
Formal Foundations of the Viper 
Verification Infrastructure

Thibault Dardinier

Joint work with Gaurav Parthasarathy, Alex Summers, Peter Müller



Program Verifiers Based on Separation Logic (SL)



Program Verifiers Based on Separation Logic (SL)

Automated



Program Verifiers Based on Separation Logic (SL)

Foundational

Automated



Program Verifiers Based on Separation Logic (SL)

Foundational

Automated

Formalized in a theorem prover



Program Verifiers Based on Separation Logic (SL)

Foundational

Automated

Formalized in a theorem prover



Program Verifiers Based on Separation Logic (SL)

Foundational

Automated

Formalized in a theorem prover



Program Verifiers Based on Separation Logic (SL)

Steel

Foundational

Automated

Formalized in a theorem prover



Program Verifiers Based on Separation Logic (SL)

Steel

Foundational

Automated

Formalized in a theorem prover



Program Verifiers Based on Separation Logic (SL)

Steel

Foundational

Automated

Formalized in a theorem prover



Program Verifiers Based on Separation Logic (SL)

Steel

Foundational

Automated

Formalized in a theorem prover

VeriFast



Program Verifiers Based on Separation Logic (SL)

Steel

Foundational

Automated

Formalized in a theorem prover

Sweet spot

VeriFast



Program Verifiers Based on Separation Logic (SL)

Steel

Foundational

Automated

Lithium

Formalized in a theorem prover

Sweet spot

VeriFast



Program Verifiers Based on Separation Logic (SL)

Steel

Foundational

Automated

Lithium

Formalized in a theorem prover

Sweet spot

VeriFast

Pulse



Program Verifiers Based on Separation Logic (SL)

Steel

Foundational

Automated

Lithium

Formalized in a theorem prover

Sweet spot

VeriFast

Pulse

This talk



Program Verifiers Based on Separation Logic (SL)

Steel

Foundational

Automated
*highly non-exhaustive (missing GRASShopper, Gillian, VST, Diaframe …)

Lithium

Formalized in a theorem prover

Sweet spot

VeriFast

Pulse

This talk



Outline of the Talk



Outline of the Talk

1. Overview of Viper



Outline of the Talk

1. Overview of Viper

2. Inhale and Exhale: An Operational View of Separation Logic



Outline of the Talk

1. Overview of Viper

2. Inhale and Exhale: An Operational View of Separation Logic

3. Toward a Foundational Viper



Outline of the Talk

1. Overview of Viper

2. Inhale and Exhale: An Operational View of Separation Logic

3. Toward a Foundational Viper



Demo



The Viper Verification Infrastructure



The Viper Verification Infrastructure

F

front-end 
program



The Viper Verification Infrastructure

F

front-end 
program

S

specification



The Viper Verification Infrastructure

F

front-end 
program

front-end 
translation

Viper 
program

V

S

specification



The Viper Verification Infrastructure

F

front-end 
program

front-end 
translation

Viper 
program

V

S

specification

Viper 
verifier

SMT 
solver



The Viper Verification Infrastructure

F

front-end 
program

front-end 
translation

Viper 
program

V

S

specification

respects 
front-end spec

SMT solver 
reports 

Viper 
verifier

SMT 
solver



The Viper Verification Infrastructure

SMT 
solver

symbolic execution 

verification condition generation

F

front-end 
program

front-end 
translation

Viper 
program

V

S

specification

respects 
front-end spec

SMT solver 
reports 



The Viper Verification Infrastructure

SMT 
solver

symbolic execution 

verification condition generation

F

front-end 
program

front-end 
translation

Viper 
program

V

S

specification

respects 
front-end spec

SMT solver 
reports 



The Viper Verification Infrastructure

Program verifiers built on top of Viper

Prusti (Rust) Gobra (Go) Nagini (Python)

VerCors (Java, C, OpenCL, OpenMP) Smart contracts RSL, FSL, FSL++

Secure information flow Gradual verification …

SMT 
solver

symbolic execution 

verification condition generation

F

front-end 
program

front-end 
translation

Viper 
program

V

S

specification



The Viper Verification Infrastructure

Program verifiers built on top of Viper

Prusti (Rust) Gobra (Go) Nagini (Python)

VerCors (Java, C, OpenCL, OpenMP) Smart contracts RSL, FSL, FSL++

Secure information flow Gradual verification …

SMT 
solver

symbolic execution 

verification condition generation

F

front-end 
program

front-end 
translation

Viper 
program

V

S

specification

Verification of the SCION Internet architecture
(existing router implementation ~5k LOC)



Overview of the Viper Language

Assertion LanguageProgram Code

Mathematical BackgroundVerification Features



● Sequential, imperative language
● Standard control structures
● Basic type system
● Built-in heap

Overview of the Viper Language

Assertion LanguageProgram Code

Mathematical BackgroundVerification Features



● Sequential, imperative language
● Standard control structures
● Basic type system
● Built-in heap

Overview of the Viper Language

Assertion LanguageProgram Code

Mathematical BackgroundVerification Features

● Fractional permissions



● Sequential, imperative language
● Standard control structures
● Basic type system
● Built-in heap

Overview of the Viper Language

Assertion LanguageProgram Code

Mathematical BackgroundVerification Features

● Fractional permissions
● Inductive predicates



● Sequential, imperative language
● Standard control structures
● Basic type system
● Built-in heap

Overview of the Viper Language

Assertion LanguageProgram Code

Mathematical BackgroundVerification Features

● Fractional permissions
● Inductive predicates
● Iterated separating conjunction



● Sequential, imperative language
● Standard control structures
● Basic type system
● Built-in heap

Overview of the Viper Language

Assertion LanguageProgram Code

Mathematical BackgroundVerification Features

● Fractional permissions
● Inductive predicates
● Iterated separating conjunction
● Magic wands



● Sequential, imperative language
● Standard control structures
● Basic type system
● Built-in heap

Overview of the Viper Language

Assertion LanguageProgram Code

Mathematical BackgroundVerification Features

● Fractional permissions
● Inductive predicates
● Iterated separating conjunction
● Magic wands
● …



● Sequential, imperative language
● Standard control structures
● Basic type system
● Built-in heap

● Standard contract features
● Inhale and exhale
● …

Overview of the Viper Language

Assertion LanguageProgram Code

Mathematical BackgroundVerification Features

● Fractional permissions
● Inductive predicates
● Iterated separating conjunction
● Magic wands
● …



● Sequential, imperative language
● Standard control structures
● Basic type system
● Built-in heap

● Standard contract features
● Inhale and exhale
● …

Overview of the Viper Language

Assertion LanguageProgram Code

Mathematical BackgroundVerification Features

● Fractional permissions
● Inductive predicates
● Iterated separating conjunction
● Magic wands
● …

● Predefined and user-defined datatypes
● Uninterpreted functions
● Axioms



Outline of the Talk

1. Overview of Viper

2. Inhale and Exhale: An Operational View of Separation Logic

3. Toward a Foundational Viper 



Verification Primitives: Inhale and Exhale



Verification Primitives: Inhale and Exhale

inhale A exhale A



Verification Primitives: Inhale and Exhale

inhale A exhale A

Separation logic 
assertion



Verification Primitives: Inhale and Exhale

inhale A exhale A

Adds resources specified by A to the current context

Separation logic 
assertion



Removes resources specified by A from the current context

Verification Primitives: Inhale and Exhale

inhale A exhale A

Adds resources specified by A to the current context

Separation logic 
assertion



Removes resources specified by A from the current context

Verification Primitives: Inhale and Exhale

inhale A exhale A

Intuitive 
meaning

Logically

Operationally

Adds resources specified by A to the current context



Removes resources specified by A from the current context

Verification Primitives: Inhale and Exhale

inhale A exhale A

Intuitive 
meaning

Logically

Operationally

Adds resources specified by A to the current context

 ⊦ {P} inhale A {P  A}∗



Removes resources specified by A from the current context

Verification Primitives: Inhale and Exhale

inhale A exhale A

Intuitive 
meaning

Logically

Operationally

Adds resources specified by A to the current context

 ⊦ {P} inhale A {P  A}∗



Removes resources specified by A from the current context

Verification Primitives: Inhale and Exhale

inhale A exhale A

Intuitive 
meaning

Logically

Operationally

Adds resources specified by A to the current context

 ⊦ {P} inhale A {P  A}∗

weakestPre(inhale A, Q) = A –  Q∗



Removes resources specified by A from the current context

Verification Primitives: Inhale and Exhale

inhale A exhale A

Intuitive 
meaning

Logically

Operationally

Adds resources specified by A to the current context

 ⊦ {P} inhale A {P  A}∗

weakestPre(inhale A, Q) = A –  Q∗

 ⊦ {P  A}∗  exhale A {P}



Removes resources specified by A from the current context

Verification Primitives: Inhale and Exhale

inhale A exhale A

Intuitive 
meaning

Logically

Operationally

Adds resources specified by A to the current context

 ⊦ {P} inhale A {P  A}∗

weakestPre(inhale A, Q) = A –  Q∗

 ⊦ {P  A}∗  exhale A {P}



Removes resources specified by A from the current context

Verification Primitives: Inhale and Exhale

inhale A exhale A

Intuitive 
meaning

Logically

Operationally

Adds resources specified by A to the current context

 ⊦ {P} inhale A {P  A}∗

weakestPre(inhale A, Q) = A –  Q∗

 ⊦ {P  A}∗  exhale A {P}

weakestPre(exhale A, Q) = A  Q∗



Removes resources specified by A from the current context

Verification Primitives: Inhale and Exhale

inhale A exhale A

Intuitive 
meaning

Logically

Operationally

Adds resources specified by A to the current context

 ⊦ {P} inhale A {P  A}∗

weakestPre(inhale A, Q) = A –  Q∗

 ⊦ {P  A}∗  exhale A {P}

weakestPre(exhale A, Q) = A  Q∗

Acting on a separation 
logic state

(e.g., Loc  (0, 1] × Val⇀ )



Removes resources specified by A from the current context

Verification Primitives: Inhale and Exhale

inhale A exhale A

Intuitive 
meaning

Logically

Operationally

Adds resources specified by A to the current context

 ⊦ {P} inhale A {P  A}∗

weakestPre(inhale A, Q) = A –  Q∗

● All logical constraints in A are assumed
● All resources required by A are obtained

 ⊦ {P  A}∗  exhale A {P}

weakestPre(exhale A, Q) = A  Q∗

Acting on a separation 
logic state

(e.g., Loc  (0, 1] × Val⇀ )



Removes resources specified by A from the current context

Verification Primitives: Inhale and Exhale

inhale A exhale A

Intuitive 
meaning

Logically

Operationally

Adds resources specified by A to the current context

 ⊦ {P} inhale A {P  A}∗

weakestPre(inhale A, Q) = A –  Q∗

● All logical constraints in A are assumed
● All resources required by A are obtained

● All logical constraints in A are asserted
● All resources required by A are removed

 ⊦ {P  A}∗  exhale A {P}

weakestPre(exhale A, Q) = A  Q∗

Acting on a separation 
logic state

(e.g., Loc  (0, 1] × Val⇀ )



Removes resources specified by A from the current context

Verification Primitives: Inhale and Exhale

inhale A exhale A

Intuitive 
meaning

Logically

Operationally

Adds resources specified by A to the current context

 ⊦ {P} inhale A {P  A}∗

weakestPre(inhale A, Q) = A –  Q∗

● All logical constraints in A are assumed
● All resources required by A are obtained

● All logical constraints in A are asserted
● All resources required by A are removed

 ⊦ {P  A}∗  exhale A {P}

weakestPre(exhale A, Q) = A  Q∗

Separation 
logic 
analogue of

assume A assert A



Removes resources specified by A from the current context

Verification Primitives: Inhale and Exhale

inhale A exhale A

Intuitive 
meaning

Logically

Operationally

Adds resources specified by A to the current context

 ⊦ {P} inhale A {P  A}∗

weakestPre(inhale A, Q) = A –  Q∗

● All logical constraints in A are assumed
● All resources required by A are obtained

● All logical constraints in A are asserted
● All resources required by A are removed

 ⊦ {P  A}∗  exhale A {P}

weakestPre(exhale A, Q) = A  Q∗

Sometimes called 
produce

Sometimes called 
consume

Separation 
logic 
analogue of

assume A assert A



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (1/2)

v := p.x
q.x := v

Front-end language

q.y := p.x



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (1/2)

v := p.x
q.x := v

Front-end language

q.y := p.x

Object with 
fields x and y



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (1/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

q.y := p.x

Object with 
fields x and y



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (1/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

q.y := p.x

Object with 
fields x and y

Precondition



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (1/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

q.y := p.x

Object with 
fields x and y

Precondition

Postcondition



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (1/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

q.y := p.x



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (1/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language Starting in a state with no resources

q.y := p.x



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (1/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

inhale p.x  _  p.y  _↦ ∗ ↦

Starting in a state with no resources

q.y := p.x



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (1/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

inhale p.x  _  p.y  _↦ ∗ ↦

Starting in a state with no resources

q.y := p.x

(not actual Viper syntax)



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (1/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

inhale p.x  _  p.y  _↦ ∗ ↦

Starting in a state with no resources

havoc q
inhale q.x  _  q.y  _↦ ∗ ↦

q.y := p.x

(not actual Viper syntax)



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (1/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

inhale p.x  _  p.y  _↦ ∗ ↦

Starting in a state with no resources

havoc q
inhale q.x  _  q.y  _↦ ∗ ↦

q.y := p.x

Non-deterministic assignment



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (1/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

inhale p.x  _  p.y  _↦ ∗ ↦

Starting in a state with no resources

havoc q
inhale q.x  _  q.y  _↦ ∗ ↦

q.y := p.x
…
…
…



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (1/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

inhale p.x  _  p.y  _↦ ∗ ↦

Starting in a state with no resources

havoc q
inhale q.x  _  q.y  _↦ ∗ ↦

exhale p.x  _  p.y  _↦ ∗ ↦

q.y := p.x
…
…
…



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (1/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

inhale p.x  _  p.y  _↦ ∗ ↦

exhale q.x  v  q.y  v↦ ∗ ↦

Starting in a state with no resources

havoc q
inhale q.x  _  q.y  _↦ ∗ ↦

exhale p.x  _  p.y  _↦ ∗ ↦

q.y := p.x
…
…
…



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (2/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

inhale p.x  _  p.y  _↦ ∗ ↦

exhale q.x  v  q.y  v↦ ∗ ↦

havoc q
inhale q.x  _  q.y  _↦ ∗ ↦

exhale p.x  _  p.y  _↦ ∗ ↦

q.y := p.x
…
…
…



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (2/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

inhale p.x  _  p.y  _↦ ∗ ↦

exhale q.x  v  q.y  v↦ ∗ ↦

havoc q
inhale q.x  _  q.y  _↦ ∗ ↦

exhale p.x  _  p.y  _↦ ∗ ↦

q.y := p.x
…
…
…



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (2/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

inhale p.x  _  p.y  _↦ ∗ ↦

exhale q.x  v  q.y  v↦ ∗ ↦

⊦ {P1} C1 {Q1}     ⊦ {P2} C2 {Q2}     …
—————————————————

 ⊦ {P1  P∗ 2} C1 || C2 {Q1  Q∗ 2}

Parallel rule

havoc q
inhale q.x  _  q.y  _↦ ∗ ↦

exhale p.x  _  p.y  _↦ ∗ ↦

q.y := p.x
…
…
…



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (2/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

inhale p.x  _  p.y  _↦ ∗ ↦

exhale q.x  v  q.y  v↦ ∗ ↦

⊦ {P1} C1 {Q1}     ⊦ {P2} C2 {Q2}     …
—————————————————

 ⊦ {P1  P∗ 2} C1 || C2 {Q1  Q∗ 2}

Parallel rule

havoc q
inhale q.x  _  q.y  _↦ ∗ ↦

exhale p.x  _  p.y  _↦ ∗ ↦

q.y := p.x
…
…
…

{ P2 }

{ Q2 }

{ P1 }

{ Q1 }



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (2/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

inhale p.x  _  p.y  _↦ ∗ ↦

exhale q.x  v  q.y  v↦ ∗ ↦

⊦ {P1} C1 {Q1}     ⊦ {P2} C2 {Q2}     …
—————————————————

 ⊦ {P1  P∗ 2} C1 || C2 {Q1  Q∗ 2}

Parallel rule

havoc q
inhale q.x  _  q.y  _↦ ∗ ↦

exhale p.x  _  p.y  _↦ ∗ ↦

q.y := p.x
…
…
…

{ P2 }

{ Q2 }

{ P1 }

{ Q1 }

P1  (q.x  _  p.x  _)≜ ↦ ∗ ↦ P2  (q.y  _  p.x  _)≜ ↦ ∗ ↦
½ ½

Q1  (q.x  v  p.x  v)≜ ↦ ∗ ↦
½

Q2  ( k. q.y  k  p.x  k)≜ ∃ ↦ ∗ ↦
½



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (2/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

inhale p.x  _  p.y  _↦ ∗ ↦

exhale q.x  v  q.y  v↦ ∗ ↦

⊦ {P1} C1 {Q1}     ⊦ {P2} C2 {Q2}     …
—————————————————

 ⊦ {P1  P∗ 2} C1 || C2 {Q1  Q∗ 2}

Parallel rule

havoc q
inhale q.x  _  q.y  _↦ ∗ ↦

exhale p.x  _  p.y  _↦ ∗ ↦

q.y := p.x
…
…
…

{ P2 }

{ Q2 }

{ P1 }

{ Q1 }



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (2/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

inhale p.x  _  p.y  _↦ ∗ ↦

exhale q.x  v  q.y  v↦ ∗ ↦

⊦ {P1} C1 {Q1}     ⊦ {P2} C2 {Q2}     …
—————————————————

 ⊦ {P1  P∗ 2} C1 || C2 {Q1  Q∗ 2}

Parallel rule

havoc q
inhale q.x  _  q.y  _↦ ∗ ↦

exhale p.x  _  p.y  _↦ ∗ ↦

q.y := p.x
…
…
…

inhale P1

v := p.x
q.x := v
exhale Q1

{ P2 }

{ Q2 }

{ P1 }

{ Q1 }



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (2/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

inhale p.x  _  p.y  _↦ ∗ ↦

exhale q.x  v  q.y  v↦ ∗ ↦

⊦ {P1} C1 {Q1}     ⊦ {P2} C2 {Q2}     …
—————————————————

 ⊦ {P1  P∗ 2} C1 || C2 {Q1  Q∗ 2}

Parallel rule

havoc q
inhale q.x  _  q.y  _↦ ∗ ↦

exhale p.x  _  p.y  _↦ ∗ ↦

q.y := p.x
…
…
…

inhale P1

v := p.x
q.x := v
exhale Q1

inhale P2

q.y := p.x
exhale Q2

{ P2 }

{ Q2 }

{ P1 }

{ Q1 }



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (2/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

inhale p.x  _  p.y  _↦ ∗ ↦

exhale q.x  v  q.y  v↦ ∗ ↦

⊦ {P1} C1 {Q1}     ⊦ {P2} C2 {Q2}     …
—————————————————

 ⊦ {P1  P∗ 2} C1 || C2 {Q1  Q∗ 2}

Parallel rule

havoc q
inhale q.x  _  q.y  _↦ ∗ ↦

exhale p.x  _  p.y  _↦ ∗ ↦

q.y := p.x
…
…
…

inhale P1

v := p.x
q.x := v
exhale Q1

inhale P2

q.y := p.x
exhale Q2

{ P2 }

{ Q2 }

{ P1 }

{ Q1 }
exhale P1  P∗ 2

havoc v
inhale Q1  Q∗ 2



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (2/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

inhale p.x  _  p.y  _↦ ∗ ↦

exhale q.x  v  q.y  v↦ ∗ ↦

⊦ {P1} C1 {Q1}     ⊦ {P2} C2 {Q2}     …
—————————————————

 ⊦ {P1  P∗ 2} C1 || C2 {Q1  Q∗ 2}

Parallel rule

havoc q
inhale q.x  _  q.y  _↦ ∗ ↦

exhale p.x  _  p.y  _↦ ∗ ↦

q.y := p.x
…
…
…

inhale P1

v := p.x
q.x := v
exhale Q1

inhale P2

q.y := p.x
exhale Q2

{ P2 }

{ Q2 }

{ P1 }

{ Q1 }
exhale P1  P∗ 2

havoc v
inhale Q1  Q∗ 2



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (2/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

inhale p.x  _  p.y  _↦ ∗ ↦

exhale q.x  v  q.y  v↦ ∗ ↦

⊦ {P1} C1 {Q1}     ⊦ {P2} C2 {Q2}     …
—————————————————

 ⊦ {P1  P∗ 2} C1 || C2 {Q1  Q∗ 2}

Parallel rule

havoc q
inhale q.x  _  q.y  _↦ ∗ ↦

exhale p.x  _  p.y  _↦ ∗ ↦

q.y := p.x
…
…
…

inhale P1

v := p.x
q.x := v
exhale Q1

inhale P2

q.y := p.x
exhale Q2

{ P2 }

{ Q2 }

{ P1 }

{ Q1 }
exhale P1  P∗ 2

havoc v
inhale Q1  Q∗ 2



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (2/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

inhale p.x  _  p.y  _↦ ∗ ↦

exhale q.x  v  q.y  v↦ ∗ ↦

⊦ {P1} C1 {Q1}     ⊦ {P2} C2 {Q2}     …
—————————————————

 ⊦ {P1  P∗ 2} C1 || C2 {Q1  Q∗ 2}

Parallel rule

havoc q
inhale q.x  _  q.y  _↦ ∗ ↦

exhale p.x  _  p.y  _↦ ∗ ↦

q.y := p.x
…
…
…

inhale P1

v := p.x
q.x := v
exhale Q1

inhale P2

q.y := p.x
exhale Q2

{ P2 }

{ Q2 }

{ P1 }

{ Q1 }
exhale P1  P∗ 2

havoc v
inhale Q1  Q∗ 2



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (2/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

inhale p.x  _  p.y  _↦ ∗ ↦

exhale q.x  v  q.y  v↦ ∗ ↦

⊦ {P1} C1 {Q1}     ⊦ {P2} C2 {Q2}     …
—————————————————

 ⊦ {P1  P∗ 2} C1 || C2 {Q1  Q∗ 2}

Parallel rule

havoc q
inhale q.x  _  q.y  _↦ ∗ ↦

exhale p.x  _  p.y  _↦ ∗ ↦

q.y := p.x
…
…
…

inhale P1

v := p.x
q.x := v
exhale Q1

inhale P2

q.y := p.x
exhale Q2

{ P2 }

{ Q2 }

{ P1 }

{ Q1 }
exhale P1  P∗ 2

havoc v
inhale Q1  Q∗ 2



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (2/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

inhale p.x  _  p.y  _↦ ∗ ↦

exhale q.x  v  q.y  v↦ ∗ ↦

⊦ {P1} C1 {Q1}     ⊦ {P2} C2 {Q2}     …
—————————————————

 ⊦ {P1  P∗ 2} C1 || C2 {Q1  Q∗ 2}

Parallel rule

havoc q
inhale q.x  _  q.y  _↦ ∗ ↦

exhale p.x  _  p.y  _↦ ∗ ↦

q.y := p.x
…
…
…

inhale P1

v := p.x
q.x := v
exhale Q1

inhale P2

q.y := p.x
exhale Q2

{ P2 }

{ Q2 }

{ P1 }

{ Q1 }
exhale P1  P∗ 2

havoc v
inhale Q1  Q∗ 2



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (2/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

inhale p.x  _  p.y  _↦ ∗ ↦

exhale q.x  v  q.y  v↦ ∗ ↦

⊦ {P1} C1 {Q1}     ⊦ {P2} C2 {Q2}     …
—————————————————

 ⊦ {P1  P∗ 2} C1 || C2 {Q1  Q∗ 2}

Parallel rule

havoc q
inhale q.x  _  q.y  _↦ ∗ ↦

exhale p.x  _  p.y  _↦ ∗ ↦

q.y := p.x
…
…
…

inhale P1

v := p.x
q.x := v
exhale Q1

inhale P2

q.y := p.x
exhale Q2

{ P2 }

{ Q2 }

{ P1 }

{ Q1 }
exhale P1  P∗ 2

havoc v
inhale Q1  Q∗ 2



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (2/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

inhale p.x  _  p.y  _↦ ∗ ↦

exhale q.x  v  q.y  v↦ ∗ ↦

⊦ {P1} C1 {Q1}     ⊦ {P2} C2 {Q2}     …
—————————————————

 ⊦ {P1  P∗ 2} C1 || C2 {Q1  Q∗ 2}

Parallel rule

havoc q
inhale q.x  _  q.y  _↦ ∗ ↦

exhale p.x  _  p.y  _↦ ∗ ↦

q.y := p.x
…
…
…

inhale P1

v := p.x
q.x := v
exhale Q1

inhale P2

q.y := p.x
exhale Q2

{ P2 }

{ Q2 }

{ P1 }

{ Q1 }
exhale P1  P∗ 2

havoc v
inhale Q1  Q∗ 2



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (2/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

inhale p.x  _  p.y  _↦ ∗ ↦

exhale q.x  v  q.y  v↦ ∗ ↦

⊦ {P1} C1 {Q1}     ⊦ {P2} C2 {Q2}     …
—————————————————

 ⊦ {P1  P∗ 2} C1 || C2 {Q1  Q∗ 2}

Parallel rule

havoc q
inhale q.x  _  q.y  _↦ ∗ ↦

exhale p.x  _  p.y  _↦ ∗ ↦

q.y := p.x
…
…
…

inhale P1

v := p.x
q.x := v
exhale Q1

inhale P2

q.y := p.x
exhale Q2

{ P2 }

{ Q2 }

{ P1 }

{ Q1 }
exhale P1  P∗ 2

havoc v
inhale Q1  Q∗ 2



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (2/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

inhale p.x  _  p.y  _↦ ∗ ↦

exhale q.x  v  q.y  v↦ ∗ ↦

⊦ {P1} C1 {Q1}     ⊦ {P2} C2 {Q2}     …
—————————————————

 ⊦ {P1  P∗ 2} C1 || C2 {Q1  Q∗ 2}

Parallel rule

havoc q
inhale q.x  _  q.y  _↦ ∗ ↦

exhale p.x  _  p.y  _↦ ∗ ↦

q.y := p.x
…
…
…

inhale P1

v := p.x
q.x := v
exhale Q1

inhale P2

q.y := p.x
exhale Q2

{ P2 }

{ Q2 }

{ P1 }

{ Q1 }
exhale P1  P∗ 2

havoc v
inhale Q1  Q∗ 2



q := new PointXY()

free(p)

Example: Verifying a Parallel Program (2/2)

v := p.x
q.x := v

{ p.x  _  p.y  _ }↦ ∗ ↦

{ q.x  v  q.y  v }↦ ∗ ↦

Front-end language

inhale p.x  _  p.y  _↦ ∗ ↦

exhale q.x  v  q.y  v↦ ∗ ↦

⊦ {P1} C1 {Q1}     ⊦ {P2} C2 {Q2}     …
—————————————————

 ⊦ {P1  P∗ 2} C1 || C2 {Q1  Q∗ 2}

Parallel rule

havoc q
inhale q.x  _  q.y  _↦ ∗ ↦

exhale p.x  _  p.y  _↦ ∗ ↦

q.y := p.x
…
…
…

inhale P1

v := p.x
q.x := v
exhale Q1

inhale P2

q.y := p.x
exhale Q2

{ P2 }

{ Q2 }

{ P1 }

{ Q1 }
exhale P1  P∗ 2

havoc v
inhale Q1  Q∗ 2



Outline of the Talk

1. Overview of Viper

2. Inhale and Exhale: An Operational View of Separation Logic

3. Toward a Foundational Viper



Soundness

F

front-end 
program

Viper 
program

front-end 
translation

SMT 
solver

symbolic execution 

V

verification condition generation

S

specification



Soundness

F

front-end 
program

Viper 
program

front-end 
translation

SMT 
solver

symbolic execution 

V

verification condition generation

respects 
front-end spec

desired soundness property
SMT solver 
reports 

S

specification



Soundness

F

front-end 
program

Viper 
program

front-end 
translation

Viper-to-
Boogie

B

Boogie program

Boogie 
verifier

symbolic execution 

V

VC

verification condition generation

SMT 
solver

S

specification

respects 
front-end spec

desired soundness property
SMT solver 
reports 



Soundness: Proof Strategy

F

front-end 
program

Viper 
program

front-end 
translation

Viper-to-
Boogie

B

Boogie program

Boogie 
verifier

symbolic execution 

V

VC

verification condition generation

SMT 
solver

S

specification



Soundness: Proof Strategy

F

front-end 
program

Viper 
program

front-end 
translation

Viper-to-
Boogie

B

Boogie program

Boogie 
verifier

symbolic execution 

V

VC

verification condition generation

SMT 
solver

S

specification

SMT solver 
reports



Soundness: Proof Strategy

F

front-end 
program

Viper 
program

front-end 
translation

Viper-to-
Boogie

B

Boogie program

Boogie 
verifier

symbolic execution 

V

VC

are valid

SMT solver 
soundness

verification condition generation

SMT 
solver

S

specification

SMT solver 
reports



Soundness: Proof Strategy

F

front-end 
program

Viper 
program

front-end 
translation

Viper-to-
Boogie

B

Boogie program

Boogie 
verifier

symbolic execution 

V

VC

are valid

SMT solver 
soundness

is correct

Boogie verifier
soundness

verification condition generation

SMT 
solver

S

specification

SMT solver 
reports



Soundness: Proof Strategy

F

front-end 
program

Viper 
program

front-end 
translation

Viper-to-
Boogie

B

Boogie program

Boogie 
verifier

symbolic execution 

V

VC

are valid

SMT solver 
soundness

is correct

Boogie verifier
soundness

is correct

Viper-to-Boogie 
soundness

verification condition generation

SMT 
solver

S

specification

SMT solver 
reports



Soundness: Proof Strategy

F

front-end 
program

Viper 
program

front-end 
translation

Viper-to-
Boogie

B

Boogie program

Boogie 
verifier

symbolic execution 

V

VC

are valid

SMT solver 
soundness

is correct

Boogie verifier
soundness

is correct

Viper-to-Boogie 
soundness

respects 
front-end spec

front-end translation
soundness

verification condition generation

SMT 
solver

S

specification

SMT solver 
reports



Soundness: Proof Strategy

F

front-end 
program

Viper 
program

front-end 
translation

Viper-to-
Boogie

B

Boogie program

Boogie 
verifier

symbolic execution 

V

VC

are valid

SMT solver 
soundness

is correct

Boogie verifier
soundness

is correct

Viper-to-Boogie 
soundness

respects 
front-end spec

front-end translation
soundness

verification condition generation

SMT 
solver

S

specification

SMT solver 
reports

Parthasarathy et al. (CAV’21)



Soundness: Proof Strategy

F

front-end 
program

Viper 
program

front-end 
translation

Viper-to-
Boogie

B

Boogie program

Boogie 
verifier

symbolic execution 

V

VC

are valid

SMT solver 
soundness

is correct

Boogie verifier
soundness

is correct

Viper-to-Boogie 
soundness

respects 
front-end spec

front-end translation
soundness

verification condition generation

SMT 
solver

S

specification

SMT solver 
reports

Parthasarathy et al. (CAV’21)



Viper’s Formal Foundations

F

front-end 
program

front-end 
translation

Viper 
program

V

respects 
front-end spec

S

specification

is correct

front-end translation soundness



Viper’s Formal Foundations

F

front-end 
program

front-end 
translation

Viper 
program

V

respects 
front-end spec

S

specification

is correct

front-end translation soundness

What does this mean?What does this mean?



Viper’s Formal Foundations

F

front-end 
program

front-end 
translation

Viper 
program

V

respects 
front-end spec

S

specification

is correct

front-end translation soundness

What does this mean?What does this mean?



Viper’s Formal Foundations

F

front-end 
program

front-end 
translation

Viper 
program

V

respects 
front-end spec

S

specification

is correct

front-end translation soundness

What does this mean?What does this mean?

Operational semantics



Viper’s Formal Foundations

F

front-end 
program

front-end 
translation

Viper 
program

V

respects 
front-end spec

S

specification

is correct

front-end translation soundness

What does this mean?What does this mean?

Operational semantics



Viper’s Formal Foundations

F

front-end 
program

front-end 
translation

Viper 
program

V

respects 
front-end spec

S

specification

is correct

front-end translation soundness

What does this mean?What does this mean?

Operational semantics

State (PCM): Heap, resources, …



Viper’s Formal Foundations

F

front-end 
program

front-end 
translation

Viper 
program

V

respects 
front-end spec

S

specification

is correct

front-end translation soundness

What does this mean?What does this mean?

Operational semantics

State (PCM): Heap, resources, …

Demonic non-determinism (inhale, 
havoc, …)



Viper’s Formal Foundations

F

front-end 
program

front-end 
translation

Viper 
program

V

respects 
front-end spec

S

specification

is correct

front-end translation soundness

What does this mean?What does this mean?

Operational semantics

State (PCM): Heap, resources, …

Demonic non-determinism (inhale, 
havoc, …)



Viper’s Formal Foundations

F

front-end 
program

front-end 
translation

Viper 
program

V

respects 
front-end spec

S

specification

is correct

front-end translation soundness

What does this mean?What does this mean?

Operational semantics

State (PCM): Heap, resources, …

Demonic non-determinism (inhale, 
havoc, …)

Angelic non-determinism (exhale)



Viper’s Formal Foundations

F

front-end 
program

front-end 
translation

Viper 
program

V

respects 
front-end spec

S

specification

is correct

front-end translation soundness

What does this mean?What does this mean?

Operational semantics

State (PCM): Heap, resources, …

Demonic non-determinism (inhale, 
havoc, …)

Angelic non-determinism (exhale)

In practice, the verifier makes a 
choice (based on heuristics)



Viper’s Formal Foundations

F

front-end 
program

front-end 
translation

Viper 
program

V

respects 
front-end spec

S

specification

is correct

front-end translation soundness

Operational semantics

State (PCM): Heap, resources, …

Demonic non-determinism (inhale, 
havoc, …)

Angelic non-determinism (exhale)



Viper’s Formal Foundations

F

front-end 
program

front-end 
translation

Viper 
program

V

respects 
front-end spec

S

specification

is correct

front-end translation soundness

Operational semantics

State (PCM): Heap, resources, …

Demonic non-determinism (inhale, 
havoc, …)

Angelic non-determinism (exhale)

Can we get a general 
result for any front-end?

Can we get a general 
result for any front-end?



Viper’s Formal Foundations

F

front-end 
program

front-end 
translation

Viper 
program

V

respects 
front-end spec

S

specification

is correct

Uses some external SL
(e.g., Concurrent SL, RustBelt…)

front-end translation soundness

Operational semantics

State (PCM): Heap, resources, …

Demonic non-determinism (inhale, 
havoc, …)

Angelic non-determinism (exhale)

Can we get a general 
result for any front-end?

Can we get a general 
result for any front-end?



Viper’s Formal Foundations

F

front-end 
program

front-end 
translation

Viper 
program

V

respects 
front-end spec

S

specification

is correct

Uses some external SL
(e.g., Concurrent SL, RustBelt…)

P

SL proof obligations

front-end translation soundness

Operational semantics

State (PCM): Heap, resources, …

Demonic non-determinism (inhale, 
havoc, …)

Angelic non-determinism (exhale)

Can we get a general 
result for any front-end?

Can we get a general 
result for any front-end?



Viper’s Formal Foundations

F

front-end 
program

front-end 
translation

Viper 
program

V

respects 
front-end spec

S

specification

is correct

Uses some external SL
(e.g., Concurrent SL, RustBelt…)

P

SL proof obligations

front-end translation soundness

Operational semantics

State (PCM): Heap, resources, …

Demonic non-determinism (inhale, 
havoc, …)

Angelic non-determinism (exhale)

Informally: Mapping from
external SL to Viper’s SL

Can we get a general 
result for any front-end?

Can we get a general 
result for any front-end?



Viper’s Formal Foundations

F

front-end 
program

front-end 
translation

Viper 
program

V

respects 
front-end spec

S

specification

is correct

Uses some external SL
(e.g., Concurrent SL, RustBelt…)

P

SL proof obligations

front-end translation soundness

Operational semantics

State (PCM): Heap, resources, …

Demonic non-determinism (inhale, 
havoc, …)

Angelic non-determinism (exhale)

Informally: Mapping from
external SL to Viper’s SL

Can we get a general 
result for any front-end?

Can we get a general 
result for any front-end?



Viper’s Formal Foundations

F

front-end 
program

front-end 
translation

Viper 
program

V

respects 
front-end spec

S

specification

is correct

Uses some external SL
(e.g., Concurrent SL, RustBelt…)

P

SL proof obligations

Independent from 
the front-end

front-end translation soundness

Operational semantics

State (PCM): Heap, resources, …

Demonic non-determinism (inhale, 
havoc, …)

Angelic non-determinism (exhale)

Informally: Mapping from
external SL to Viper’s SL

Can we get a general 
result for any front-end?

Can we get a general 
result for any front-end?



Viper’s Formal Foundations

F

front-end 
program

front-end 
translation

Viper 
program

V

respects 
front-end spec

S

specification

is correct

P

SL proof obligations

Independent from 
the front-end

Informally: Mapping from
external SL to Viper’s SL

Operational semantics

State (PCM): Heap, resources, …

Demonic non-determinism (inhale, 
havoc, …)

Angelic non-determinism (exhale)

Uses some external SL
(e.g., Concurrent SL, RustBelt…)



Viper’s Formal Foundations

F

front-end 
program

front-end 
translation

Viper 
program

V

respects 
front-end spec

S

specification

is correct

P

SL proof obligations

Independent from 
the front-end

Viper-to-SL
soundness

are correct

Informally: Mapping from
external SL to Viper’s SL

Operational semantics

State (PCM): Heap, resources, …

Demonic non-determinism (inhale, 
havoc, …)

Angelic non-determinism (exhale)

Uses some external SL
(e.g., Concurrent SL, RustBelt…)



Viper’s Formal Foundations

F

front-end 
program

front-end 
translation

Viper 
program

V

respects 
front-end spec

S

specification

is correct

P

SL proof obligations

Independent from 
the front-end

Viper-to-SL
soundness

are correct

external SL
soundness

Informally: Mapping from
external SL to Viper’s SL

Operational semantics

State (PCM): Heap, resources, …

Demonic non-determinism (inhale, 
havoc, …)

Angelic non-determinism (exhale)

Uses some external SL
(e.g., Concurrent SL, RustBelt…)



Viper-to-SL: Parallel Program

{ P2 }

C2

{ Q2 }

{ P1 }

C1

{ Q1 }

{ A }
 C0

 C3

{ B }

Front-end 
language



Viper-to-SL: Parallel Program

{ P2 }

C2

{ Q2 }

{ P1 }

C1

{ Q1 }

{ A }
 C0

 C3

{ B }

Front-end 
language

Assume no writes



inhale A

C0

exhale P1  P∗ 2

inhale Q1  Q∗ 2

C3

exhale B

Viper-to-SL: Parallel Program

{ P2 }

C2

{ Q2 }

{ P1 }

C1

{ Q1 }

{ A }
 C0

 C3

{ B }

Front-end 
language

Assume no writes
inhale P1

C1

exhale Q1

inhale P2

C2

exhale Q2



inhale A

C0

exhale P1  P∗ 2

inhale Q1  Q∗ 2

C3

exhale B

Viper-to-SL: Parallel Program

{ P2 }

C2

{ Q2 }

{ P1 }

C1

{ Q1 }

{ A }
 C0

 C3

{ B }

Front-end 
language

Assume no writes
inhale P1

C1

exhale Q1

inhale P2

C2

exhale Q2



SL proof obligations proven by Viper

inhale A

C0

exhale P1  P∗ 2

inhale Q1  Q∗ 2

C3

exhale B

Viper-to-SL: Parallel Program

{ P2 }

C2

{ Q2 }

{ P1 }

C1

{ Q1 }

{ A }
 C0

 C3

{ B }

Front-end 
language

Assume no writes
inhale P1

C1

exhale Q1

inhale P2

C2

exhale Q2⇒



SL proof obligations proven by Viper

inhale A

C0

exhale P1  P∗ 2

inhale Q1  Q∗ 2

C3

exhale B

Viper-to-SL: Parallel Program

{ P2 }

C2

{ Q2 }

{ P1 }

C1

{ Q1 }

{ A }
 C0

 C3

{ B }

Front-end 
language

Assume no writes
inhale P1

C1

exhale Q1

inhale P2

C2

exhale Q2⇒

Viper-to-SL theorem
(independent from the front-end)



SL proof obligations proven by Viper

inhale A

C0

exhale P1  P∗ 2

inhale Q1  Q∗ 2

C3

exhale B

Viper-to-SL: Parallel Program

{ P2 }

C2

{ Q2 }

{ P1 }

C1

{ Q1 }

{ A }
 C0

 C3

{ B }

Front-end 
language

Assume no writes
inhale P1

C1

exhale Q1

inhale P2

C2

exhale Q2⇒

Viper-to-SL theorem
(independent from the front-end)



SL proof obligations proven by Viper

inhale A

C0

exhale P1  P∗ 2

inhale Q1  Q∗ 2

C3

exhale B

Viper-to-SL: Parallel Program

{ P2 }

C2

{ Q2 }

{ P1 }

C1

{ Q1 }

{ A }
 C0

 C3

{ B }

Front-end 
language

Assume no writes
inhale P1

C1

exhale Q1

inhale P2

C2

exhale Q2

 ⊦ { P1 } C1 { Q1 }

 ⊦ { P2 } C2 { Q2 }

⇒

Viper-to-SL theorem
(independent from the front-end)



SL proof obligations proven by Viper

inhale A

C0

exhale P1  P∗ 2

inhale Q1  Q∗ 2

C3

exhale B

Viper-to-SL: Parallel Program
{ true }

{ P2 }

C2

{ Q2 }

{ P1 }

C1

{ Q1 }

{ A }
 C0

 C3

{ B }

Front-end 
language

Assume no writes
inhale P1

C1

exhale Q1

inhale P2

C2

exhale Q2

 ⊦ { P1 } C1 { Q1 }

 ⊦ { P2 } C2 { Q2 }

⇒

Viper-to-SL theorem
(independent from the front-end)



SL proof obligations proven by Viper

inhale A

C0

exhale P1  P∗ 2

inhale Q1  Q∗ 2

C3

exhale B

Viper-to-SL: Parallel Program
{ true }

{ P2 }

C2

{ Q2 }

{ P1 }

C1

{ Q1 }

{ A }
 C0

 C3

{ B }

Front-end 
language

{ true  A }∗
Assume no writes

inhale P1

C1

exhale Q1

inhale P2

C2

exhale Q2

 ⊦ { P1 } C1 { Q1 }

 ⊦ { P2 } C2 { Q2 }

⇒

Viper-to-SL theorem
(independent from the front-end)



SL proof obligations proven by Viper

inhale A

C0

exhale P1  P∗ 2

inhale Q1  Q∗ 2

C3

exhale B

Viper-to-SL: Parallel Program
{ true }

{ P2 }

C2

{ Q2 }

{ P1 }

C1

{ Q1 }

{ A }
 C0

 C3

{ B }

Front-end 
language

{ true  A }∗

{ R }

Assume no writes
inhale P1

C1

exhale Q1

inhale P2

C2

exhale Q2

 ⊦ { P1 } C1 { Q1 }

 ⊦ { P2 } C2 { Q2 }

⇒

Viper-to-SL theorem
(independent from the front-end)



SL proof obligations proven by Viper

inhale A

C0

exhale P1  P∗ 2

inhale Q1  Q∗ 2

C3

exhale B

Viper-to-SL: Parallel Program
{ true }

{ P2 }

C2

{ Q2 }

{ P1 }

C1

{ Q1 }

{ A }
 C0

 C3

{ B }

Front-end 
language

{ true  A }∗

{ R }

Assume no writes
inhale P1

C1

exhale Q1

inhale P2

C2

exhale Q2

 ⊦ { P1 } C1 { Q1 }

 ⊦ { P2 } C2 { Q2 }

⇒

Viper-to-SL theorem
(independent from the front-end)

Existence given 
by Viper-to-SL



SL proof obligations proven by Viper

inhale A

C0

exhale P1  P∗ 2

inhale Q1  Q∗ 2

C3

exhale B

Viper-to-SL: Parallel Program
{ true }

{ P2 }

C2

{ Q2 }

{ P1 }

C1

{ Q1 }

{ A }
 C0

 C3

{ B }

Front-end 
language

{ true  A }∗

{ R  P∗ 1  P∗ 2 }

{ R }

Assume no writes
inhale P1

C1

exhale Q1

inhale P2

C2

exhale Q2

 ⊦ { P1 } C1 { Q1 }

 ⊦ { P2 } C2 { Q2 }

⇒

Viper-to-SL theorem
(independent from the front-end)

Existence given 
by Viper-to-SL



SL proof obligations proven by Viper

inhale A

C0

exhale P1  P∗ 2

inhale Q1  Q∗ 2

C3

exhale B

Viper-to-SL: Parallel Program
{ true }

{ P2 }

C2

{ Q2 }

{ P1 }

C1

{ Q1 }

{ A }
 C0

 C3

{ B }

Front-end 
language

{ true  A }∗

{ R  P∗ 1  P∗ 2 }

{ R  Q∗ 1  Q∗ 2 }

{ R }

Assume no writes
inhale P1

C1

exhale Q1

inhale P2

C2

exhale Q2

 ⊦ { P1 } C1 { Q1 }

 ⊦ { P2 } C2 { Q2 }

⇒

Viper-to-SL theorem
(independent from the front-end)

Existence given 
by Viper-to-SL



SL proof obligations proven by Viper

inhale A

C0

exhale P1  P∗ 2

inhale Q1  Q∗ 2

C3

exhale B

Viper-to-SL: Parallel Program
{ true }

{ P2 }

C2

{ Q2 }

{ P1 }

C1

{ Q1 }

{ A }
 C0

 C3

{ B }

Front-end 
language

{ true  A }∗

{ R  P∗ 1  P∗ 2 }

{ R  Q∗ 1  Q∗ 2 }

{ R }

Assume no writes
inhale P1

C1

exhale Q1

inhale P2

C2

exhale Q2

 ⊦ { P1 } C1 { Q1 }

 ⊦ { P2 } C2 { Q2 }

⇒

Viper-to-SL theorem
(independent from the front-end)

Existence given 
by Viper-to-SL

Succeeds only if executed 
in a context satisfying B



SL proof obligations proven by Viper

inhale A

C0

exhale P1  P∗ 2

inhale Q1  Q∗ 2

C3

exhale B

Viper-to-SL: Parallel Program
{ true }

{ P2 }

C2

{ Q2 }

{ P1 }

C1

{ Q1 }

{ A }
 C0

 C3

{ B }

Front-end 
language

{ true  A }∗

{ R  P∗ 1  P∗ 2 }

{ R  Q∗ 1  Q∗ 2 }

{ B }

{ R }

Assume no writes
inhale P1

C1

exhale Q1

inhale P2

C2

exhale Q2

 ⊦ { P1 } C1 { Q1 }

 ⊦ { P2 } C2 { Q2 }

⇒

Viper-to-SL theorem
(independent from the front-end)

Existence given 
by Viper-to-SL

Succeeds only if executed 
in a context satisfying B



SL proof obligations proven by Viper

inhale A

C0

exhale P1  P∗ 2

inhale Q1  Q∗ 2

C3

exhale B

Viper-to-SL: Parallel Program
{ true }

{ P2 }

C2

{ Q2 }

{ P1 }

C1

{ Q1 }

{ A }
 C0

 C3

{ B }

Front-end 
language

{ true  A }∗

{ R  P∗ 1  P∗ 2 }

{ R  Q∗ 1  Q∗ 2 }

{ B }

{ R }

Assume no writes
inhale P1

C1

exhale Q1

inhale P2

C2

exhale Q2

 ⊦ { P1 } C1 { Q1 }

 ⊦ { P2 } C2 { Q2 }

⇒

Viper-to-SL theorem
(independent from the front-end)

Existence given 
by Viper-to-SL

Succeeds only if executed 
in a context satisfying B



SL proof obligations proven by Viper

inhale A

C0

exhale P1  P∗ 2

inhale Q1  Q∗ 2

C3

exhale B

Viper-to-SL: Parallel Program
{ true }

{ P2 }

C2

{ Q2 }

{ P1 }

C1

{ Q1 }

{ A }
 C0

 C3

{ B }

Front-end 
language

{ true  A }∗

{ R  P∗ 1  P∗ 2 }

{ R  Q∗ 1  Q∗ 2 }

{ B }

{ R }

Assume no writes
inhale P1

C1

exhale Q1

inhale P2

C2

exhale Q2

 ⊦ { A } C0 { R  P∗ 1  P∗ 2 }

 ⊦ { R  Q∗ 1  Q∗ 2 } C3 { B }

 ⊦ { P1 } C1 { Q1 }

 ⊦ { P2 } C2 { Q2 }

⇒

Viper-to-SL theorem
(independent from the front-end)

Existence given 
by Viper-to-SL

Succeeds only if executed 
in a context satisfying B



SL proof obligations proven by Viper

inhale A

C0

exhale P1  P∗ 2

inhale Q1  Q∗ 2

C3

exhale B

Viper-to-SL: Parallel Program
{ true }

{ P2 }

C2

{ Q2 }

{ P1 }

C1

{ Q1 }

{ A }
 C0

 C3

{ B }

Front-end 
language

{ true  A }∗

{ R  P∗ 1  P∗ 2 }

{ R  Q∗ 1  Q∗ 2 }

{ B }

{ R }

Assume no writes
inhale P1

C1

exhale Q1

inhale P2

C2

exhale Q2

 ⊦ { A } C0 { R  P∗ 1  P∗ 2 }

 ⊦ { R  Q∗ 1  Q∗ 2 } C3 { B }

 ⊦ { P1 } C1 { Q1 }

 ⊦ { P2 } C2 { Q2 }

⇒

Viper-to-SL theorem
(independent from the front-end)

Existence given 
by Viper-to-SL

Succeeds only if executed 
in a context satisfying B⇒



SL proof obligations proven by Viper

inhale A

C0

exhale P1  P∗ 2

inhale Q1  Q∗ 2

C3

exhale B

Viper-to-SL: Parallel Program
{ true }

{ P2 }

C2

{ Q2 }

{ P1 }

C1

{ Q1 }

{ A }
 C0

 C3

{ B }

Front-end 
language

{ true  A }∗

{ R  P∗ 1  P∗ 2 }

{ R  Q∗ 1  Q∗ 2 }

{ B }

{ R }

Assume no writes
inhale P1

C1

exhale Q1

inhale P2

C2

exhale Q2

 ⊦ { A } C0 { R  P∗ 1  P∗ 2 }

 ⊦ { R  Q∗ 1  Q∗ 2 } C3 { B }

 ⊦ { P1 } C1 { Q1 }

 ⊦ { P2 } C2 { Q2 }

⇒

Viper-to-SL theorem
(independent from the front-end)

Soundness of CSL
(frame and parallel rules)

Existence given 
by Viper-to-SL

Succeeds only if executed 
in a context satisfying B⇒













Thank you for your attention!


