ ⊢CSL [%] � [&]. We formally express this property as follows:

convertible(C) ,
(
∀%,&. ((∀�E ∈ J�K.2. valid (�E)) ∧ Δ ⊢ [%] J�K.1 [&]) ⇒ Δ ⊢CSL [%] � [&]

)

This convertibility property combined with the following lemma allows us to prove Thm. 9:

Lemma 3 (Inhale-translation-exhale pattern). If (1) convertible(C) holds, (2) all auxiliary methods

from J�K.2 are valid, and (3) Δ ⊢ [%] inhale �; J�K.1; exhale � [&] holds, then Δ ⊢CSL [% ∗

�] � [� ∗&] holds.

Proof. By inverting the rules SeqAx, InhaleAx, and ExhaleAx, we get the existence of ' such that
(a) Δ ⊢ [% ∗�] J�K.1 ['] holds and (b) ' |= � ∗& . By applying convertible(C) , and from (2) and (a),
we get Δ ⊢CSL [% ∗ �] � [']. We conclude by combining (b) with the rule Cons. �

The proof of this lemma is straightforward thanks to CoreIVL’s axiomatic semantics. Relating
CSL to an operational IVL semantics would require substantially more effort to re-prove standard
reasoning principles, which we prove once and for all in the equivalence proof of the two IVL
semantics.
We now need to prove convertible(C) for all � , which we do by structural induction. The in-

ductive cases for most statements are straightforward; the interesting cases are allocation, deallo-
cation, parallel compositions, and while loops. As explained above, the main translation of those
statements follows the same exhale-havoc-inhale pattern, which we have already seen in §2.4, and
prove below:

Lemma 4 (Exhale-havoc-inhale). Let % and & be self-framing assertions.15 Assume that

Δ ⊢ [�] exhale % ; havoc G1; . . . ; havoc G=; inhale & [�] holds, where {G1, . . . , G=} = mod (�). If

Δ ⊢L [%] � [&] holds, and if L has a frame rule and a consequence rule, then Δ ⊢L [�] � [�] holds.

Proof. By inverting the rule SeqAx, we obtain � such that (a) Δ ⊢ [�] inhale & [�] and
(b) Δ ⊢ [�] exhale % ; havoc G1; . . . ; havoc G= [�] hold. From (b), by inverting the rules SeqAx

and HavocAx, we obtain an assertion ' such that (c) Δ ⊢ [�] exhale % ['] holds, (d) fv(�) ∩
{G1, . . . , G=} = ∅, and (e) ' |= � .16 By applying the frame rule with � and Δ ⊢L [%] � [%], where
the side condition is justified by (d), we get Δ ⊢L [% ∗ �] � [& ∗ �]. Finally, we obtain � = � ∗&

from (a) (by inverting the rule InhaleAx), and � |= % ∗ � from (c) (by inverting the rule ExhaleAx)
and (e); applying the consequence rule yields Δ ⊢L [�] � [�].

�

This proof shows that, in this pattern, the role of the exhale statement, followed by a sequence
of havoc statements, is to compute (implicity) the suitable frame for the front-end statement. The
inhale statement afterwards then adds the postcondition of the front-end statement to the frame.
convertible(free(r)) and convertible(r := alloc(e)) follow directly from the lemma above, by

observing that inhale ⊤ and exhale ⊤ are equivalent to skip (and so omitted when encoding).
To prove convertible(while (b) {C}) (assuming� is convertible), we first apply Lemma 3 on the

auxiliary method inhale � ∧1; J�K.1; exhale � to get Δ ⊢CSL [� ∧1] � [�]. We then apply the rule
While to get Δ ⊢CSL [�] while (1) {�} [� ∧ ¬1]. Finally, we conclude by applying Lemma 4 on the
main translation (exhale � ; havoc mod (�); inhale � ∧ ¬1).

15This condition is trivially true for standard SLs.
16More precisely, we obtain � = (∃G1, . . . , G= . ') , from which (d) and (e) follow.

1:24 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

The proof of convertible(C1 | |C2) proceeds similarly, by first applying Lemma 3 on the two aux-
iliary methods (corresponding to the two premises of the rule Par), then applying the rule Par, and
concluding by applying Lemma 4. This concludes the proof of convertible(C) for all � , and thus
the proof of Thm. 9.

Summary. We have demonstrated how the axiomatic semantics from §3.3 helps us solve Chal-
lenge 3, by allowing us to prove general lemmas about patterns that are common in front-end
translations in a simple and straightforward manner, and to prove the soundness of a concrete
front-end translation for a parallel programming language with multiple features not present in
the IVL (e.g., loops, dynamic memory allocation and deallocation).

6 Related Work

Semantics of SL-based IVLs. There are two recent formalizations [42, 62] of subsets of Viper [38].
However, each of them exposes implementation details of a Viper back-end, which does not allow
the semantics to be connected to diverse back-ends and also not easily to front-ends. In particu-
lar, Parthasarathy et al. [42] use a total heap representation reflecting the Viper VCG back-end
that translates to Boogie (as discussed in §4.2), and Zimmerman et al. [62] reflect Viper’s symbolic
execution back-end.
GIL [35], which is the intermediate language of Gillian [48, 35], is parametric in its (1) state

model, which must be provided as a PCM (supporting SL but not IDF states in contrast to Cor-
eIVL), (2) memory actions operating on the state model, and (3) core predicates describing atomic
assertions on the memory such as a SL points-to assertion. For each state instantiation, tool de-
velopers targeting GIL must specify produce and consume actions for each core predicate, which
correspond to inhale and exhale operations in CoreIVL. Together with instantiated parameters,
Maksimovic et al. [35] provide an operational semantics for the symbolic execution of GIL. Since
the instantiated state effectively reflects the symbolic state on which the symbolic execution tool
operates, a GIL instantiation essentially represents the back-end semantics. This is in contrast to
our CoreIVL, which allows abstracting over multiple back-ends.
Dardinier et al. [15] define the semantics of a parametric verification language similar to CoreIVL

for the purpose of showing formal results on method call inlining in automated SL verifiers. Their
semantics is meant to capture IVL back-endswith their heuristics. That is, an instantiation reflects a
single back-end. As a result, in contrast to CoreIVL, their semantics has no angelic nondeterminism.
Moreover, their notion of separation algebra to represent states does not support IDF.

Proofs connecting a front-end with an IVL. Summers and Müller [53] and Wolf et al. [61]
reason about the correctness of translations into a SL-based IVL by providing proof sketches for
mapping a correct Viper program to a proof for Hoare triples in the RSL weak memory logic [57]
and the TaDa logic [13], respectively. However, the reasoning is done via proof sketches on paper,
which explore only the high-level reasoning principles and thus avoid many of the complexities
involved in a fully formal proof. Neither of these works formally reasons about the underlying
Viper semantics; they describe the behavior of Viper encodings informally.

Maksimovic et al. [36] briefly describe a parametric soundness framework for GIL (the interme-
diate language of Gillian [48, 35]). They show that if certain conditions hold on the instantiations
of the GIL parameters, then the resulting symbolic execution is sound w.r.t. a concretization func-
tion on symbolic states. However, they do not provide an IVL semantics like CoreIVL that abstracts
uniformly over multiple back-ends. Additionally, since GIL does not support concurrency [48, 35],
their soundness framework cannot reason about the encoding of front-end languages such as
ParImp described in §5.

Formal Foundations for Translational Separation Logic Verifiers (extended version) 1:25

There is also work proving the soundness of front-end translations to IVLs not based on SL [58,
3, 27, 23, 42]. However, in contrast to our setting, the corresponding translations do not reflect
rules in a front-end program logic. As a result, the soundness proofs work naturally at the level
of an operational semantics for the front-end and IVL. Examples include translations from the
Dminor data processing language to the Bemol IVL [3], from C to the WhyCert IVL (inspired by
the Why3 IVL) [27], and from Viper to Boogie [42] (in the case of the Viper-to-Boogie translation,
Viper is the front-end and Boogie is the target IVL).

Proofs connecting an IVL with a back-end. Parthasarathy et al. [42] show the soundness of
the Viper back-end that translates to Boogie. In our work, we show that their back-end specific
semantics respects our more generic version (§4.2). The work most closely related to the symbolic
execution back-end presented in §4.1 is Zimmerman et al. [62]’s formalization of a variant of
Viper’s symbolic execution back-end targeted at gradual verification. Due to their focus on gradual
verification, they only target a simplified model of Viper that (unlike our symbolic execution) does
not support fractional permission. As a consequence, they can use a simpler implementation that
does not rely on continuation passing style and they can ignore some of the complexities described
in §4.1 such as state consolidation. Also they formalize the symbolic execution via a derivation
tree, while we implement it as an Isabelle/HOL function. Vogels et al. [60] prove a formalization
of VeriFast’s symbolic execution sound. Compared to our work, they do not have a semantics that
captures different verification algorithms, or supports IDF or fractional permissions.
There is also work on non SL-based IVL back-end proofs. These back-ends typically have simple

state models and use different algorithms compared to SL-based back-ends. For example, Parthasarathy
et al. [43] generate soundness proofs for Boogie’s VCG, and Vogels et al. [59] prove a VCG for a
similar IVL sound once and for all. Garchery [25] and Cohen and Johnson-Freyd [12] validate
certain logical transformations performed in the Why3 IVL verifier.

Angelic non-determinism. Angelic non-determinism [22] has been widely used from encod-
ing partial programs [7], to representing interaction between codewritten inmultiple languages [47,
26], to encoding specifications [22, 52]. However, to the best of our knowledge, our work is the
first to use angelic non-determinism to abstract over different verification algorithms. Vogels et al.
[60] and Song et al. [52] both also use angelism for exhale, but do not abstract over or formally
connect with diverse back-end algorithms, as we do. Instead, Vogels et al. [60] use angelism to rep-
resent a symbolic execution algorithm, while Song et al. [52] use angelism to encode the transfer
of resources in a refinement calculus.

Implicit dynamic frames (IDF). IDF was originally presented with a fixed resource model (i.e.,
full ownership to a heap location) and where the heap is represented as a total mapping from heap
locations to values [51]. Parkinson and Summers [41] formally showed the relationship between
IDF and SL by defining a logic based on total heaps and separate permission masks that captures
both. They also consider fixed resource models of IDF and SL (i.e., fractional ownership to a heap
location [8]). Our work generalizes the notion of a separation algebra [9, 19] to capture arbitrary
resource models for IDF and SL in the same framework. In particular, the algebra does not fix a
particular state representation. This enables, for instance, a partial heap instantiation for IDF that
we use to formalize Viper’s state model (§3.4). SteelCore [55] is a frameworkwith an extensible CSL
to reason about concurrent F* [54] programs. The extensibility of the framework is in particular
demonstrated by allowing IDF-style preconditions of the restricted form % ∗ 1 (compared to the
more general IDF assertions supported in our work), where % is an SL assertion, and 1 is a heap-
dependent boolean expression framed by % (and similarly for postconditions).

1:26 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

Other approaches. In this paper, we showed how one can formally establish the soundness of
translational SL verifiers, but there are also other approaches to building automated SL verifiers
and establishing their soundness. Steel [24] is an SL-based proof-oriented programming language
in F*. Steel programs are automatically proved correct using a type checker that is proved sound
against SteelCore; the type checker uses an SMT solver to discharge proof obligations. Sammler
et al. [46] propose an approach to building sound verifiers that requires writing the verifier in a
domain specific language called Lithium. Verifiers in Lithium can be automatically executed inside
the Coq proof assistant and produce a foundational proof of correctness. Lithium-based verifiers
are not translational, but work directly on the source-language program.

7 Conclusion

We have presented a formal framework for reasoning about the soundness of translational separa-
tion logic verifiers. We have defined an abstract IVL, whose state model can be instantiated with
any IDF algebra. An operational and an equivalent axiomatic semantics allow one to connect the
IVL to back-ends and front-ends, resp. Crucially, the semantics leverage dual non-determinism to
capture different proof strategies implemented by different back-end verifiers. We have illustrated
the usefulness of our formal framework by instantiating it with elements of Viper, connecting it to
two Viper back-ends, and using it to prove soundness of a front-end translation for an IDF-based
concurrent separation logic. The main direction for future work is to use our formal framework
to model additional IVLs and prove soundness of complex translational verifiers.

Acknowledgments

We thank Ellen Arlt and Hongyi Ling for their useful feedback on the framework presented in this
paper. This work was partially funded by the Swiss National Science Foundation (SNSF) under
Grant No. 197065.

References

[1] Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J. Summers. 2019. Leveraging Rust Types
for Modular Specification and Verification. Proc. ACM Program. Lang. 3, OOPSLA, Article 147, 30 pages.
https://doi.org/10.1145/3360573

[2] Sacha-Élie Ayoun, Xavier Denis, PetarMaksimovic, and PhilippaGardner. 2024. A hybrid approach to semi-automated
Rust verification. CoRR abs/2403.15122 (2024). https://doi.org/10.48550/ARXIV.2403.15122 arXiv:2403.15122

[3] Michael Backes, Catalin Hritcu, and Thorsten Tarrach. 2011. Automatically Verifying Typing Constraints for a
Data Processing Language. In Certified Programs and Proofs (CPP), Jean-Pierre Jouannaud and Zhong Shao (Eds.).
https://doi.org/10.1007/978-3-642-25379-9_22

[4] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2005. Smallfoot: Modular Automatic Assertion
Checking with Separation Logic. In FMCO (Lecture Notes in Computer Science, Vol. 4111). Springer, 115–137.
https://doi.org/10.1007/11804192_6

[5] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2005. Symbolic Execution with Separation Logic.
In Programming Languages and Systems, Third Asian Symposium, APLAS 2005, Tsukuba, Japan, November 2-

5, 2005, Proceedings (Lecture Notes in Computer Science, Vol. 3780), Kwangkeun Yi (Ed.). Springer, 52–68.
https://doi.org/10.1007/11575467_5

[6] Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwijn. 2017. The VerCors Tool Set: Verification of
Parallel and Concurrent Software. In Integrated Formal Methods (IFM), Nadia Polikarpova and Steve Schneider (Eds.).
https://doi.org/10.1007/978-3-319-66845-1_7

[7] Rastislav Bodík, Satish Chandra, Joel Galenson, Doug Kimelman, Nicholas Tung, Shaon Barman, and Casey Rodarmor.
2010. Programming with angelic nondeterminism. In POPL. ACM, 339–352. https://doi.org/10.1145/1706299.1706339

[8] John Boyland. 2003. Checking Interference with Fractional Permissions. In Static Analysis (SAS), Radhia Cousot (Ed.).
55–72. https://doi.org/10.1007/3-540-44898-5_4

[9] Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. 2007. Local Action and Abstract Separation Logic. In
Logic in Computer Science (LICS). 366–375. https://doi.org/10.1109/LICS.2007.30

https://doi.org/10.1145/3360573
https://doi.org/10.48550/ARXIV.2403.15122
https://arxiv.org/abs/2403.15122
https://doi.org/10.1007/978-3-642-25379-9_22
https://doi.org/10.1007/11804192_6
https://doi.org/10.1007/11575467_5
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1145/1706299.1706339
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1109/LICS.2007.30

Formal Foundations for Translational Separation Logic Verifiers (extended version) 1:27

[10] Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W. Appel. 2018. VST-Floyd:
A Separation Logic Tool to Verify Correctness of C Programs. J. Autom. Reason. 61, 1-4 (2018), 367–422.
https://doi.org/10.1007/S10817-018-9457-5

[11] Adam Chlipala. 2011. Mostly-automated verification of low-level programs in computational separation logic.
In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation,

PLDI 2011, San Jose, CA, USA, June 4-8, 2011, Mary W. Hall and David A. Padua (Eds.). ACM, 234–245.
https://doi.org/10.1145/1993498.1993526

[12] Joshua M. Cohen and Philip Johnson-Freyd. 2024. A Formalization of Core Why3 in Coq. Proc. ACM Program. Lang.

8, POPL, Article 60 (jan 2024), 30 pages. https://doi.org/10.1145/3632902
[13] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA: A Logic for Time and Data

Abstraction. In European Conference on Object-Oriented Programming (ECOOP) (Lecture Notes in Computer Science,

Vol. 8586), Richard E. Jones (Ed.). Springer, 207–231. https://doi.org/10.1007/978-3-662-44202-9_9
[14] Thibault Dardinier, Peter Müller, and Alexander J. Summers. 2022. Fractional resources in unbounded separation

logic. Proc. ACM Program. Lang. 6, OOPSLA2 (2022), 1066–1092. https://doi.org/10.1145/3563326
[15] Thibault Dardinier, Gaurav Parthasarathy, and PeterMüller. 2023. Verification-Preserving Inlining in Automatic Sepa-

ration Logic Verifiers. Proc. ACM Program. Lang. 7, OOPSLA1, Article 102 (apr 2023). https://doi.org/10.1145/3586054
[16] Thibault Dardinier, Gaurav Parthasarathy, Noé Weeks, Peter Müller, and Alexander J. Summers. 2022. Sound Automa-

tion of Magic Wands. In Computer Aided Verification - 34th International Conference, CAV 2022, Haifa, Israel, August

7-10, 2022, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 13372), Sharon Shoham and Yakir Vizel (Eds.).
Springer, 130–151. https://doi.org/10.1007/978-3-031-13188-2_7

[17] Frank S. de Boer and Marcello M. Bonsangue. 2021. Symbolic execution formally explained. Formal Aspects Comput.

33, 4-5 (2021), 617–636. https://doi.org/10.1007/S00165-020-00527-Y
[18] Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. 2022. Creusot: A Foundry for the Deductive Verification

of Rust Programs. In International Conference on Formal Engineering Methods (ICFEM), Adrián Riesco and Min Zhang
(Eds.), Vol. 13478. 90–105. https://doi.org/10.1007/978-3-031-17244-1_6

[19] Robert Dockins, Aquinas Hobor, and Andrew W. Appel. 2009. A Fresh Look at Separation Algebras and Share
Accounting. In Asian Symposium on Programming Languages and Systems (APLAS), Zhenjiang Hu (Ed.). 161–177.
https://doi.org/10.1007/978-3-642-10672-9_13

[20] Marco Eilers, Malte Schwerhoff, and Peter Müller. 2024. Verification Algorithms for Automated Separation Logic
Verifiers. CoRR abs/2405.10661 (2024). https://doi.org/10.48550/ARXIV.2405.10661

[21] Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3 — Where Programs Meet Provers.
In European Symposium on Programming (ESOP), Matthias Felleisen and Philippa Gardner (Eds.).
https://doi.org/10.1007/978-3-642-37036-6_8

[22] Robert W. Floyd. 1967. Nondeterministic Algorithms. J. ACM 14, 4 (1967), 636–644.
https://doi.org/10.1145/321420.321422

[23] Jean Fortin. 2013. BSP-Why, un outil pour la vérification déductive de programmes BSP : machine-checked semantics and

application to distributed state-space algorithms. (BSP-Why, a tool for deductive verification of BSP programs : séman-

tiques mécanisées et application aux algorithmes d’espace d’états distribués). Ph. D. Dissertation. University of Paris-Est,
France. https://tel.archives-ouvertes.fr/tel-00974977

[24] Aymeric Fromherz, Aseem Rastogi, Nikhil Swamy, Sydney Gibson, Guido Martínez, Denis Merigoux, and Tahina
Ramananandro. 2021. Steel: proof-oriented programming in a dependently typed concurrent separation logic. Proc.
ACM Program. Lang. 5, ICFP (2021), 1–30. https://doi.org/10.1145/3473590

[25] Quentin Garchery. 2021. A Framework for Proof-carrying Logical Transformations. In Workshop on Proof eXchange

for Theorem Proving (PxTP), Chantal Keller and Mathias Fleury (Eds.). https://doi.org/10.4204/EPTCS.336.2
[26] Armaël Guéneau, JohannesHostert, Simon Spies,Michael Sammler, Lars Birkedal, andDerekDreyer. 2023. Melocoton:

A Program Logic for Verified Interoperability Between OCaml and C. Proc. ACM Program. Lang. 7, OOPSLA2 (2023),
716–744.

[27] Paolo Herms. 2013. Certification of a Tool Chain for Deductive Program Verification. (Certification d’une

chaine de vérification déductive de programmes). Ph. D. Dissertation. University of Paris-Sud, Orsay, France.
https://tel.archives-ouvertes.fr/tel-00789543

[28] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank Piessens. 2011. VeriFast: A
Powerful, Sound, Predictable, Fast Verifier for C and Java. In NASA Formal Methods (LNCS, Vol. 6617). Springer, 41–55.
https://doi.org/10.1007/978-3-642-20398-5_4

[29] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer.
2015. Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In POPL. ACM, 637–650.
https://doi.org/10.1145/2676726.2676980

https://doi.org/10.1007/S10817-018-9457-5
https://doi.org/10.1145/1993498.1993526
https://doi.org/10.1145/3632902
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1145/3563326
https://doi.org/10.1145/3586054
https://doi.org/10.1007/978-3-031-13188-2_7
https://doi.org/10.1007/S00165-020-00527-Y
https://doi.org/10.1007/978-3-031-17244-1_6
https://doi.org/10.1007/978-3-642-10672-9_13
https://doi.org/10.48550/ARXIV.2405.10661
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1145/321420.321422
https://tel.archives-ouvertes.fr/tel-00974977
https://doi.org/10.1145/3473590
https://doi.org/10.4204/EPTCS.336.2
https://tel.archives-ouvertes.fr/tel-00789543
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1145/2676726.2676980

1:28 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

[30] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski. 2015.
Frama-C: A software analysis perspective. Formal Aspects of Computing 27, 3 (2015), 573–609.
https://doi.org/10.1007/s00165-014-0326-7

[31] Bernhard Kragl and Shaz Qadeer. 2021. The Civl Verifier. In Formal Methods in Computer Aided Design, FMCAD 2021,

New Haven, CT, USA, October 19-22, 2021. IEEE, 143–152. https://doi.org/10.34727/2021/ISBN.978-3-85448-046-4_23
[32] K. Rustan M. Leino. 2008. This is Boogie 2. (2008). Available from

http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf .
[33] K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional Correctness. In Logic for

Programming, Artificial Intelligence, and Reasoning (LPAR), Edmund M. Clarke and Andrei Voronkov (Eds.).
https://doi.org/10.1007/978-3-642-17511-4_20

[34] K. Rustan M. Leino and Peter Müller. 2009. A Basis for Verifying Multi-threaded Programs. In Eu-

ropean Symposium on Programming (ESOP), Giuseppe Castagna (Ed.), Vol. 5502. Springer, 378–393.
https://doi.org/10.1007/978-3-642-00590-9_27

[35] Petar Maksimovic, Sacha-Élie Ayoun, José Fragoso Santos, and Philippa Gardner. 2021. Gillian, Part
II: Real-World Verification for JavaScript and C. In CAV (2) (LNCS, Vol. 12760). Springer, 827–850.
https://doi.org/10.1007/978-3-030-81688-9_38

[36] PetarMaksimovic, José Fragoso Santos, Sacha-Élie Ayoun, and Philippa Gardner. 2021. Gillian: AMulti-Language Plat-
form for Unified Symbolic Analysis. CoRR abs/2105.14769 (2021). arXiv:2105.14769 https://arxiv.org/abs/2105.14769

[37] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2016. Automatic Verification of Iterated Separating Con-
junctions Using Symbolic Execution. In Computer Aided Verification - 28th International Conference, CAV 2016, Toronto,

ON, Canada, July 17-23, 2016, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9779), Swarat Chaudhuri and
Azadeh Farzan (Eds.). Springer, 405–425. https://doi.org/10.1007/978-3-319-41528-4_22

[38] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2016. Viper: A Verification Infrastructure
for Permission-Based Reasoning. In VMCAI (Lecture Notes in Computer Science, Vol. 9583). Springer, 41–62.
https://doi.org/10.1007/978-3-662-49122-5_2

[39] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Isabelle/HOL - A Proof Assistant for Higher-Order

Logic. LNCS, Vol. 2283. Springer. https://doi.org/10.1007/3-540-45949-9
[40] Peter W. O’Hearn. 2004. Resources, Concurrency and Local Reasoning. In CONCUR 2004 - Concurrency Theory, 15th

International Conference, London, UK, August 31 - September 3, 2004, Proceedings (Lecture Notes in Computer Science,

Vol. 3170), Philippa Gardner andNobuko Yoshida (Eds.). Springer, 49–67. https://doi.org/10.1007/978-3-540-28644-8_4
[41] Matthew J. Parkinson and Alexander J. Summers. 2012. The Relationship Between Separation Logic and Implicit

Dynamic Frames. Logical Methods in Computer Science 8, 3:01 (2012), 1–54. https://doi.org/10.2168/LMCS-8(3:1)2012
[42] Gaurav Parthasarathy, Thibault Dardinier, Benjamin Bonneau, Peter Müller, and Alexander J. Summers. 2024. To-

wards Trustworthy Automated Program Verifiers: Formally Validating Translations into an Intermediate Verification
Language. Proc. ACM Program. Lang. 8, PLDI, Article 208 (jun 2024), 25 pages. https://doi.org/10.1145/3656438

[43] Gaurav Parthasarathy, Peter Müller, and Alexander J. Summers. 2021. Formally Validating a Practical Verification
Condition Generator. In Computer Aided Verification (CAV) (LNCS, Vol. 12760), Alexandra Silva and K. Rustan M.
Leino (Eds.). 704–727. https://doi.org/10.1007/978-3-030-81688-9_33

[44] Ingrid Rewitzky. 2003. Binary Multirelations. In Theory and Applications of Relational Structures as Knowledge Instru-

ments. LNCS, Vol. 2929. Springer, 256–271. https://doi.org/10.1007/978-3-540-24615-2_12
[45] John C. Reynolds. 2002. Separation logic: A logic for shared mutable data structures. Logic in Computer Science (LICS),

55–74. https://doi.org/10.1109/lics.2002.1029817
[46] Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer, and Deepak Garg. 2021.

RefinedC: automating the foundational verification of C code with refined ownership types. In PLDI. ACM, 158–174.
https://doi.org/10.1145/3453483.3454036

[47] Michael Sammler, Simon Spies, Youngju Song, Emanuele D’Osualdo, Robbert Krebbers, Deepak Garg, and Derek
Dreyer. 2023. DimSum: A Decentralized Approach to Multi-language Semantics and Verification. Proc. ACM Program.

Lang. 7, POPL (2023), 775–805. https://doi.org/10.1145/3571220
[48] José Fragoso Santos, Petar Maksimovic, Sacha-Élie Ayoun, and Philippa Gardner. 2020. Gillian, Part i: A Multi-

language Platform for Symbolic Execution. In PLDI. ACM, 927–942. https://doi.org/10.1145/3385412.3386014
[49] Malte Schwerhoff. 2016. Advancing Automated, Permission-Based ProgramVerification Using Symbolic Execution. Ph. D.

Dissertation. ETH Zurich, Zürich, Switzerland. https://doi.org/10.3929/ETHZ-A-010835519
[50] Malte Schwerhoff and Alexander J. Summers. 2015. Lightweight Support for Magic Wands in an Automatic Verifier

(Artifact). Dagstuhl Artifacts Ser. 1, 1 (2015), 10:1–10:2. https://doi.org/10.4230/DARTS.1.1.10
[51] Jan Smans, Bart Jacobs, and Frank Piessens. 2012. Implicit dynamic frames. ACM Trans. Program. Lang. Syst. 34, 1

(2012), 2:1–2:58. https://doi.org/10.1145/2160910.2160911

https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.34727/2021/ISBN.978-3-85448-046-4_23
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-00590-9_27
https://doi.org/10.1007/978-3-030-81688-9_38
https://arxiv.org/abs/2105.14769
https://arxiv.org/abs/2105.14769
https://doi.org/10.1007/978-3-319-41528-4_22
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-540-28644-8_4
https://doi.org/10.2168/LMCS-8(3:1)2012
https://doi.org/10.1145/3656438
https://doi.org/10.1007/978-3-030-81688-9_33
https://doi.org/10.1007/978-3-540-24615-2_12
https://doi.org/10.1109/lics.2002.1029817
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1145/3571220
https://doi.org/10.1145/3385412.3386014
https://doi.org/10.3929/ETHZ-A-010835519
https://doi.org/10.4230/DARTS.1.1.10
https://doi.org/10.1145/2160910.2160911

Formal Foundations for Translational Separation Logic Verifiers (extended version) 1:29

[52] Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer. 2023. Conditional
Contextual Refinement. Proc. ACM Program. Lang. 7, POPL (2023), 1121–1151. https://doi.org/10.1145/3571232

[53] Alexander J. Summers and Peter Müller. 2020. Automating deductive verification for weak-memory programs
(extended version). International Journal on Software Tools for Technology Transfer (STTT) 22, 6 (2020), 709–728.
https://doi.org/10.1007/S10009-020-00559-Y

[54] Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan
Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean Karim Zinzindohoue, and Santiago Zanella
Béguelin. 2016. Dependent types and multi-monadic effects in F. In Proceedings of the 43rd Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016,
Rastislav Bodík and Rupak Majumdar (Eds.). ACM, 256–270. https://doi.org/10.1145/2837614.2837655

[55] Nikhil Swamy, Aseem Rastogi, Aymeric Fromherz, Denis Merigoux, Danel Ahman, and Guido Martínez. 2020. Steel-
Core: an extensible concurrent separation logic for effectful dependently typed programs. Proc. ACM Program. Lang.

4, ICFP (2020), 121:1–121:30. https://doi.org/10.1145/3409003
[56] Viktor Vafeiadis. 2011. Concurrent Separation Logic and Operational Semantics. In Twenty-seventh Conference on the

Mathematical Foundations of Programming Semantics, MFPS 2011, Pittsburgh, PA, USA, May 25-28, 2011 (Electronic

Notes in Theoretical Computer Science, Vol. 276), Michael W. Mislove and Joël Ouaknine (Eds.). Elsevier, 335–351.
https://doi.org/10.1016/J.ENTCS.2011.09.029

[57] Viktor Vafeiadis and Chinmay Narayan. 2013. Relaxed separation logic: a program logic for C11 concurrency. In
Object Oriented Programming Systems Languages & Applications, (OOPSLA), Antony L. Hosking, Patrick Th. Eugster,
and Cristina V. Lopes (Eds.). https://doi.org/10.1145/2509136.2509532

[58] Frédéric Vogels, Bart Jacobs, and Frank Piessens. 2009. A Machine Checked Soundness Proof for an Intermedi-
ate Verification Language. In Theory and Practice of Computer Science, Conference on Current Trends in Theory and

Practice of Computer Science (SOFSEM) (Lecture Notes in Computer Science, Vol. 5404), Mogens Nielsen, Antonín
Kucera, Peter Bro Miltersen, Catuscia Palamidessi, Petr Tuma, and Frank D. Valencia (Eds.). Springer, 570–581.
https://doi.org/10.1007/978-3-540-95891-8_51

[59] Frédéric Vogels, Bart Jacobs, and Frank Piessens. 2010. A machine-checked soundness proof for an efficient verifica-
tion condition generator. In Proceedings of the 2010 ACM Symposium on Applied Computing (SAC), Sierre, Switzerland,

March 22-26, 2010, Sung Y. Shin, Sascha Ossowski, Michael Schumacher, Mathew J. Palakal, and Chih-Cheng Hung
(Eds.). ACM, 2517–2522. https://doi.org/10.1145/1774088.1774610

[60] Frédéric Vogels, Bart Jacobs, and Frank Piessens. 2015. Featherweight VeriFast. Log. Methods Comput. Sci. 11, 3 (2015).
https://doi.org/10.2168/LMCS-11(3:19)2015

[61] Felix A. Wolf, Malte Schwerhoff, and Peter Müller. 2022. Concise outlines for a complex logic: a proof outline checker
for TaDA. Formal Methods in System Design 61, 1 (2022), 110–136. https://doi.org/10.1007/S10703-023-00427-W

[62] Conrad Zimmerman, Jenna DiVincenzo, and Jonathan Aldrich. 2024. Sound Gradual Verification with Symbolic
Execution. Proc. ACM Program. Lang. 8, POPL (2024), 2547–2576. https://doi.org/10.1145/3632927

https://doi.org/10.1145/3571232
https://doi.org/10.1007/S10009-020-00559-Y
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/3409003
https://doi.org/10.1016/J.ENTCS.2011.09.029
https://doi.org/10.1145/2509136.2509532
https://doi.org/10.1007/978-3-540-95891-8_51
https://doi.org/10.1145/1774088.1774610
https://doi.org/10.2168/LMCS-11(3:19)2015
https://doi.org/10.1007/S10703-023-00427-W
https://doi.org/10.1145/3632927

1:30 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

A Full Definition of Symbolic Execution

The main functions of our symbolic execution are the sexec, sproduce, sconsume, and sexp func-
tions, whose definition is given below.
sexec f � symbolically executes the statement � in the symbolic state f :

sexec f � ,

sproduce f � if � = inhale �

sconsume f � (_f. scleanup f) if � = exhale �

sexp f 4 (_f C . sexec pc_add(f, C) �1 if � = (if 4 then �1 else �2)

∧ sexec pc_add(f,¬C) �2)

sexec f �1 (_f. sexec f �2) if � = �1; �2

G ∈ f.store ∧ sexp f 4 (_f C . f{store := f.store[G ↦→ C]}) if � = G := 4

G ∈ f.store ∧ f{store := f.store[G ↦→ fresh]}) if � = havoc G

sexp f 4A (_f CA . sexp f 4E (_f CE . extract f CA 5 1 (_f 2. if � = 4A .5 := 4E

scleanup f (_f. chunk_add f 2{val := CE}))))

sproduce f � inhales the assertion � in the symbolic state f .

sproduce f � ,

sexp f 4 (_f C . pc_add(f, C)) if � = 4

sexp f 4A (_f CA . sexp f 4? (_f C? . if � = acc(4A .5 , 4?)

chunk_add f {CA , 5 , C? , fresh}))

sexp f 4A (_f CA . let C? := fresh in if � = acc(4A .5 , _)

chunk_add pc_add(f, 0 < C?) {CA , 5 , C? , fresh}))

sproduce f �1 (_f. sproduce f �2) if � = �1 ∗�2

sexp f 4 (_f C . sproduce pc_add(f, C) �′ if � = 4 ⇒ �′

∧ pc_add(f,¬C))

sexp f 4 (_f C . sproduce pc_add(f, C) �1 if � = (4 ?�1 :�2)

∧ sproduce pc_add(f,¬C) �2)

sconsume f � exhales the assertion � in the symbolic state f .

sconsume f � ,

sexp f 4 (_f C . (f.pc ⊢ C) ∧ f) if � = 4

sexp f 4A (_f CA . sexp f 4? (_f C? . extract f CA 5 C? if � = acc(4A .5 , 4?)

(_f 2. chunk_add f 2{perm := 2.perm − C? })))

sexp f 4A (_f CA . extract f CA 5 _ if � = acc(4A .5 , _)

(_f 2. chunk_add f 2{perm := 2.perm/2}))

sconsume f �1 (_f. sconsume f �2) if � = �1 ∗�2

sexp f 4 (_f C . sconsume pc_add(f, C) �′ if � = 4 ⇒ �′

∧ pc_add(f,¬C))

sexp f 4 (_f C . sconsume pc_add(f, C) �1 if � = (4 ?�1 :�2)

∧ sconsume pc_add(f,¬C) �2)

Formal Foundations for Translational Separation Logic Verifiers (extended version) 1:31

sexp f 4 symbolically evaluates the expression 4 in the symbolic state f . (This definition has
been slightly simplified by removing the treatment of lazy binary operators like && or ||.)

sexp f 4 ,

 f ; if 4 = ;

G ∈ f.store ∧ f f.store[G] if 4 = G

sexp f 4′ (_f C . f (⊙C)) if 4 = ⊙4′

sexp f 41 (_f C1. sexp f 42 (_f C2. f (C1 ⊕ C2))) if 4 = 41 ⊕ 42

sexp f 4′ (_f C . sexp pc_add(f, C) 41 if 4 = (4′ ? 41 : 42)

∧ sexp pc_add(f,¬C) 42)

sexp f 4A (_f CA . extract f CA 5 0 (_f 2. if 4 = 4A .5

chunk_add f 2 (_f. f 2.val)))

	Abstract
	1 Introduction
	2 Key Ideas
	2.1 A Core Language for SL-Based IVLs
	2.2 Background: Translational Verification of a Parallel Program
	2.3 Operational Semantics and Back-End Verifiers
	2.4 Axiomatic Semantics

	3 Semantics
	3.1 An Algebra for Separation Logic and Implicit Dynamic Frames
	3.2 Operational Semantics
	3.3 Axiomatic Semantics
	3.4 ViperCore: Instantiating CoreIVL with Viper

	4 Back-End Soundness
	4.1 Symbolic Execution
	4.2 Verification Condition Generation

	5 Front-End Soundness
	5.1 An IDF-Based Concurrent Separation Logic
	5.2 A Sound Front-End Translation

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Full Definition of Symbolic Execution

