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Program verifiers built on top of Viper

Prusti (Rust) Gobra (Go) Nagini (Python)

VerCors (Java, C, OpenCL, OpenMP) Smart contracts RSL, FSL, FSL++

Secure information flow Gradual verification …
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front-end 
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Verification of the SCION Internet architecture
(existing router implementation ~5k LOC)
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Overview of the Viper Language

Assertion LanguageProgram Code

Mathematical BackgroundVerification Features

● Fractional permissions
● Inductive predicates
● Iterated separating conjunction
● Magic wands
● …

● Predefined and user-defined datatypes
● Uninterpreted functions
● Axioms
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