Formal Foundations of the Viper
Verification Infrastructure

Thibault Dardinier

ETH-zurich

Joint work with Gaurav Parthasarathy, Alex Summers, Peter Mller

Program Verifiers Based on Separation Logic (SL)

Program Verifiers Based on Separation Logic (SL)

Automated

Program Verifiers Based on Separation Logic (SL)

Foundational

A

[
»

Automated

Program Verifiers Based on Separation Logic (SL)

Formalized in a theorem prover

Foundational

A

[
»

Automated

Program Verifiers Based on Separation Logic (SL)

Formalized in a theorem prover

Foundational

A

Iris

[
»

Automated

Program Verifiers Based on Separation Logic (SL)

Formalized in a theorem prover

Foundational

Irist.

/
—

[
»

Automated

Program Verifiers Based on Separation Logic (SL)

Formalized in a theorem prover

Foundational

Irist.

/
—

Steel

[

»

Automated

Program Verifiers Based on Separation Logic (SL)

Formalized in a theorem prover

Foundational

Irist.

4

Steel
y'

[
»

Automated

Program Verifiers Based on Separation Logic (SL)

Formalized in a theorem prover

Foundational

II‘(*S,@)

Steel

VIiPER

[
»

Automated

Program Verifiers Based on Separation Logic (SL)

Formalized in a theorem prover

Foundational

II‘(*S,@)

—

Steel

VeriFast

VIiPER

[

»

Automated

Program Verifiers Based on Separation Logic (SL)

Formalized in a theorem prover

Foundational

II‘(*S,@)

—

Steel

VeriFast

VIiPER

[

»

Automated

Program Verifiers Based on Separation Logic (SL)

Formalized in a theorem prover

Foundational

%]

Lithium

r(S,l:J

—

Steel

VeriFast

VIiPER

[

»

Automated

Program Verifiers Based on Separation Logic (SL)

Formalized in a theorem prover

Foundational

%]

Lithium

r(S,l;J

—

Steel

Pulse

VeriFast

VIiPER

[

»

Automated

Program Verifiers Based on Separation Logic (SL)

Formalized in a theorem prover

Foundational

%]

Lithium

r(S,l;J

—

Steel

Pulse

ﬁ% This talk

VeriFast

VIiPER

[

»

Automated

Program Verifiers Based on Separation Logic (SL)

Formalized in a theorem prover

Foundational

%]

Lithium

r(S,l:J

—

Steel

Pulse

ﬁ% This talk

VeriFast

VIiPER

[

*highly non-exhaustive (missing GRASShopper, Gillian, VST, Diaframe ...)

»

Automated

Outline of the Talk

Outline of the Talk

1. Overview of Viper

Outline of the Talk

1. Overview of Viper

2. Inhale and Exhale: An Operational View of Separation Logic

Outline of the Talk

1. Overview of Viper
2. Inhale and Exhale: An Operational View of Separation Logic

3. Toward a Foundational Viper

Outline of the Talk

1. Overview of Viper
2. Inhale and Exhale: An Operational View of Separation Logic

3. Toward a Foundational Viper

jield x: Int
field y: Int

main(point: Ref)
(point.x) &&

point.x :
point.y :

add (point)
assert point.x
assert point.y

add(p: Ref)
(p.x, 1/2) &&
(p.x, 1/2) &&

{
p.y :=p.x + p.y
}

®1A0 silicon

(point.y)

(p.y)
(p.y)

% Live Share

"demo.vpr" 21L 357C written

UTF-8

LF Viper

The Viper Verification Infrastructure

The Viper Verification Infrastructure

front-end
program

®

The Viper Verification Infrastructure

front-end
program

®)
()

specification

The Viper Verification Infrastructure

front-end Viper
program program

G front-end
translation

specification

The Viper Verification Infrastructure

front-end Viper

program program
G front-end Vv - Viper R
translation verifier

specification

The Viper Verification Infrastructure

front-end Viper
program program
G front-end Viper N
: \ e >
translation verifier
specification
respects _

front-end spec

SMT solver
reports

The Viper Verification Infrastructure

front-end Viper symbolic execution
program

program

front-end SMT
translation solver

specification verification condition generation

respects SMT solver
front-end spec reports

The Viper Verification Infrastructure

front-end symbolic execution

program

Viper
program

SMT
solver

front-end
translation

specification verification condition generation

| R ———

respects _ SMT solver
front-end spec reports

The Viper Verification Infrastructure

front-end symbolic execution

program

Viper
program

front-end
translation

specification

Program verifiers built on top of Viper

verification condition generation

SMT
solver

| R ———

Prusti (Rust) Gobra (Go)

Nagini (Python)

VerCors (Java, C, OpenCL, OpenMP) Smart contracts

RSL, FSL, FSL++

Secure information flow Gradual verification

The Viper Verification Infrastructure

front-end symbolic execution

program

Viper
program

front-end
translation

SMT
solver

| R ———

specification verification condition generation
Verification of the SCION Internet architecture
Program verifiers built on top of Viper (existing router implementation ~5k LOC)
Prusti (Rust) Gobra (Go) Nagini (Python)
VerCors (Java, C, OpenCL, OpenMP) Smart contracts RSL, FSL, FSL++

Secure information flow Gradual verification

Overview of the Viper Language

Program Code Assertion Language

Verification Features Mathematical Background

Overview of the Viper Language

Program Code

Sequential, imperative language
Standard control structures
Basic type system

Built-in heap

Assertion Language

Verification Features

Mathematical Background

Overview of the Viper Language

Program Code

Sequential, imperative language
Standard control structures
Basic type system

Built-in heap

Assertion Language

Fractional permissions

Verification Features

Mathematical Background

Overview of the Viper Language

Program Code

Sequential, imperative language
Standard control structures
Basic type system

Built-in heap

Assertion Language

Fractional permissions
Inductive predicates

Verification Features

Mathematical Background

Overview of the Viper Language

Program Code

Sequential, imperative language
Standard control structures
Basic type system

Built-in heap

Assertion Language

Fractional permissions
Inductive predicates
Iterated separating conjunction

Verification Features

Mathematical Background

Overview of the Viper Language

Program Code

Sequential, imperative language
Standard control structures
Basic type system

Built-in heap

Assertion Language

Fractional permissions
Inductive predicates

Iterated separating conjunction
Magic wands

Verification Features

Mathematical Background

Overview of the Viper Language

Program Code

Sequential, imperative language
Standard control structures
Basic type system

Built-in heap

Assertion Language

Fractional permissions
Inductive predicates

Iterated separating conjunction
Magic wands

Verification Features

Mathematical Background

Overview of the Viper Language

Program Code

Sequential, imperative language
Standard control structures
Basic type system

Built-in heap

Assertion Language

Fractional permissions
Inductive predicates

Iterated separating conjunction
Magic wands

Verification Features

Standard contract features
Inhale and exhale

Mathematical Background

Overview of the Viper Language

Program Code

Sequential, imperative language
Standard control structures
Basic type system

Built-in heap

Assertion Language

Fractional permissions
Inductive predicates

Iterated separating conjunction
Magic wands

Verification Features

Standard contract features
Inhale and exhale

Mathematical Background

Predefined and user-defined datatypes
Uninterpreted functions
Axioms

Outline of the Talk

1. Overview of Viper
2. Inhale and Exhale: An Operational View of Separation Logic

3. Toward a Foundational Viper

Verification Primitives: Inhale and Exhale

Verification Primitives: Inhale and Exhale

inhale A exhale A

Verification Primitives: Inhale and Exhale

Separation logic
assertion

inhale A exhale A

Verification Primitives: Inhale and Exhale

Separation logic
assertion

inhale A exhale A

Adds resources specified by A to the current context

Verification Primitives: Inhale and Exhale

Separation logic
assertion

inhale A exhale A

Adds resources specified by A to the current context Removes resources specified by A from the current context

Verification Primitives: Inhale and Exhale

inhale A exhale A
Intuitive . -
meaning Adds resources specified by A to the current context | Removes resources specified by A from the current context
Logically

Operationally

Verification Primitives: Inhale and Exhale

inhale A exhale A
Intuitive » N
meaning Adds resources specified by A to the current context | Removes resources specified by A from the current context
Logically F inhale A

Operationally

Verification Primitives: Inhale and Exhale

inhale A exhale A
Intuitive » N
meaning Adds resources specified by A to the current context | Removes resources specified by A from the current context
Logically F inhale A

Operationally

Verification Primitives: Inhale and Exhale

inhale A exhale A
Intuitive 3 3
meaning Adds resources specified by Ato the current context | Removes resources specified by A from the current context
Logically F {P}inhale A

weakestPre(inhale A, Q) =

Operationally

Verification Primitives: Inhale and Exhale

inhale A exhale A
Intuitive . -
meaning Adds resources specified by A to the current context | Removes resources specified by A from the current context
Logically F inhale A F exhale A

weakestPre(inhale A, Q) =

Operationally

Verification Primitives: Inhale and Exhale

inhale A exhale A
Intuitive . -
meaning Adds resources specified by A to the current context | Removes resources specified by A from the current context
Logically F inhale A F exhale A

weakestPre(inhale A, Q) =

Operationally

Verification Primitives: Inhale and Exhale

inhale A exhale A
Intuitive . -
meaning Adds resources specified by A to the current context | Removes resources specified by A from the current context
Logically F inhale A F exhale A

weakestPre(inhale A, Q) = weakestPre(exhale A, Q) =

Operationally

Verification Primitives: Inhale and Exhale

inhale A exhale A
Intuitive . -
meaning Adds resources specified by A to the current context | Removes resources specified by A from the current context
Logically F inhale A F exhale A

weakestPre(inhale A, Q) = weakestPre(exhale A, Q) =

Operationally

_—1

Acting on a separation
logic state
(e.g., Loc — (0, 1] x Val)

Verification Primitives: Inhale and Exhale

inhale A exhale A
Intuitive . -
meaning Adds resources specified by A to the current context | Removes resources specified by A from the current context
Logically F inhale A F exhale A

weakestPre(inhale A, Q) = weakestPre(exhale A, Q) =

Operationall . o
pﬂ y e All logical constraints in A are assumed

e All resources required by A are obtained
Acting on a separation

logic state
(e.g., Loc — (0, 1] x Val)

Verification Primitives: Inhale and Exhale

inhale A exhale A
Intuitive . -
meaning Adds resources specified by A to the current context | Removes resources specified by A from the current context
Logically F inhale A F exhale A
weakestPre(inhale A, Q) = weakestPre(exhale A, Q) =
Operationally . L . L
7 e All logical constraints in A are assumed e Alllogical constraints in A are asserted
e All resources required by A are obtained e All resources required by A are removed

Acting on a separation
logic state
(e.g., Loc — (0, 1] x Val)

Verification Primitives: Inhale and Exhale

inhale A
Intuitive B
meaning Adds resources specified by A to the current context
Logically F inhale A

weakestPre(inhale A, Q) =

Operationall . o
P y e All logical constraints in A are assumed

e All resources required by A are obtained

Separation
logic
analogue of

assume A

exhale A

Removes resources specified by A from the current context

F exhale A

weakestPre(exhale A, Q) =

e Alllogical constraints in A are asserted
e All resources required by A are removed

assert A

Verification Primitives: Inhale and Exhale

Sometimes called
produce

inhale A
Intuitive B
meaning Adds resources specified by A to the current context
Logically F inhale A

weakestPre(inhale A, Q) =

Operationall . o
P y e All logical constraints in A are assumed

e All resources required by A are obtained

Separation
logic
analogue of

assume A

Sometimes called
consume

exhale A

Removes resources specified by A from the current context

F exhale A

weakestPre(exhale A, Q) =

e Alllogical constraints in A are asserted
e All resources required by A are removed

assert A

Example: Verifying a Parallel Program (1/2)

Front-end language

—

g := new PointXY()

g.Xx:=V q.y :=p.X

Example: Verifying a Parallel Program (1/2)

Front-end language

—

g := new PointXY()

Object with
fields x and y

g.Xx:=V q.y :=p.X

Example: Verifying a Parallel Program (1/2)

Front-end language

[{pxP_*xpyb _}

g := new PointXY()

Object with
fields x and y
V:i=p.X
g.x:=v qg.y := p.X
free(p

Qxl—)v*qyl—)v} /

Example: Verifying a Parallel Program (1/2)

% Front-end language
{pxP_%xpyp_}

g := new PointXY()

Object with
fields x and y
V:i=p.X
g.x:=v qg.y := p.X
free(p

Qxl—)v*qyl—)v} /

Example: Verifying a Parallel Program (1/2)

_ffﬁffgzgft____FWontendIanguage
{pxP_%xpyp_}

g := new PointXY()

Object with
fields x and y

g.Xx:=V q.y :=p.X

Example: Verifying a Parallel Program (1/2)

Front-end language

g := new PointXY()

V= p.X

o
<
I
<

g.y := p.X

free(p)

w.xl-)v*q.yl-)v} /

VIiPER

{ {pxP_%xpyp _} /

Example: Verifying a Parallel Program (1/2)

Front-end language

Starting in a state with no resources

[{pxP_*xpyb _}

V= p.X

free(p)

g := new PointXY()

g.y := p.X

w.xl-)v*q.yl-)v} /

P\/—

VIiPER

Example: Verifying a Parallel Program (1/2)

Front-end language

{ {pxP_%xpybp _}

Starting in a state with no resources

g := new PointXY()

g.Xx:=V q.y :=p.X

—

/—ViPER

— inhalep.x—> _ %k pym _

Example: Verifying a Parallel Program (1/2)

Front-end language

{ {pxP_%xpybp _}

(not actual Viper syntax)

g := new PointXY()

g.Xx:=V q.y :=p.X

—

Starting in a state with no resources ;

— inhalep.x—> _ %k pym _

Example: Verifying a Parallel Program (1/2)

(not actual Viper syntax)

Front-end language Starting in a state with no resources ;

/{pxm_kpyr _J— — PV/—/ ViPER

d := new PointXY() *—-~\\\\\\\\-_; = inhale p.x > _ % py _
. havoc g

inhaleg.x~ _*k qyP _

g.Xx:=V q.y :=p.X

Example: Verifying a Parallel Program (1/2)

Front-end language Starting in a state with no resources

/{pxm_kpyr _J— PV/— ViPER

q := new PointXY() D —

— inhalep.x> *pyP \
Non-deterministic assignment
. havoc g

inhaleg.x~ _*k qyP _

g.Xx:=V q.y :=p.X

Example: Verifying a Parallel Program (1/2)

Front-end language

Starting in a state with no resources

{ {pxP_%xpybp _}

g := new PointXY()

—

g.Xx:=V q.y :=p.X

Y

VIiPER

— inhalep.x—> _ %k pym _

inhaleg.x~ _*k qyP _

Example: Verifying a Parallel Program (1/2)

Front-end language

Starting in a state with no resources

{ {pxP_%xpybp _}

—

g := new PointXY()

g.Xx:=V q.y :=p.X

Y

N

VIiPER

— inhalep.x—> _ %k pym _

inhaleg.x~ _*k qyP _

» exhalepx _*kpyr _

J

Example: Verifying a Parallel Program (1/2)

{ {pxP_%xpybp _}

g := new PointXY()

V= p.X
g.X =V
free(p)

Front-end language

Starting in a state with no resources

_ ~/—|ViPER

\ —~ inhale p.x > _ % py b _
. havoc g

inhaleg.x~ _*k qyP _

g.y := p.X

w.xl-)v*q.yl-)v}

\ » exhalepx- _k pyP _

- exhaleg.xP vk qyPv

Example: Verifying a Parallel Program (2/2)

Front-end language

To_ v ~ ViPER

havoc g
Vi=pX inhaleg.x~ _*xqym _
q.X:=V q.y := p.X
free(p)

w.xl-)v*q.yl-)v} /
exhalepx= _*k pyr _

exhalegxP~ vk qyPv

Example: Verifying a Parallel Program (2/2)

Front-end language

g := new PointXY()

V= p.X

o
<
I
<

g.y := p.X

free(p)

w.xl-)v*q.yl-)v} /

VIiPER

{ {pxP_%xpyp _} /

Example: Verifying a Parallel Program (2/2)

Parallel rule
F{P}C,{Q.} F{P,}C,{Q,}

F {Pl * Pz} C1 ” Cz {Ql * Qz}
Front-end language

To_ v ~ ViPER

g := new PointXY()

g.Xx:=V q.y :=p.X

Example: Verifying a Parallel Program (2/2)

Parallel rule
F{P}C,{Q.} F{P,}C,{Q,}

F {Pl * Pz} C1 ” Cz {Ql * Qz}
Front-end language

oo - ViPER

g := new PointXY()

{P,} {P,}
V:i=p.X
g.Xx:=Vv g.y := p.x
{Q} {Q}
free(p

Qxl—)v*qyl—)v} /

Example: Verifying a Parallel Program (2/2)

Parallel rule
F{P}C,{Q.} F{P,}C,{Q,}

F {Pl * Pz} C1 ” Cz {Ql * Qz}
Front-end language

To_ v ~ ViPER

g := new PointXY()

{P,} {P,}

V= p.X

g.Xx:=V q.y :=p.X

{Q} {Q]}

free(p

Qxl—)v*qyl—)v} /
A 7] 5
P,Z(qx>_*pxm_) P,=(qyP_*pxm)

Q, = e Q2=(Elk.q.yl—>k*p.xl—>k) K /

2 (gXPV X pX P V)

Example: Verifying a Parallel Program (2/2)

Parallel rule
F{P}C,{Q.} F{P,}C,{Q,}

F {Pl * Pz} C1 ” Cz {Ql * Qz}
Front-end language

oo - ViPER

g := new PointXY()

{P,} {P,}
V:i=p.X
g.Xx:=Vv g.y := p.x
{Q} {Q}
free(p

Qxl—)v*qyl—)v} /

Example: Verifying a Parallel Program (2/2)

Parallel rule
Fl {P}C,{Q} F{P}C,{Q,}

\F P, - PIC,IIC,{Q » Q)

Front-end language

[{pxP_*xpyb _}

g := new PointXY()

{P,} {P,}
V:i=p.X
g.Xx:=Vv g.y := p.x
{Q} {Q}
free(p

Qxl—)v*qyl—)v} /

Example: Verifying a Parallel Program (2/2)

Parallel rule

|‘| {P}C {Q} F{P}C,{Q,}

Front-end language

\F ®, - Pl - Q)

[{pxP_*xpyb _}

{P,}
V= p.X
g.Xx:=V

{Q,}

free(p

g := new PointXY()

{P,}

g.y := p.X
{Q,}

Qxl—)v*qyl—)v} /

A

inhale P,
q.y := p.X
exhale Q,

Example: Verifying a Parallel Program (2/2)

Parallel rule

F{P}C {Q:} F{P;}C,;{Q;}

Front-end language

F {Pl * Pz} Cl ” Cz {Ql * Qz}

[{pxP_*xpyb _}

{P,}
V= p.X
g.Xx:=V

{Q,}

free(p

g := new PointXY()

{P,}

g.y := p.X
{Q,}

Qxl—)v*qyl—)v} /

inhale P,

q.y := p.X
exhale Q,

exhale P, % P,

havoc v
inhale Q, * Q,

VIiPER

Example: Verifying a Parallel Program (2/2)

Parallel rule

F{P}C {Q:} F{P;}C,;{Q;}

Front-end language

F {Pl * Pz} Cl ” Cz {Ql * Qz}

[{pxP_*xpyb _}

{P,}
V= p.X
g.Xx:=V

{Q,}

free(p

g := new PointXY()

{P,}

g.y := p.X
{Q,}

Qxl—)v*qyl—)v} /

inhale P,

q.y := p.X
exhale Q,

exhale P,

havoc v
inhale Q, * Q,

VIiPER

Example: Verifying a Parallel Program (2/2)

Parallel rule

F{P}C {Q:} F{P;}C,;{Q;}

Front-end language

F {Pl * Pz} Cl ” Cz {Ql * Qz}

[{pxP_*xpyb _}

{P,}
V= p.X
g.Xx:=V

{Q,}

free(p

g := new PointXY()

{P,}

g.y := p.X
{Q,}

Qxl—)v*qyl—)v} /

inhale P,

q.y := p.X
exhale Q,

havoc v
inhale Q, * Q,

VIiPER

Example: Verifying a Parallel Program (2/2)

Parallel rule

F{P}C {Q:} F{P;}C,;{Q;}

Front-end language

F {Pl * Pz} Cl ” Cz {Ql * Qz}

[{pxP_*xpyb _}

{P,}
V= p.X
g.Xx:=V

{Q,}

free(p

g := new PointXY()

{P,}

g.y := p.X
{Q,}

Qxl—)v*qyl—)v} /

inhale P,

q.y := p.X
exhale Q,

havoc v
inhale Q, * Q,

VIiPER

Example: Verifying a Parallel Program (2/2)

Parallel rule

F{P}C {Q:} F{P;}C,;{Q;}

Front-end language

F {Pl * Pz} Cl ” Cz {Ql * Qz}

[{pxP_*xpyb _}

{P,}
V= p.X
g.Xx:=V

{Q,}

free(p

g := new PointXY()

{P,}

g.y := p.X
{Q,}

Qxl—)v*qyl—)v} /

q.y := p.X
exhale Q,

i exhal P,
i havoc
: inhale P2 inhalé * Q2

Example: Verifying a Parallel Program (2/2)

Parallel rule

F{P}C {Q:} F{P;}C,;{Q;}

Front-end language

F {Pl * Pz} Cl ” Cz {Ql * Qz}

[{pxP_*xpyb _}

{P,}
V= p.X
g.Xx:=V

{Q,}

free(p

g := new PointXY()

{P,}

g.y := p.X
{Q,}

Qxl—)v*qyl—)v} /

inhale P,

q.y := p.X
exhale Q,

exhale P, *

havoc v
inhale Q, * Q,

VIiPER

Example: Verifying a Parallel Program (2/2)

Parallel rule

F{P}C {Q:} F{P;}C,;{Q;}

Front-end language

F {Pl * Pz} Cl ” Cz {Ql * Qz}

[{pxP_*xpyb _}

{P,}
V= p.X
g.Xx:=V

{Q,}

free(p

g := new PointXY()

{P,}

g.y := p.X
{Q,}

Qxl—)v*qyl—)v} /

inhale

q.y := p.X
exhale Q,

exhale P_X
havoc v
inhale Q, * Q,

VIiPER

Example: Verifying a Parallel Program (2/2)

Parallel rule

F{P}C {Q:} F{P;}C,;{Q;}

Front-end language

F {Pl * Pz} Cl ” Cz {Ql * Qz}

[{pxP_*xpyb _}

{P,}
V= p.X
g.Xx:=V

{Q,}

free(p

g := new PointXY()

{P,}

g.y := p.X
{Q,}

Qxl—)v*qyl—)v} /

q.y =1

inhale

X

exhale

Q,

exhale P_X
havoc v
inhale Q, * Q,

Example: Verifying a Parallel Program (2/2)

Parallel rule
F{P}C,{Q.} F{P,}C,{Q,}

F {Pl * Pz} C1 ” Cz {Ql * Qz}
Front-end language

(Toxo_*pyo) Y — VIPER

g := new PointXY() i
(P} (P,} |
V:=p.X |
g.X:=V q.y := p.X l
! exhale P_X{ P
(Q} (Q,} : b
: . avoc v
| mhale inhale
free(p : q.y = pX
Qxl—)v*qyl—)v} / i exhale(Q,

Example: Verifying a Parallel Program (2/2)

Parallel rule

F{P}C {Q:} F{P;}C,;{Q;}

Front-end language

F {Pl * Pz} Cl ” Cz {Ql * Qz}

[{pxP_*xpyb _}

{P,}
V= p.X
g.Xx:=V

{Q,}

free(p

g := new PointXY()

{P,}

g.y := p.X
{Q,}

Qxl—)v*qyl—)v} /

exhale P

inhale P,

q.y := p.X
exhale Q,

havoc v

* P,

inhale Q, * Q,

VIiPER

Example: Verifying a Parallel Program (2/2)

Parallel rule

F{P}C {Q:} F{P;}C,;{Q;}

Front-end language

F {Pl * Pz} Cl ” Cz {Ql * Qz}

[{pxP_*xpyb _}

{P }
Vv :=|p.X
g.Xx:=V

{Q,}

free(p

g := new PointXY()

{P,}

g.y := p.X
{Q,}

Qxl—)v*qyl—)v} /

exhale P

inhale P,

q.y := p.X
exhale Q,

havoc v

* P,

inhale Q, * Q,

Outline of the Talk

1. Overview of Viper
2. Inhale and Exhale: An Operational View of Separation Logic

3. Toward a Foundational Viper

Soundness

symbolic execution
front-end Viper

program program

front-end
translation

verification condition generation

specification

Soundness

symbolic execution
front-end Viper 0
program program

front-end
translation

verification condition generation

specification

desired soundness property
respects _ SMT solver

«

front-end spec reports

Soundness

_.» symbolic execution ~<
front-end Viper - ~~.

program program T -

front-end
translation

Boogie program

specification

|
|
|
|
Viper-to- Boogie !
Boogie verifier |
|
|
|

desired soundness property
respects _ SMT solver

«

front-end spec reports

Soundness: Proof Strategy

.» symbolic execution ~
front-end Viper - ~e

program program T -

front-end
translation

Boogie program

specification

|
|
|
|
Viper-to- Boogie !
Boogie verifier |
|
|
|

Soundness: Proof Strategy

.» symbolic execution ~
front-end Viper - ~e Q
program program Pt -~

front-end
translation

Boogie program

specification

|
|
|
|
Viper-to- Boogie !
Boogie verifier |
|
|
|

SMT solver
reports @

Soundness: Proof Strategy

.» symbolic execution ~
front-end Viper et ~~ o Q
program program T -

front-end
translation

Boogie program

specification

|

|

|

|

Viper-to- Boogie !
Boogie verifier |
|

|

|

SMT solver

soundness
SMT solver

are valid g———— reportsQ

Soundness: Proof Strategy

.» symbolic execution ~
front-end Viper - o Q
program program Pt -~

front-end
translation

Boogie program

Viper-to- Boogie

specification _ o
Boogie verifier

SMT solver

Boogie verifier
soundness soundness

_ - . SMT solver
is correct < are valid ¢———— reports @

Soundness: Proof Strategy

.» symbolic execution ~
front-end Viper - o Q
program program Pt -~

front-end
translation

Boogie program

|
A :
I | . - !
specification B \per-to- Boogie :
| | Boogie ELiEl |
| | |
L A A :
: Tttt TTTTTTT T CTTTTTTTTTTTTToTToTToTs yoT
' Viper-to-Boogie ' Boogie verifier ' SMT solver
soundness soundness soundness

. . . SMT solver
is correct < is correct < are valid g —— reports @

Soundness: Proof Strategy

.» symbolic execution ~
front-end Viper - o Q
program program Pt -~

front-end
translation

Boogie program

|
A : |
| |) i |
specification B \per-to- Boogie !
| | Boogie ELiEl |
A T |
! I I A 4 !
! | S e e e o e
| | I 1
! 1 1 |
! 1 1 |
! 1 1 |
: | 1 1
| front-end translation ' Viper-to-Boogie ' Boogie verifier ' SMT solver
soundness soundness soundness soundness
respects < is correct < is correct < lid SMT solver
front-end spec N N are valld «=—————reports @

Soundness: Proof Strategy

front-end
program

specification

A
I
I
I
I
I
I
I
I
I

respects
front-end spec

front-end
translation

front-end translation

soundness

il

Viper
program

_______________>

is correct

.» symbolic execution ~

Viper-to-

Boogie program

Boogie

Boogie verifier
A A
L e e e e e e e e e - o e o e e e e e e e e e e e e —— |
[} |
I I
I I
I I
I I
Viper-to-Boogie ' Boogie verifier ' SMT solver
soundness soundness soundness
< is correct <

Parthasarathy et al. (CAV'21)

\
Wid
> CS~ah
e

SMT solver

N wa”d 4 reports @

Soundness: Proof Strategy

front-end Viper
program program

front-end
translation

A
I
o . |
specification !
I
A |
: |
| I
| I
| I
| I
| |
I .
| front-end translation '
soundness
respects .
P = is correct

front-end spec

Viper's Formal Foundations

front-end Viper
program program
front-end ‘m
translation v
A
I
I
l
. - I
specification !
A |
| I
| I
| I
| I
| I
| I
| I
! l
I
| I
| I
! l
front-end translation soundness [
respects < is correct <«

front-end spec

Viper's Formal Foundations

front-end
program

specification
A

respects
front-end spec

front-end
translation

Viper
program

) 4

front-end translation soundness

What does this mean?

Viper's Formal Foundations

front-end
program

specification
A

respects
front-end spec

front-end
translation

Viper
program

front-end translation soundness

What does this mean?

r

Viper's Formal Foundations

front-end
program

specification
A

respects
front-end spec

front-end
translation

Viper
program

front-end translation soundness

What does this mean?

Operational semantics

r

Viper's Formal Foundations

front-end
program

specification
A

respects
front-end spec

front-end
translation

Viper
program

front-end translation soundness

What does this mean?

Operational semantics

r

Viper's Formal Foundations

front-end Viper
program program

front-end ‘m

»

translation

Operational semantics

specification State (PCM): Heap, resources, ...

A

I
I
I
I
I
I
I
I
I
I
I
I
I
front-end translation soundness

A
|
|
|
|
|
|
|
|
I
I
I
I
I
I
|
|
|
|
|
|
|
:

respects _ .

front-end spec

What does this mean?

Viper's Formal Foundations

front-end
program

specification
A

respects
front-end spec

Viper
program

front-end ‘m

»

translation

Operational semantics
State (PCM): Heap, resources, ...

Demonic non-determinism (inhale,
havoc, ...)

front-end translation soundness

A

What does this mean?

Viper's Formal Foundations

front-end
program

specification
A

respects
front-end spec

Viper
program

front-end ‘m

»

translation

Operational semantics
State (PCM): Heap, resources, ...

Demonic non-determinism (inhale,
havoc, ...)

front-end translation soundness

A

What does this mean?

Viper's Formal Foundations

front-end Viper
program program

front-end ‘m

translation

Operational semantics

State (PCM): Heap, resources, ...
specification
A Demonic non-determinism (inhale,

havoc, ...)

Angelic non-determinism (exhale)

front-end translation soundness

respects _ .
front-end spec

What does this mean?

Viper's Formal Foundations

front-end Viper
program program

front-end ‘/_/\

translation

Operational semantics

State (PCM): Heap, resources, ...
specification
A Demonic non-determinism (inhale,

havoc, ...)

Angelic non-determinism (exhale)
N—

In practice, the verifier makes a
choice (based on heuristics)

front-end translation soundness

respects _ .
front-end spec

What does this mean?

Viper's Formal Foundations

front-end Viper
program program
front-end ‘m
translation
T Operational semantics
|
|
| State (PCM): Heap, resources, ...
specification !
A | Demonic non-determinism (inhale,
| | havoc, ...)
! : Angelic non-determinism (exhale)
= |
|
| |
| |
! :
@ranslaﬂon s@ |
respects < is correct <«

front-end spec

Viper's Formal Foundations

front-end Viper
program program
front-end ‘/_/\
translation
T Operational semantics
|
|
| State (PCM): Heap, resources, ...
specification !
A | Demonic non-determinism (inhale,
| | havoc, ...)
| i Angelic non-determinism (exhale)
| |
|
! :
|
! :
@ranslaﬂon @ |
respects P . . _
front-end spec \ 's correct

Can we get a general
result for any front-end?

Viper's Formal Foundations

Uses some external SL

front-end (e.g., Concurrent SL, RustBelt...) Viper
program program
front-end ‘/_/\
translation
T Operational semantics
|
|
| State (PCM): Heap, resources, ...
specification !
A | Demonic non-determinism (inhale,
| | havoc, ...)
| |
| |
! : Angelic non-determinism (exhale)
! I
| |
| |
| |
! l
@ranslaﬂon @ |
respects P . . _
< rrect <
front-end spec \ IS correc

Can we get a general
result for any front-end?

Viper's Formal Foundations

Uses some external SL

front-end (e.g., Concurrent SL, RustBelt...) Viper
program program
front-end ‘/_/\
translation
R 4 Operational semantics
\\ |
AN |
| State (PCM): Heap, resources, ...
specification . !
A N | Demonic non-determinism (inhale,
| | havoc, ...)
| |
| . N |
! SL proof obligations | Angelic non-determinism (exhale)
! I
| |
| |
| |
! I
@ranslaﬂon @ |
respects P . . _
rrect <
front-end spec \ IS correc

Can we get a general
result for any front-end?

Viper's Formal Foundations

Uses some external SL
front-end (e.g., Concurrent SL, RustBelt...)

program

front-end

Viper
program

translation

specification N
A

Informally: Mapping from
external SL to Viper’s SL

SL proof obligations

respects

front-end translation S@

Can we get a general
result for any front-end?

front-end spec

A

is correct

Operational semantics
State (PCM): Heap, resources, ...

Demonic non-determinism (inhale,
havoc, ...)

Angelic non-determinism (exhale)

-
«

Viper's Formal Foundations

Uses some external SL
front-end (e.g., Concurrent SL, RustBelt...)

program

front-end

translation

specification Se .
A

Informally: Mapping from
external SL to Viper’s SL

SL proof obligations

respects

front-end translation S@

Can we get a general
result for any front-end?

front-end spec

Viper
program

<

A

is correct

Operational semantics
State (PCM): Heap, resources, ...

Demonic non-determinism (inhale,
havoc, ...)

Angelic non-determinism (exhale)

-
«

Viper's Formal Foundations

front-end
program

specification

Uses some external SL
(e.g., Concurrent SL, RustBelt...)

front-end

Viper
program

translation

A

Informally: Mapping from
external SL to Viper’s SL

respects
front-end spec

Independent from
the front-end

SL proof obligations

front-end translation S@

Can we get a general
result for any front-end?

<

A

is correct

Operational semantics
State (PCM): Heap, resources, ...

Demonic non-determinism (inhale,
havoc, ...)

Angelic non-determinism (exhale)

-
«

Viper's Formal Foundations

front-end
program

specification

Uses some external SL
(e.g., Concurrent SL, RustBelt...)

front-end

Viper
program

translation

A

Informally: Mapping from
external SL to Viper’s SL

respects
front-end spec

Independent from
the front-end

SL proof obligations

<

A

is correct

Operational semantics
State (PCM): Heap, resources, ...

Demonic non-determinism (inhale,
havoc, ...)

Angelic non-determinism (exhale)

-
«

Viper's Formal Foundations

front-end
program

specification

Uses some external SL

front-end

translation

A

Informally: Mapping from
external SL to Viper’s SL

respects
front-end spec

(e.g., Concurrent SL, RustBelt...) Viper
program
N V
Independent from A
S the front-end |
|
|
P |
7’ |
Y L7 |
N , !
N , |
|
@ l
. N |
SL proof obligations !
A :
| |
| |
| |
|
: Viper-to-SL !
' soundness
are correct < is correct

Operational semantics
State (PCM): Heap, resources, ...

Demonic non-determinism (inhale,
havoc, ...)

Angelic non-determinism (exhale)

Viper's Formal Foundations

Uses some external SL

front-end (e.g., Concurrent SL, RustBelt...) Viper
program program
front-end Vv
translation L’
Independent from . A . .
. the front-end ! Operational semantics
\\ |
AN |
) | State (PCM): Heap, resources, ...
specification . - !
A Informally: Mapping from N e E Demonic non-determinism (inhale,
! external SL to Viper’s SL | havoc, ...)
| I
I . N I
! SL proof obligations | Angelic non-determinism (exhale)
|
I n .
I | I
I | I
I | :
' external SL { Viper-to-SL !
soundness ' soundness
respects < are correct < is correct <

front-end spec |

Viper-to-SL: Parallel Program

Front-end
/ {A} language

Co
{P,} {P,}
C, G,
{Q} {Q}
C

)

Viper-to-SL: Parallel Program

/ Front-end

] {A} language

[Assume no writes

V‘Pl} {p,}
Cl C2
{Q,} {Q,}

C

)

Viper-to-SL: Parallel Program

-

[Assume no writes]

{P,}
N

{Q}

_

{A}

0

C3
{B}

Front-end
language

{P,}
C2
{Q}

/

D

exhale P, X P,
inhale Q, * Q,
CS

uaxhale B

Y exhale Q,)

/

inhale P,
C2

_ exhaleQ,)

\

—_——_—e e e — 4

Viper-to-SL: Parallel Program

-

[Assume no writes]

{P,}
N

{Q}

_

{A}

0

C3
{B}

Front-end
language

{P,}
C2
{Q}

/

D

exhale P, X P,
inhale Q, * Q,
CS

uaxhale B

Y exhale Q,)

/

inhale P,
C2

_ exhaleQ,)

\

Viper-to-SL: Parallel Program

-

[Assume no writes]

{P}
N

{Q}

_

{A}

0

C3
{B}

Front-end
language

{P,}
C2
{Q,}

/

D

exhale P, X P,
inhale Q, * Q,

C3

uaxhale B

SL proof obligations proven by Viper

inhale P,
Cl
Y exhale Q,)
' N
inhale P,
C2
_ exhaleQ,)

Viper-to-SL: Parallel Program S N ViPER

-

[Assume no writes

]{A}

{P}
N

{Q}

_

0

C3
{B}

|
| .
'l inhale A |
Front-end I :
language i C p N |
! ° inhale P, i
(P.} i exhale P, % P, & i
C2 ! Y exhale Q,)
| 1
{ Qz : i inhale Q, * Q, Ve ~ !
2 | inhale P, l
: C3 C2 :
! I
! I

/

uaxhaIeB j _ exhale Q, /g

SL proof obligations proven by Viper
P 9 P y vip Viper-to-SL theorem

(independent from the front-end)

Viper-to-SL: Parallel Program S N ViPER

i inhale A :
s Front-end ! :
[. {A} language ! |
Assume no writes] | CO (\ :
0 : inhale P, |
: C .
| exhaleP % P 1 !
\{,‘21} {zz} ! e _ exhaleQ,)|
1 2 ' | inhaleQ, * Q, e ™ i
() || te)| EEEE e
C : C, C, !
’ | _ exhaleQ, |
\ {B} J | _exhale B j

SL proof obligations proven by Viper
P 9 P y vip Viper-to-SL theorem

(independent from the front-end)

Viper-to-SL: Parallel Program S N ViPER

i inhale A :
s Front-end ! :
[. {A} language ! !
Assume no writes] | CO (:
0 : inhale P, |
: C .
| exhaleP % P 1 !
\{‘21} {zz} | ' ’ Y exhale Q, Il
1 2 ' | inhaleQ, * Q, e ™ i
() || te)| EEEE e
C : C, C, !
’ | _ exhaleQ, |
\ {B} J | _exhale B j

SL proof obligations proven by Viper
P 9 P y vip Viper-to-SL theorem

(independent from the front-end)

F{P }C{Q:}
F{P,}C{Q,}

Viper-to-SL: Parallel Program /{t} ““““ N ViPER

i inhale A :

s Front-end ! :

[. {A} language ! !
Assume no writes] X Co . :
0 : inhale P, |

: C .

| exhaleP, % P 1 !

\{,‘21} {zz} ! e _ exhaleQ,)

1 2 i | inhale Q, * Q, Ve ™ i

() || te)| EEEE nhaler, |

C : C, C, !

i _ exhaleQ,) |

) Cehaes @

SL proof obligations proven by Viper
P 9 P y vip Viper-to-SL theorem

(independent from the front-end)

F{P }C{Q:}
F{P,}C{Q,}

Viper-to-SL: Parallel Program /{t} ““““ N ViPER

i inhale A :

£ (A} | tangusge | (truex Al |
[Assume no writes] guag | C, - !
0 : inhale P, |

: C .

| exhaleP, % P 1 !

\{,‘21} {zz} ! e _ exhaleQ,)
1 2 ' | inhaleQ, * Q, e ™ i
() || te)| EEEE nhaler, |
C : C, C, !

i _ exhaleQ,) |

) Cehaes @

SL proof obligations proven by Viper
P 9 P y vip Viper-to-SL theorem

(independent from the front-end)

F{P }C{Q:}
F{P,}C{Q,}

Viper-to-SL: Parallel Program /{t} ““““ N ViPER

i inhale A |

£ (A} | language | fouex Al :
[Assume no writes] guad : G 4 :
0 : inhale P, |

: C '

| exhaleP,* P 1 !

\{‘21} {zz} i (R} b _ exhaleQ,)
1 2 i | inhale Q, * Q, e ™ i
() || te)| EEEE ohaler, |
. G C, :

i _ exhaleQ,) |

) Cehaes @

SL proof obligations proven by Viper
P 9 P y vip Viper-to-SL theorem

(independent from the front-end)

F{P }C{Q:}
F{P,}C{Q,}

Viper-to-SL: Parallel Program

-

[Assume no writes

]{A}

{P}
N

{Q}

_

0

C3
{B}

I |

i inhale A i

I|:ront-end : (true % A) :
anguage | ’ |

: ’ [inhalep,) |

| 1 !

Existence given u\ C !

by Viper-to-SL exhale P, % P 1 |

{ cp:z } y VIper-1o '\FXR } 1 2 L exhale Ql) i
I |

{ 2 } | inhale Q, * Q, Ve ~ !
b i inhale P, |

: C3 C2 :

I |

I |

/

o

uaxhaIeB j _ exhale Q, /g

SL proof obligations proven by Viper

F{P }C{Q:}
F{P,}C{Q,}

Viper-to-SL theorem
(independent from the front-end)

Viper-to-SL: Parallel Program

-

[Assume no writes

]{A}

{P}
N

{Q}

_

0

C3
{B}

I |

i inhale A i

Eﬁgﬁﬁgﬁ i {true X A} :
1% - N

: { R %k P1 sk P2 } inhale P1 :

Existence given u\ C !

by Viper-to-SL exhale P, x P 1 |

{ cp:z } y VIper-1o '\FNR } 1 2 L exhale Ql) i
I |

{ 2 | | inhale Q, * Q, Ve ~ !
b i inhale P, |

: C3 C2 i

I |

I |

/

o

uaxhaleB j _ exhale Q, /6

SL proof obligations proven by Viper

F{P }C{Q:}
F{P,}C{Q,}

Viper-to-SL theorem
(independent from the front-end)

Viper-to-SL: Parallel Program /{t} ““““ N Vi'PEH

-

[Assume no writes

]{A}

{P}
N

{Q}

_

0

C3
{B}

{Q}

|
|
'l inhale A |
Front-end | {true % A} |
language : C p N |
! 0 . |
— | i {R*P,%P,} inhale P, !
xistence given LL C !
: hale P, % P 1 !
{p,} by Viper-to-SL '\'~§§X 1 X P, |
R} Y exhale Q,)
c, i
l
|
|
|
|
|
|

/

C3

i inhale Q, * Q Ve ~
— | (R%Q,*Q,}

uaxhale B

inhale P,
C2
j _ exhaleQ,)

SL proof obligations proven by Viper

Viper-to-SL theorem
(independent from the front-end)

F{P }C{Q:}
F{P,}C{Q,}

Viper-to-SL: Parallel Program /{t} ““““ N Vi'PEH

i inhale A |

s Front-end ! { true * A} :

[) {A} language : '
Assume no writes] G, "0 N
o LL {R*P,*P,} inhale P, !

Existence given | C !

. exhale P, % P 1 !

\{‘zl } { cp:2 } by Viper-to-SL '\E\NR } 1 2 L exhale Q1 R

1 2 i | inhaleQ, * Q Ve ~ i

(Q} (Q,} — | (R*Q*Q,) inhaleP, |

. G C, l

: exhaleQ,) |

3
. |
Succeeds only if executed -
\ { B } J in a context satisfying B ’/:QXhale B j 6
e =

SL proof obligations proven by Viper
P 9 P y vip Viper-to-SL theorem

(independent from the front-end)

F{P }C{Q:}

F{P,}C{Q,}

Viper-to-SL: Parallel Program /{t} ““““ N Vi'PEH

i inhale A :

s Front-end ! { true * A} :
. {A} language ! :

[Assume no writes] i Co - N |
0 LL {R*P,%P,} inhale P, |

Existence given | C l

iner-to- exhale P, % P 1 !

\{‘zl } { cp:2 } by Viper-to-SL '\E\NR } 1 2 L exhale Q1 R
' 2 /| inhaleQ, * Q - N !
) || te)| Y (| (R¥05C) | (maer,)|
| oc c, i

¢ | (B} exhaleQ,) |

3
. |
Succeeds only if executed -
\ { B } J in a context satisfying B ’/:QXhale B j 6
e =

SL proof obligations proven by Viper
P 9 P y vip Viper-to-SL theorem

(independent from the front-end)

F{P }C{Q:}

F{P,}C{Q,}

Viper-to-SL: Parallel Program .

-

[Assume no writes

]{A}

{P}
N

{Q}

_

0

C3
{B}

—~ | ViPER

{Q}

|
|
''| inhale A |
Front-end | {true * A} !
language ! :
1 " inhalep, | |
— : 1| HR* P, *P,} Inhale ¥, !
xistence given LL - C !
by Viper-to-SL exhale P, % P 1 |
{ P2 } y |per (0] l\,\ﬁR} 1 2 K exhale Ql / i
C, .
|
|
|
|
|
|
|
|
|

/

|

|

! inhale O. %k O

| = 4 N\
— : { R % Q1 * Qzl} inhale P2

|

|

C3
2 1B

C2

Succeeds only if executed hal
in a context satisfying B | _exhale B

j _ exhaleQ,)

SL proof obligations proven by Viper

___________________ &

Viper-to-SL theorem
(independent from the front-end)

F{P }C{Q:}

F{P,}C{Q,}

Viper-to-SL: Parallel Program /{t} ““““ N Vi'PEH

| 1

i inhale A |

s Front-end ! {true % A} :
. {A} language ! |

[Assume no writes] ! G . hale P |
° Existence given Li\ { R Pl * P2 } g‘ Eh i

by Viper-to-SL | exhale P1 * Pz ! I

le } { CP:Z } y VIp '\rﬂR } _ EXhaIe Ql J i
1 2 ! inhale O _ O Ve ™ i
{Q} {Q,} | J(R*Q*Q,] inhale P, |
e c, i

C L1 LB} exhaleQ,) |

3
Succeeds only if executed _
\ (8] J in a context satisfying B ’/:QXhale B j

Cemaes) T &

SL proof obligations proven by Viper
P 9 P y vip Viper-to-SL theorem

(independent from the front-end)

I'{A}CO{R"‘P1"‘Pz} I_{Pl}cl{Ql}

F{R + Q, » Q;}C;{B} F{P,}C,{Q,}

Viper-to-SL: Parallel Program /{t} ““““ N Vi'PEH

i inhale A :

s Front-end ! { true * A} :

[_] {A} language ! |
Assume no writes | CO (. :
0 LL {R*P,%P,} inhale P, |

Existence given | C i

. exhale P, x P 1 !

\{421 } { CP:2 } by Viper-to-SL '\rﬂR \ 1 ¥ | exhaleq,) !

' 2 || inhale Q, * Q - N !

() ||)| Y | (7305 | (Cmer, | |
|G C, |

e | (B} exhaleQ,) |

3
. |
Succeeds only if executed -
\ { B } Q in a context satisfying B ’/:QXhale B j 0
e =

SL proof obligations proven by Viper
P 9 P y vip Viper-to-SL theorem

(independent from the front-end)

I'{A}CO{R"‘P1"‘Pz} I_{Pl}cl{Ql}

F{R + Q, » Q;}C;{B} F{P,}C,{Q,}

Viper-to-SL: Parallel Program /{t} ““““ N Vi'PEH

i inhale A :

s Front-end ! { true * A} :
. {A} language ! :

[Assume no writes] i Co - N |
0 LL {R*P,%P,} inhale P, |

Existence given | C l

- exhale P, % P 1 !

\{‘zl } { cp:2 } by Viper-to-SL '\E\NR } 1 2 L exhale Q1 R
' 2 /| inhaleQ, * Q - N !
() || e | Y | (<305 | (e, |
| C C |

C 1R B} : :

A A

3
\ {B} Succeeds only if executed ol hal j _ exhaleQ,)
in a context satisfying B ’/:QX aleB 6

Soundness of CSL SL proof obligations proven by Viper

(frame and parallel rules) Viper-to-SL theorem

(independent from the front-end)

I'{A}CO{R"‘P1"‘Pz} I_{Pl}cl{Ql}

F{R + Q, » Q;}C;{B} F{P,}C,{Q,}

Program Verifiers Based on Separation Logic (SL)

Formalized in a theorem prover
Foundational
[P /sy

D* Lithium
Ir(s ‘fjl Pulse >
E—

VeriFast WPER

Automated

*highly non-exhaustive (missing GRASShopper, Gillian, VST, Diaframe ...)

Program Verifiers Based on Separation Logic (SL) Verification Primitives: Inhale and Exhale

Formalized in a theorem prover
Foundational
[P /sy

o Lithium ! ' inhale A exhale A
I | > I
r(S P i | Intuitive . »
4 Pulse \ ! meaning Adds resources specified by A to the current context | Removes resources specified by A from the current context
4 1
1 1
g b H Logically F {P}inhale A {P * A} F {P * A} exhale A {P}

weakestPre(inhale A, Q) = A - Q weakestPre(exhale A, Q) = A * Q

Operationally e Allresources required by A are obtained e Allresources required by A are removed
VeriFast ViPER e Alllogical constraints are assumed e Alllogical constraints are asserted
Separation logic | assume A assert A

Automated analogue of
*highly non-exhaustive (missing GRASShopper, Gillian, VST, Diaframe ...) 2 |

Program Verifiers Based on Separation Logic (SL) Verification Primitives: Inhale and Exhale

Formalized in a theorem prover
Foundational
[P /sy

Lithium
Iris", >

inhale A exhale A

1
1

1

! .

1 Intuitive
1

1

1

1

Pulse meaning Adds resources specified by A to the current context | Removes resources specified by A from the current context
—
04 Logically I {P}inhale A {P * A} F {P * A} exhale A {P}

t weakestPre(inhale A, Q) = A -+ Q weakestPre(exhale A, Q) = A * Q
Operationally e Allresources required by A are obtained e Allresources required by A are removed
VeriFast ViPER e Alllogical constraints are assumed e Alllogical constraints are asserted

Separation logic | assume A assert A
analogue of

Automated

*highly non-exhaustive (missing GRASShopper, Gillian, VST, Diaframe ...)

Example: Verifying a Parallel Program (2/2)

Parallel rule
Fl {P3C {Q} F{P}C,{Q}
\resradicie

Front-end language

{px+ _*xpym _}
g := new PointXY()

]

{P,}
V= p.X
g.Xx:=v q.y = p.X
{q} {q}

{r,}

inhale P,
qy:=px
exhale Q,

exhal®{P tx P
inhaf® *Q

.] 12

free(p)
{axPviqyrv}

Formalized in a theorem prover

Foundational

4

Ir (*S | /)I Lithium
4 ——
=

Pulse

VeriFast

Program Verifiers Based on Separation Logic (SL)

ViPER

*highly non-exhaustive (missing GRASShopper, Gillian, VST, Diaframe ...)

Automated

Front-end language

{px+ _*xpym _}
g := new PointXY()

{axPviqyrv}

Parallel rule

FPICQ} HPIC,{Q}

\resradicie

Example: Verifying a Parallel Program (2/2)

inhale P,
qy:=px

exhale Q,

o

exhal®{P tx P
inhaf® *Q

N

Verification Primitives: Inhale and Exhale

inhale A exhale A
Intuitive - i
meaning Adds resources specified by A to the current context | Removes resources specified by A from the current context
Logically I {P}inhale A {P * A} F {P * A} exhale A {P}
weakestPre(inhale A, Q) = A - Q weakestPre(exhale A, Q) = A * Q
Operationally e Allresources required by A are obtained e Allresources required by A are removed
e Alllogical constraints are assumed e Alllogical constraints are asserted
Separation logic | assume A assert A
analogue of
10
_» symbolic execution -
front-end Viper o

program program

SMT
solver

front-end
translation

Boogie program

Boogie
verifier

Viper-to-

specification h
Boogie

4

R
mmmmeeebae

front-end translation ' Viper-to-Boogie Boogie verifier SMT solver

soundness soundness soundness soundness
SMT solver

respects . . .
< ——
front-end spec ~¢——— iscorrect is correct are valid <——— reports @
&
Parthasarathy et al. (CAV'21) WZ@ 16

Thank you for your attention!

Program Verifiers Based on Separation Logic (SL) Verification Primitives: Inhale and Exhale

Formalized in a theorem prover
Foundational
[P /sy

o Lithium ! H inhale A exhale A
1
Ir(S ;)l > : i Intuitive
4 Pulse - ! meaning Adds resources specified by A to the current context | Removes resources specified by A from the current context
:: >
1 1
Dy e H Logically F {P}inhale A {P * A} b {P * A} exhale A {P}
weakestPre(inhale A, Q) = A - Q weakestPre(exhale A, Q) = A * Q
Operationally e Allresources required by A are obtained e Allresources required by A are removed
VeriFast ViPER e Alllogical constraints are assumed e Alllogical constraints are asserted
Separation logic | assume A assert A
. _ o - » Automated analogue of
*highly non-exhaustive (missing GRASShopper, Gillian, VST, Diaframe ...) 2 1o

Example: Verifying a Parallel Program (2/2) Soundness: Proof Strategy

Parallel rule
FPICQ} HPIC,{Q} ,
_» symbolic execution -~.__
\reradicie - ot vper)
program T -~

Front-end language

{px+ _*xpym _}
g := new PointXY()

SMT
solver

front-end
translation

Boogie program

Boogie
verifier

Viper-to-

specification h
Boogie

exhal 7 A "
Rayoc v : L O SO |
inhale P, inhaf® * Q, :
q.y = pXx : : ;
{qxPVv*qyPv} exhale Cl2 | front-end translation ' Viper-to-Boogie ' Boogie verifier ! SMT solver
soundness soundness soundness soundness SMT solver

—
rthasarathy et al. (CAV':

respects + . .
front-end spec 4¢—— iscorrect @—————— s correct are valid <g———reports @
&
\ 12 Pa 21) *?@ 16

