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jield x: Int
field y: Int

main(point: Ref)
(point.x) &&

point.x :
point.y :

add (point)
assert point.x
assert point.y

add(p: Ref)
(p.x, 1/2) &&
(p.x, 1/2) &&

{
p.y :=p.x + p.y
}

®1A0 silicon

(point.y)

(p.y)
(p.y)

% Live Share

"demo.vpr" 21L 357C written

UTF-8

LF Viper
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Qxl—)v*qyl—)v} /

exhale P

inhale P,

q.y := p.X
exhale Q,

havoc v

* P,

inhale Q, * Q,
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Example: Verifying a Parallel Program (2/2)

Parallel rule

F{P}C {Q:} F{P;}C,;{Q;}

Front-end language

F {Pl * Pz} Cl ” Cz {Ql * Qz}

[ {pxP_*xpyb _}

{P }
Vv :=|p.X
g.Xx:=V

{Q,}

free(p

g := new PointXY()

{P,}

g.y := p.X
{Q,}

Qxl—)v*qyl—)v} /

___________________________________

exhale P

inhale P,

q.y := p.X
exhale Q,

havoc v

* P,

inhale Q, * Q,
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