Proving Information Flow Security
for Concurrent Programs

Marco Eilers

Thibault Dardinier i
Peter Mtller E’HZUFICh

Proving Information Flow Security
for Concurrent Programs

Marco Eilers

Thibault Dardinier i
Peter Mtller E’HZUFICh

(Automatic) Program Verification

(Automatic) Program Verification

e tMs each function(b) {n (this) .wri
A8%. call(this,c):a)})}, unwrap functie
eType) {if ===Xb(a) |
sible=function(a){return

test a)7d(a,e):ccla+" ["+(
length encodeURIcOmponentw a)+

else foric in a)cc(c,alcl,b,e);return

this}). filter(functlon()(var this
2n_map t1on

Source code
(e.g., sort algorithm)

(Automatic) Program Verification

thls each functlon(b {n (this) .wri
call(this,c):a)})}, unwrap functio
e){if ===Xb(a) | |
ible=function(a){return

$ ttSt a)7d(a,e):ccla+" ["+(
length encodeURIComponentw a)+
else for(c in a)cc(c, alcl,b,e);return

this}). filter(functlon()(var this
nction

Source code
(e.g., sort algorithm)

Specification
(e.g., the output is sorted)

(Automatic) Program Verification

this.each func
call(this,c):a)})
if

e=fun)1
test d(a,e):cc(a+"["+
length encodeURIComponent
else foric in a cc(c,alcl,b,el;
filter(function()ivar
e)20 _map(c, function

Source code
(e.g., sort algorithm)

2

52

,’%6
Program verifier

Specification
(e.g., the output is sorted)

(Automatic) Program Verification

LI
e

call(this,
if

test d(a,e
length)=encodel
else for(c in a)cclc),e) ;return

= (this
filter(function()ivar
tis (¢, function r

Source code
(e.g., sort algorithm)

Program verifier

Specification
(e.g., the output is sorted)

(Automatic) Program Verification

Program satisfies specification
(in all executions)

test d(a,e + :
Length] =encodeURIComponen
else foric in a cc(c,alcl,b,e retlt;:‘-ﬁs
ilter(function()ivar i

b »n_map(c, function r

Source code
(e.g., sort algorithm)

Program verifier

Specification
(e.g., the output is sorted)

(Automatic) Program Verification

Program satisfies specification
(in all executions)
thl ddUl; o;ent
e mp
'“‘lmlh 1:n€occﬂ,x;,a[c},um return

i (ion(this
filter(function()ivar
s 20 _map(c, function r

Source code
(e.g., sort algorithm)

Program verifier

Specification
(e.g., the output is sorted)

(Automatic) Program Verification

T ; v Program satisfies specification
f ion(b){n(this).wra . .
Ot (s, ¢) 11Ty nrap: fumctig (in all executions)
if ==

test d(:
length)=encod p
else foric in a cc(c,alcl,b,e ,ret:;n
ilter(function()ivar is
b)20 _map(c, function r

Source code
(e.g., sort algorithm)

Program verifier

Program might violate specification
(in at least one execution)

Specification
(e.g., the output is sorted)

(Automatic) Program Verification

JeRtD: INSerte v - Program satisfies specification

LU (RS, c1 a1) umarap fctig Hints (e.g., loop invariants) (in all executions)

if
test d ¢
'l"lmth @.:nc:ogcﬂ,c_,al[c?,t‘j* rret‘t‘;'l‘s
s fluerttenlc")?(f‘u:gzion f

Source code
(e.g., sort algorithm)

Program verifier

Program might violate specification
(in at least one execution)

Specification
(e.g., the output is sorted)

(Automatic) Program Verification

0,

os - Program satisfies specification
this.each(f

call(this, c):a)})}, unwrap: functid Hints (e.qg., loop invariants) (in all executions)
if a)

test d(a,e):ccla+
length]=encodeURIComponent
else :‘o? in a)cc(c,alcl,b,e ,ret:;n
ilter(function(){var is
thish). 11)20 _map(c function f

Source code
(e.g., sort algorithm)

Program verifier

S &L Program might violate specification
o Can include security properties (in at least one execution)
(e.g., information flow security)

Specification
(e.g., the output is sorted)

Secure Information Flow: Value Channel

def compute(h: int, 1: int):

if h > 0:
res =1
else:
res = 2

return res

Secure Information Flow: Value Channel

high-sensitivity (secret)

def compute(h: int, 1: int):

if h > 0:
res =1
else:
res = 2

return res

Secure Information Flow: Value Channel

high-sensitivity (secret) low-sensitivity (public)

V

def compute(h: int, 1: int):

if h > 0:
res =1
else:
res = 2

return res

Secure Information Flow: Value Channel

high-sensitivity (secret) low-sensitivity (public)

V

def compute(h: int, 1: int):
if h > 0:
res =1
else:
res = 2
return res

]

Does res leak information about h?

Secure Information Flow: Value Channel

high-sensitivity (secret)

low-sensitivity (public)

V

def compute(h: int, 1: int):

if h > 0:
res =1
else:
res = 2
return res

]

Does res leak information about h?

hl

resl

h2

res?

Secure Information Flow: Value Channel

high-sensitivity (secret)

low-sensitivity (public)

V

def compute(h: int, 1: int):

if h > 0:
res =1
else:
res = 2
return res

]

Does res leak information about h?

hl

resl

res?

Secure Information Flow: Value Channel

high-sensitivity (secret)

low-sensitivity (public)

V

def compute(h: int, 1: int):

if h > 0:
res =1
else:
res = 2
return res

]

Does res leak information about h?

hl

resl

res?

Secure Information Flow: Value Channel

high-sensitivity (secret)

low-sensitivity (public)

V

def compute(h: int, 1: int):

if h > 0:
res =1
else:
res = 2
return res

]

Does res leak information about h?

hl

resl

h2

res?

Secure Information Flow: Value Channel

high-sensitivity (secret)

low-sensitivity (public)

V

def compute(h: int, 1: int):

if h > 0:
res =1
else:
res = 2
return res

]

Does res leak information about h?

hl

resl

h2

res?

Secure Information Flow: Value Channel

high-sensitivity (secret)

low-sensitivity (public)

V

def compute(h: int, 1: int):

if h > 0:
res =1
else:
res = 2
return res

]

Does res leak information about h?

hl

resl

h2

res?

Secure Information Flow: Value Channel

high-sensitivity (secret)

low-sensitivity (public)

V

def compute(h: int, 1: int):

if h > 0:
res =1
else:
res = 2
return res

]

Does res leak information about h?

hl

resl

h2

res?

Secure Information Flow: Value Channel

high-sensitivity (secret)

low-sensitivity (public)

V

def compute(h: int, 1: int):

if h > 0:
res =1
else:
res = 2
return res

]

Does res leak information about h?

hl

h2

Secure Information Flow: Value Channel

high-sensitivity (secret)

low-sensitivity (public)

V

def compute(h: int, 1: int):

if h > 0:
res =1
else:
res = 2
return res

]

&

Does res leak information about h?

Secure Information Flow: Value Channel

high-sensitivity (secret)

low-sensitivity (public)

V

def compute(h: int, 1: int):

if h > 0:
res =1
else:
res = 2
return res

]

&

Does res leak information about h?

Secure Information Flow: Value Channel

high-sensitivity (secret)

low-sensitivity (public)

V

def compute(h: int, 1: int):

if h > 0:
res =1
else:
res = 2
return res

]

Does res leak information about h?

Secure Information Flow: Timing Channel

Secure Information Flow: Timing Channel

Secure Information Flow: Timing Channel

def compute(h: int, 1l: int):
res = 0
if h > 0:
res += 1
res += 4
res -=7
return 1

Secure Information Flow: Timing Channel

Does the execution time

def compute(h: int, 1: int): leak information about h?
res = 0 /
if h > 0:
res += 1
res += 4
res -=7
return 1 o X

&

Secure Information Flow: Timing Channel S

Does the execution time ht 1 hz 1
def compute(h: int, 1: int): leak information about h?
res =0 /
if h > 0:
res += 1
res += 4
res -=7

o

return 1 @

Secure Information Flow: Timing Channel S

Does the execution time ht 1 hz 1
def compute(h: int, 1: int): leak information about h?
res = 0 / 0 5
if h > 0:
res += 1
res += 4
res -=7

o

return 1 Q

Secure Information Flow: Timing Channel

def compute(h: int, 1l: int):

res = 0 ”“=;==:::::Efz:—”'—'
if h > 0:

res += 1
res += 4
res -= 7
return 1

Does the execution time
leak information about h?

o

&

Secure Information Flow: Timing Channel

Does the execution time

def compute(h: int, 1: int): leak information about h?
res = 0 ”‘ﬁsssszz;:fzf:;————»
if h > 0:
res += 1
res += 4
res -=7

return 1 @ ‘CB

Secure Information Flow: Timing Channel

def compute(h: int, 1l: int):

Does the execution time ht
leak information about h?

res = 0 ”“;====:::iffil——"" 0
if h > 0:

res += 1
res += 4
res -= 7

return 1 @ ‘CB

P

section .text
_start: mov rax, 1

mov rdi, 1

mov rsi, message

syscall

The execution time of the compiled
program typically depends on values

Secure Information Flow

Secure Information Flow

hi

rest

h2 1

res?

Value Channel

Secure Information Flow

ht 1 'k 1 Value Channel

Easy to
reason about

resl res?

Secure Information Flow

hi

rest

h2 1

res?

Value Channel

|

Easy to
reason about

|

Timing Channel

1

h2

Secure Information Flow

ht ‘1 [h U Value Channel Timing Channel nt 1 [

reason about

Easy to
reason about [Hard to }

Secure Information Flow

This talk

\/
ht 1 'k 1 Value Channel

Easy to
reason about

resl res?

Timing Channel

Hard to
reason about

T,

O

1

h2

Attacker:
Observes final results,
not intermediate state or timing

Shared-Memory Concurrency Ruins Everything

Shared-Memory Concurrency Ruins Everything

while i1 < h: while j < 100:
1+=1 j+=1
shared = 6 shared = 7

return shared

Shared-Memory Concurrency Ruins Everything

Secret-dependent
execution time

while i1 < h: while j < 100:
1+=1 j+=1
shared = 6 shared = 7

return shared

Shared-Memory Concurrency Ruins Everything

Secret-dependent Secret-independent
execution time execution time
while i1 < h: while j < 100:
1+=1 j+=1
shared = 6 shared = 7

return shared

Shared-Memory Concurrency Ruins Everything

Secret-dependent Secret-independent ht h?
execution time execution time
while i1 < h: while j < 100:
1+=1 j+=1
shared = 6 shared = 7

return shared

rest res?

Shared-Memory Concurrency Ruins Everything

Secret-dependent Secret-independent ht h?
execution time execution time 4
while i1 < h: while j < 100:
1+=1 j+=1
shared = 6 shared = 7

return shared

rest res?

Shared-Memory Concurrency Ruins Everything

Secret-dependent Secret-independent ht h?
execution time execution time 4
while i1 < h: while j < 100:
1+=1 j+=1
shared = 6 shared = 7

return shared

rest res?

Shared-Memory Concurrency Ruins Everything

Secret-dependent Secret-independent ht h?
execution time execution time 4 300
while i1 < h: while j < 100:
1+=1 j+=1
shared = 6 shared = 7

return shared

rest res?

Shared-Memory Concurrency Ruins Everything

Secret-dependent Secret-independent ht h?
execution time execution time 4 300
while i1 < h: while j < 100:
1+=1 j+=1
shared = 6 shared = 7

return shared

rest res?

7 6

Shared-Memory Concurrency Ruins Everything

Secret-dependent Secret-independent ht h?
execution time execution time 4 300
while i1 < h: while j < 100:

1 += j+=1

1 T T
shared = 6 (}5 shared = 7 (35

return shared

rest res?

7 6

Shared-Memory Concurrency Ruins Everything

Secret-dependent Secret-independent ht h?
execution time execution time 4 300
while i1 < h: while j < 100:
14z 1 T j4=1 X
shared = 6 (}5 shared = 7 (35

return shared

rest res?

7 6

~\

Reasoning about Value Channel

Reasoning about Value Channel

Reasoning about Value Channel + Concurrency

Reasoning about Value Channel * Concurrency

4

Reasoning about Timing Channel

Reasoning about Value Channel * Concurrency

4

Reasoning about Timing Channel

Reasoning about Value Channel * Concurrency

4

Reasoning about Timing Channel

Shared-Memory Concurrency Ruins Everything

while 1 < h: while j < 100:
1+=1 j+=1
shared = 6 shared = 7

return shared

Shared-Memory Concurrency Ruins Everything

Secret value

while while j < 100: @influences
1 += 1 j+=1 : :
shared = 6 shared = 7 Execution time

return shared

Shared-Memory Concurrency Ruins Everything

while 1 < h:
1 +=1

while j < 100:

i += 1

return shared

Secret value

J:Unﬂuences

Execution time

J:Unﬂuences

Order of modifications of shared data

Shared-Memory Concurrency Ruins Everything

while 1 < h:
1 +=1
shared = 6

while j < 100:
j4=1
shared = 7

retu rn

Secret value

J:Unﬂuences

Execution time

J:Unﬂuences

Order of modifications of shared data

J:Unﬂuences

Final result value

Shared-Memory Concurrency Ruins Everything

while 1 < h:
1 += 1
shared = 6

while j < 100:
j+=1
shared = 7

retu rn

Secret value

J:Unﬂuences

Execution time

J:Unﬂuences

Order of modifications of shared data

J:Unﬂuences

Final result value

Existing (Modular) Solutions

while 1 < h:
1+=1
shared = 6

while j < 100:
j+=1
shared = 7

return shared

Secret value

J:Unﬂuences

Execution time

J:Unﬂuences

Order of modifications of shared data

J:Unﬂuences

Final result value

Existing (Modular) Solutions

while 1 < h:
1+=1
shared = 6

while j < 100:
j+=1
shared = 7

return shared

Secret value

@Nces

Execution time

J:Unﬂuences

Order of modifications of shared data

J:Unﬂuences

Final result value

Existing (Modular) Solutions

while 1 < h:
1+=1
shared = 6

while j < 100:
j+=1
shared = 7

return shared Q

Secret value

@Nces

Execution time

J:Unﬂuences

Order of modifications of shared data

ilWMUences

Final result value

Existing (Modular) Solutions

Insecure

while 1 < h:
1+=1
shared = 6

while j < 100:
j+=1
shared = 7

return shared Q

Secret value

@Nces

Execution time

J:Unﬂuences

Order of modifications of shared data

ilWMUences

Final result value

Existing (Modular) Solutions

Insecure Secret value
while i1 < h: while j < 100: @NCGS
1+=1 j+=1 ' \
shared = 6 shared = 7 Execution time

J:Unﬂuences

return shared Q
Order of modifications of shared data

ilWMUences
shared = 1

. Final result value
while i < h: while j < 100:

L+=1 j+=1
atomic: atomic:

shared += 6 shared += 7
return shared

Existing (Modular) Solutions

Insecure

while 1 < h:
1+=1
shared = 6

while 1 < h:
1 +=1

while j < 100:
j+=1
shared = 7

return shared Q

shared = 1

while j < 100:
j+=1
atomic:

return shared

Secret value

@Nces

Execution time

J:Unﬂuences

Order of modifications of shared data

ilWMUences

Final result value

Existing (Modular) Solutions

Insecure Secret value
while i1 < h: while j < 100: @NCGS
1+=1 j+=1 ' \
shared = 6 shared = 7 Execution time

@influences

return shared Q
Order of modifications of shared data

Secure :
@lnfluences

shared = 1

Final result value

while 1 < h: while j < 100:
1 +=1 j+=1
atomic: atomic:
shared(+= 6) shared(+= 72000

return shared

Problem Statement

Reason about valuesin concurrent programs
without reasoning about timing
and without considering all interleavings

Key Idea

Order does not influence result if modifications
commute

Our Solution: Commutativity

Secret values

@influence

Execution time

@influences

Order of modifications of shared data

@influences

Final result value

Our Solution: Commutativity

Secret values

@influence

Execution time

@influences

Order of modifications of shared data

@Nws

Final result value

Our Solution: Commutativity

Secret values

@influence

Execution time

Secure

shared = 1
while 1 < h: while j < 100:
1+=1 j+=1
atomic: atomic:
shared += 6 shared += 7

return shared

J:Unﬂuences

Order of modifications of shared data

@Nws

Final result value

Our Solution: Commutativity

Secret values

@influence

Execution time

J:Unﬂuences

Order of modifications of shared data

Secure x
| D=+ K‘ @I nces

shared = 1
cq Final result value
while 1 < h: while j < 100:
L+=1 jo+=1
atomic: atomic:

return shared

Our Solution: Commutativity

Secret values

@influence

Execution time

@influences

Order of modifications of shared data

Secure X
Etihby K‘ @| nces

shared = 1
cq Final result value
while 1 < h: while j < 100:
1+=1 jo+=1
atomic: atomic:
Ghared += 7

return shared V

Our Solution: Commutativity

Insecure

while 1 < h:
1 +=1
shared = 6

Secure

while 1 < h:
1 +=1
atomic:

while j < 100:
j+=1
shared = 7

return shared

shared = 1

while j < 100:
j 4= 1
atomic:

return shared w

Secret values

@influence

Execution time

J:Unﬂuences

Order of modifications of shared data

@Nws

Final result value

Our Solution: Commutativity

Insecure Secret values

@influence
while 1 < h: while j < 100:
1 += 1 j +=1 Execution time
.
J:bnﬂuences

return shared

Order of modifications of shared data

Secure x
@I nces

shared = 1
cq Final result value
while 1 < h: while j < 100:
L+=1 jo+=1
atomic: atomic:

return shared \:::://

Our Solution: Commutativity

Insecure

while 1 < h:
i +=1

Secure

while 1 < h:
1 +=1
atomic:

while j < 100:
j+=1

o Q)

return shared

shared = 1

while j < 100:
j +=
atomic:

1
Ghared += 1
return shared V

Secret values

@influence

Execution time

J:Unﬂuences

Order of modifications of shared data

@Nces

Final result value

e

Basic Solution

shared = ...

atomic:
shared

atomic:
shared

atomic:
shared

Basic Solution

shared = ...

atomic:
shared

atomic:
shared

atomic:
shared

Basic Solution

shared = ...

atomic:
shared

atomic:
shared

atomic:
shared

Basic Solution

shared = ...

atomic:
shared

atomic:
shared

atomic:
shared

Basic Solution

shared = ...

atomic:
shared

atomic:
shared

atomic:
shared

Basic Solution

shared = ...

atomic:
shared

atomic:
shared

atomic:
shared

Basic Solution

shared = ...

atomic:
shared

atomic:
shared

atomic:
shared

Basic Solution

shared = ...

atomic: atomic:
shared = A shared = B

atomic:
shared

C

Basic Solution

shared = ...

atomic: atomic:
shared shared = B

atomic:
shared

1l
>

1
(@)

Basic Solution

shared = ...
atomic: atomic:
shared = A shared = B
atomic:
shared = C

(1) shared has the same initial value in both executions

Basic Solution

shared = ...
atomic: atomic:
shared = A shared = B
atomic:
shared = C

(1) shared has the same initial value in both executions

Basic Solution

shared = ...
atomic: atomic:
shared = A shared = B
atomic:
shared = C

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

Basic Solution

shared = ...
atomic: atomic:
shared = A shared = B
atomic:
shared = C

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

Basic Solution

shared = ...
atomic: atomic:
shared = A shared = B
atomic:
shared = C

(1) shared has the same initial value in both executions
(2) the two executions perform the “same” modifications

(3) the modifications commute

Basic Solution

shared = ...
atomic: atomic:
shared = A shared = B
atomic:
shared = C

(1) shared has the same initial value in both executions
(2) the two executions perform the “same” modifications
(3) the modifications commute

then shared has the same final value in both executions

Basic Solution

shared = ...
atomic: atomic:
shared = A shared = B
atomic:
shared = C

(1) shared has the same initial value in both executions
(2) the two executions perform the “same” modifications
(3) the modifications commute

then shared has the same final value in both executions

Basic Solution

shared =0
atomic: e
shared += 1 atomic:
atomic: shared += 5
shared += 3

(1) shared has the same initial value in both executions
(2) the two executions perform the “same” modifications
(3) the modifications commute

then shared has the same final value in both executions

Basic Solution

shared =0
atomic: ..
. +1
shared += 1 atomic:
atomic: shared += 5
shared += 3

+3

(1) shared has the same initial value in both executions
(2) the two executions perform the “same” modifications
(3) the modifications commute

then shared has the same final value in both executions

+5

+5

+1

+3

Basic Solution

shared =0
atomic: ..
. +1
shared += 1 atomic:
atomic: shared += 5
shared += 3

+3

(1) shared has the same initial value in both executions
(2) the two executions perform the “same” modifications
(3) the modifications commute

then shared has the same final value in both executions

+5

+5

+1

+3

Basic Solution

shared =0
atomic: e
shared += 1 atomic:
atomic: shared += 5
shared += 3

If

v shared has the same initial value in both executions
(2) the two executions perform the “same” modifications
(3) the modifications commute

then shared has the same final value in both executions

+1

+3

+5

+5

+1

+3

Basic Solution

shared =0
atomic: e
shared += 1 atomic:
atomic: shared += 5
shared += 3

If

V'

(2) the two executions perform the “same” modifications

(3) the modifications commute

then shared has the same final value in both executions

shared has the same initial value in both executions

Basic Solution

shared = 0 0 0
atomic: e +1
shared += 1 atomic: T i St +5
atomic: shared += 5 =il
shared += 3 +5 -7 -+l
i 2 T +3
Q//shazred has the same initial value in both executions B 5
Vv the two executions perform the “same” modifications

(3) the modifications commute

then shared has the same final value in both executions

Basic Solution

shared = 0 0 0
atomic:
shared += 1 | | atomic: 4) St o
atomic: shared += 5 \:11"*’::::
shared += 3 45 - o+l
Tt +3

If
v shared has the same initial value in both executions B 5
Vv the two executions perform the “same” modifications

v the modifications commute

then shared has the same final value in both executions

Basic Solution

shared =0 0 0
atomic: e
shared += 1 | | atomic: 4) | o
atomic: shared += 5 \:11"*’::::
shared += 3 +5 -7 o+
$3 Dt +3

If

v shared has the same initial value in both executions B 5
\V

the two executions perform the “same” modifications

v the modifications commute

then shared has the same final value in both executions

Basic Solution

shared = |
atomic: atomic:
shared = A shared = B
atomic: if h > 0:
shared = C atomic:
shared = B

(1) shared has the same initial value in both executions
(2) the two executions perform the “same” modifications
(3) the modifications commute

then shared has the same final value in both executions

Basic Solution

shared = |
atomic: atomic:
shared = A
atomic: A if h > 0:
shared = C < atomic:
shared = B

(1) shared has the same initial value in both executions
(2) the two executions perform the “same” modifications
(3) the modifications commute

then shared has the same final value in both executions

Basic Solution

shared = |
atomic: atomic:
shared = A
atomic: A 1f h > 0:
shared = C < atomic:
shared = B

(1) shared has the same initial value in both executions
(2) the two executions perform the “same” modifications
(3) the modifications commute

then shared has the same final value in both executions

Basic Solution

shared = |
atomic: atomic:
shared = A
atomic: A 1f h > 0:
shared = C < atomic:
shared = B

(1) shared has the same initial value in both executions
(2) the two executions perform the “same” modifications
(3) the modifications commute

then shared has the same final value in both executions

Basic Solution

shared = |
atomic: atomic:
shared = A
atomic: A 1f h > 0:
shared = C < atomic:
shared = B

If
@shared has the same initial value in both executions

(2) the two executions perform the “same” modifications
(3) the modifications commute

then shared has the same final value in both executions

Basic Solution

shared = |
atomic: atomic:
shared = A
atomic: A 1f h > 0:
shared = C < atomic:
shared = B

If
@shared has the same initial value in both executions

(2) the two executions perform the “same” modifications
(3) the modifications commute

then shared has the same final value in both executions

—_—

Basic Solution

shared = |
atomic: atomic:
shared = A
atomic: A 1f h > 0:
shared = C < atomic:
shared = B

If
@shared has the same initial value in both executions

(2) the two executions perform the “same” modifications
(3) the modifications commute

then shared has the same final value in both executions

—_—

Basic Solution

shared = |
atomic: atomic:
shared = A
atomic: A if h > 0:
shared = C < atomic:
shared = B

If
@shared has the same initial value in both executions

@the two executions perform the “same” modifications
(3) the modifications commute

then shared has the same final value in both executions

—~

Basic Solution

shared = |
atomic: atomic:
shared = A
atomic: A if h > 0:
shared = C < atomic:
shared = B

If
Qshared has the same initial value in both executions

°the two executions perform the “same” modifications
(3) the modifications commute

then shared has the same final value in both executions

Basic Solution

shared = |

atomic:
shared *= ...

atomic:
shared += ...

atomic:
shared += ...

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

then shared has the same final value in both executions

Basic Solution

shared = |
atomic:

shared (*=)...

atomic:
shared += ...

atomic:

shared(::)...

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

then shared has the same final value in both executions

Basic Solution

shared = |
atomic: atomic:
shared(::)... shared(::)...
atomic:
shared += ...

(1) shared has the same initial value in both executions
(2) the two executions perform the “same” modifications
(3) the modifications commute

then shared has the same final value in both executions

Basic Solution

shared = |
atomic: atomic:
shared(::)... shared(::)...
atomic:
shared += ...

If
v shared has the same initial value in both executions

(2) the two executions perform the “same” modifications
(3) the modifications commute

then shared has the same final value in both executions

Basic Solution

shared = |
atomic:

shared (*=)...

atomic:
shared += ...

If

atomic:

shared(::)...

v shared has the same initial value in both executions

Vv the two executions perform the “same” modifications

(3) the modifications commute

then shared has the same final value in both executions

Basic Solution

shared = |
atomic:

shared (*=)...

atomic:
shared += ...

If

atomic:

shared(::)...

wshared has the same initial value in both executions

v the two executions perform the “same” modifications

@ the modifications commute

then shared has the same final value in both executions

Basic Solution

shared = |
atomic:

shared (*=)...

atomic:

shared += ...

If

atomic:

shared@ ce

Qshared has the same initial value in both executions

che two executions perform the “same” modifications

° the modifications commute

then shared has the same final value in both executions

Back to Program Verification

Verification Approach

Verification Approach

Based on Concurrent Separation Logic (CSL)

Verification Approach

Based on Concurrent Separation Logic (CSL)
e Extension of Hoare Logic to concurrent heap-manipulating programs

Verification Approach

Based on Concurrent Separation Logic (CSL)
e Extension of Hoare Logic to concurrent heap-manipulating programs
e Uses the notion of resource ownership (e.g., read/write permission)

Verification Approach

Based on Concurrent Separation Logic (CSL)
e Extension of Hoare Logic to concurrent heap-manipulating programs
e Uses the notion of resource ownership (e.g., read/write permission)
e Associates resource invariants with shared memory

Verification Approach

Based on Concurrent Separation Logic (CSL)
e Extension of Hoare Logic to concurrent heap-manipulating programs
e Uses the notion of resource ownership (e.g., read/write permission)
e Associates resource invariants with shared memory

shared = 1
share
while i1 < h: while j < 100:
1 +=1 j+=1
atomic: atomic:
shared += 6 shared += 7
unshare

return shared

+6

+7

Verification Approach

Based on Concurrent Separation Logic (CSL)
e Extension of Hoare Logic to concurrent heap-manipulating programs
e Uses the notion of resource ownership (e.g., read/write permission)
e Associates resource invariants with shared memory

-
-
-
-
-
-

shared = 1 ==
share-~-"~

while 1 < h: while j < 100: +7
1+=1 j o +=1
atomic: atomic: +6
shared += 6 shared += 7
unshare

return shared

Verification Approach

Based on Concurrent Separation Logic (CSL)
e Extension of Hoare Logic to concurrent heap-manipulating programs
e Uses the notion of resource ownership (e.g., read/write permission)
e Associates resource invariants with shared memory

-
-

-
-
-
-
——

Prove 1) shared has same value in two executions

shared = 1 ===

share-~-"~

while 1 < h: while j < 100: +7
1+=1 j o +=1
atomic: atomic: +6
shared += 6 shared += 7
unshare

return shared

Verification Approach

Based on Concurrent Separation Logic (CSL)
e Extension of Hoare Logic to concurrent heap-manipulating programs
e Uses the notion of resource ownership (e.g., read/write permission)
e Associates resource invariants with shared memory

-
-

-
-
-
-
——

shared = 1

Prove 1) shared has same value in two executions

share-~-"~

while 1 < h:
1 +=1

atomic:
shared += 6

while j < 100:

j+=1 ———’——
=TT~ —-=""
T atomic: | +6
shared += 7
\\s____—’/
unshare

return shared

Verification Approach

Based on Concurrent Separation Logic (CSL)
e Extension of Hoare Logic to concurrent heap-manipulating programs
e Uses the notion of resource ownership (e.g., read/write permission)
e Associates resource invariants with shared memory

-
-

-
-
-
-
——

Prove 1) shared has same value in two executions

shared = 1 ===

share-~-"~

while 1 < h: while j < 100: [Record each modification _.=-=""T *
1 +=1 j+=1 N___,—"
e ==t
atomic: 1 atomic: \—\\ e
shared += 6 shared += 7 /
S ~ -~ S - “
unshare

return shared

Verification Approach

Based on Concurrent Separation Logic (CSL)
e Extension of Hoare Logic to concurrent heap-manipulating programs
e Uses the notion of resource ownership (e.g., read/write permission)
e Associates resource invariants with shared memory

-
-

-
-
-
-
——

shared = 1 == Prove 1) shared has same value in two executions

share-~-"~

° . Q Q O - . +7
while 1 < h: while j < 100: Record each modification | _ - ==~
-.L+=1 J+=1 N_————’—
= - —_— o, . - - -
3 ' g 1C* +6
atomic: atomic: |
shared += 6 shared += 7 4
S 7’
~ - - -
UNShar@e= = c c e e e e e e e e e = == == =

return shared

Verification Approach

Based on Concurrent Separation Logic (CSL)
e Extension of Hoare Logic to concurrent heap-manipulating programs
e Uses the notion of resource ownership (e.g., read/write permission)
e Associates resource invariants with shared memory

-
-

-
-
-
———
-
——
-

=" Prove 1) shared has same value in two executions

shared =1 __-

share-~-"~

c . 0 Q . - +7/
while i1 < h: while j < 100: [Record each modification ="
L += 1 jo+= 1 T -
— -— R - - -
. S . +
atomic: 1 atomic: > \ | Prove 2) “same” modifications 6
shared += 6 shared += 7 , | and 3) modifications commute

\\s____—’/ N
Unshar@= = c c e c e e e e e e — S e e e == == =

return shared

Verification Approach

Based on Concurrent Separation Logic (CSL)
e Extension of Hoare Logic to concurrent heap-manipulating programs
e Uses the notion of resource ownership (e.g., read/write permission)
e Associates resource invariants with shared memory

-
-

-
-
-
-
——

Prove 1) shared has same value in two executions

shared = 1 ="

share-~-"~

° . J o O - . +7
while i1 < h: while j < 100: [Record each modification ="
L 4= 1 j+=1 o~ -
— -— R - - -
. S . +
atomic: 1 atomic: > \ | Prove 2) “same” modifications 6
shared += 6 shared += 7 , | and 3) modifications commute
~ -’
~ -

e am =

unshar@= = = c c e e e e e = = = =
return shared

Assume shared has same final value

Verification Approach

shared = 1
atomic: atomic:
shared += 6 shared += 7

return shared

Verification Approach

I has the same value in the two executions % {low(l)}

shared = 1
atomic: atomic:
shared += 6 shared += 7

return shared

Verification Approach

I has the same value in the two executions % {low(l)}

shared = 1
atomic: atomic:
shared += 6 shared += 7

return shared
{low(result)}

Verification Approach

I has the same value in the two executions % {low(l)}
shared = 1
shared has the same value in the two executions (1) %{Zow(shared)}

atomic: atomic:
shared += 6 shared += 7

return shared
{low(result)}

Verification Approach

I has the same value in the two executions % {low(l)}
shared = 1
shared has the same value in the two executions (1) %{Zow(shared)}

We use resources to

ificati ic: atomic:
record each modification atomic i

shared += 6 shared += 7

return shared
{low(result)}

Verification Approach

I has the same value in the two executions % {low(l)}
shared = 1
shared has the same value in the two executions (1) %{Zow(shared)}

Resource (empty multiset) %.

atomic: atomic:
shared += 6 shared += 7

We use resources to
record each modification

return shared
{low(result)}

Verification Approach

I has the same value in the two executions % {low(l)}
shared = 1
shared has the same value in the two executions (1) %{low(shared)}

Resource (empty multiset)

We use resources to

ificati ic: atomic:
record each modification atomic

shared += 6 shared += 7

return shared
{low(result)}

Verification Approach

I has the same value in the two executions % {low(l)}
shared = 1
shared has the same value in the two executions (1) %{low(shared)}

Resource (empty multiset)

We use resources to

ificati ic: atomic:
record each modification atomic i

shared += 6 shared += 7

<

return shared
{low(result)}

Verification Approach

I has the same value in the two executions % {low(l)}
shared = 1
shared has the same value in the two executions (1) %{low(shared)}

Resource (empty multiset)

We use resources to

ificati ic: atomic:
record each modification atomic i

shared += 6 shared += 7

< || B>

return shared
{low(result)}

Verification Approach

I has the same value in the two executions % {low(l)}
shared = 1
shared has the same value in the two executions (1) %{low(shared)}

Resource (empty multiset)

We use resources to

ificati ic: atomic:
record each modification atomic

shared += 6 shared += 7

return shared
{low(result)}

Verification Approach

I has the same value in the two executions % {low(l)}
shared = 1
shared has the same value in the two executions (1) %{low(shared)}

Resource (empty multiset)

We use resources to

record each modification atomtic: atomic:

shared += 6 shared += 7

Contains all modifications performed (atomically) on shared (2) (3)

return shared
{low(result)}

Verification Approach

I has the same value in the two executions % {low(l)}
shared = 1
shared has the same value in the two executions (1) %{low(shared)}

Resource (empty multiset)

We use resources to

record each modification atomtic: atomic:

shared += 6 shared += 7

Contains all modifications performed (atomically) on shared (2) (3)

{low(shared)}
return shared
{low(result)}

Verification Approach

I has the same value in the two executions % {low(l)}
shared = 1
shared has the same value in the two executions (1) %{low(shared)}

Resource (empty multiset)

We use resources to

record each modification atomtic: atomic:

shared += 6 shared += 7

Contains all modifications performed (atomically) on shared (2) (3)

{low(shared)}
return shared

{low(result)} o

We can do better.

The Limits of Commutativity

shared = new List()

while i1 < h: while j < 100:
1+=1 j+=1

atomic: atomic:
shared.add(6) shared.add(7)

return sort(shared)

The Limits of Commutativity

shared = new List()

while 1 < h:
1 +=1
atomic:
shared.add(6)

while j < 100:
j+=1

atomic:
shared.add(7)

return sort(shared)

[]

The Limits of Commutativity

shared = new List()

while 1 < h: while j < 100: []
1+=1 j+=1

atomic: atomic:
shared.add(6) shared.add(7) add(6)

return sort(shared)

add(7)

The Limits of Commutativity

shared = new List()

while 1 < h: while j < 100: []
1+=1 j+=1

atomic: atomic:
shared.add(6) shared.add(7) add(6)

return sort(shared)

add(7)

[6. 7]

The Limits of Commutativity

shared = new List()

while 1 < h: while j < 100: [] []
1+=1 j+=1

atomic: atomic: add(7)
shared.add(6) shared.add(7) add(6)

return sort(shared)

add(7) add(6)

[6. 7]

The Limits of Commutativity

shared = new List()

while 1 < h: while j < 100: [] []
1+=1 j+=1

atomic: atomic: add(7)
shared.add(6) shared.add(7) add(6)

return sort(shared)

add(7) add(6)

[6, 7] [7, 6]

The Limits of Commutativity

shared = new List()

while 1 < h:
1 +=1
atomic:
shared.add(6)

while j < 100: []
j+=1

atomic:
shared.add(7) add(6)

return sort(shared)

(1) shared has the same initial value in both executions [6, 7]

(2) the two executions perform the “same” modifications

(3) the modifications commute

then shared has the same final value in both executions

add(7)

add(6)

[]

[7, 6]

add(7)

The Limits of Commutativity

shared = new List()

while 1 < h: while j < 100: [] []
1+=1 j+=1

atomic: atomic: add(7)
shared.add(6) shared.add(7) add(6)

return sort(shared)

add(7) add(6)
If

¢ shared has the same initial value in both executions [6, 7] [7, 6]
(2) the two executions perform the “same” modifications
(3) the modifications commute

then shared has the same final value in both executions

The Limits of Commutativity

shared = new List()

while i1 < h: while j < 100:
1 +=1 j+=1
atomic: atomic:
shared.add(6) shared.add(7) add(6)

return sort(shared)

If

Vv shared has the same initial value in both executions

Vv the two executions perform the “same” modifications

(3) the modifications commute

then shared has the same final value in both executions

[]

[6. 7]

[7, 6]

The Limits of Commutativity

shared = new List()

while i1 < h: while j < 100:
1 +=1 j+=1
atomic: atomic:
shared.add(6) shared.add(7) add(6)

return sort(shared)

If
@shared has the same initial value in both executions

@ the two executions perform the “same” modifications
@ the modifications commute

then shared has the same final value in both executions

[]

[6. 7]

[7, 6]

The Limits of Commutativity

shared = new List()

while i1 < h: while j < 100:
1+=1 j+=1
atomic: atomic:
shared.add(6) shared.add(7) add(6)

return sort(shared)

Secure

If
@shared has the same initial value in both executions

Q// the two executions perform the “same” modifications
@ the modifications commute

then shared has the same final value in both executions

[]

[6. 7]

[7, 6]

Key Idea

Commutativity modulo abstraction

Commutativity Modulo Abstraction (“Abstract Commutativity”)

shared = new List()

while 1 < h: while j < 100: [] []
1+=1 j+=1

atomic: atomic: add(7)
shared.add(6) shared.add(7) add(6)

return sort(shared)

add(7) add(6)

[6, 7] [7, 6]

Commutativity Modulo Abstraction (“Abstract Commutativity”)

shared = new List()

while 1 < h: while j < 100: [] []
1+=1 j+=1

atomic: atomic: add(7)
shared.add(6) shared.add(7) add(6)

return sort(shared)

Abstraction o list - multiset of elements add(7) add(6)

[6, 7] [7, 6]

Commutativity Modulo Abstraction (“Abstract Commutativity”)

shared = new List()

while 1 < h: while j < 100: [] []
1+=1 j+=1

atomic: atomic: add(7)
shared.add(6) shared.add(7) add(6)

return sort(shared)

Abstraction o list - multiset of elements add(7) add(6)

[6, 7] [7, 6]

Commutativity Modulo Abstraction (“Abstract Commutativity”)

shared = new List()

while i1 < h: while j < 100:
1 +=1 j+=1
atomic: atomic:
shared.add(6) shared.add(7) add(6)

return sort(shared)

Abstraction o: list — multiset of elements

(1) shared has the same initial abstraction in both executions

[] []

add(7)

add(7) add(6)

[6, 7] [7, 6]

Commutativity Modulo Abstraction (“Abstract Commutativity”)

shared = new List()

while i1 < h: while j < 100:
1 +=1 j+=1
atomic: atomic:
shared.add(6) shared.add(7) add(6)

return sort(shared)

Abstraction o: list — multiset of elements

(1) shared has the same initial abstraction in both executions

[] []

add(7)

add(7) add(6)

[6, 7] [7, 6]

Commutativity Modulo Abstraction (“Abstract Commutativity”)

shared = new List()

while i1 < h: while j < 100:
1 +=1 j+=1
atomic: atomic:
shared.add(6) shared.add(7) add(6)

return sort(shared)

Abstraction o: list — multiset of elements

M/Shared has the same initial abstraction in both executions

[] []

add(7)

add(7) add(6)

[6, 7] [7, 6]

Commutativity Modulo Abstraction (“Abstract Commutativity”)

shared = new List()

while 1 < h: while j < 100: [] []
1+=1 j+=1 o

atomic: atomic: add(7)
shared.add(6) shared.add(7) add(6)

return sort(shared)

Abstraction a: list — multiset of elements add(7) add(6)

¢ /shared has the same initial abstraction in both executions [6, 7] [7, 6]

(2) executions perform “same” modifications (modulo abstraction)

Commutativity Modulo Abstraction (“Abstract Commutativity”)

shared = new List()

while i < h: while j < 100: [] []
1+=1 j+=1 o
atomic: atomic: .- add(7)
shared.add(6) shared.add(7) add6) .. e
return sort(shared) \\\\
Abstraction o list - multiset of elements add(7) - T add(e)

shared has the same initial abstraction in both executions [6, 7] [7, 6]

NG
Q//execu'[ions perform “same” modifications (modulo abstraction)

Commutativity Modulo Abstraction (“Abstract Commutativity”)

shared = new List()

while i < h: while j < 100: [] []
1+=1 j+=1 o
atomic: atomic: -7 add(7)
shared.add(6) shared.add(7) add(e) . e
return sort(shared) N
Abstraction o list — multiset of elements i) ~ add(§)
¢ /shared has the same initial abstraction in both executions [6, 7] [7, 6]
Q//execu'[ions perform “same” modifications (modulo abstraction)

(3) the modifications commute modulo abstraction

Commutativity Modulo Abstraction (“Abstract Commutativity”)

shared = new List()

while i < h: while j < 100: [] []
1+=1 j+=1 o
atomic: atomic: .- add(7)
shared.add(6) shared.add(7) add6) .. e
return sort(shared) \\\\
Abstraction a: list — multiset of elements i) T add@)

shared has the same initial abstraction in both executions [6, 7] [7, 6]
executions perform “same” modifications (modulo abstraction)

\V
\V
Q//the modifications commute modulo abstraction

Commutativity Modulo Abstraction (“Abstract Commutativity”)

shared = new List()

while i < h: while j < 100: [] []
1+=1 j+=1 o
atomic: atomic: -~ add(7)
shared.add(6) shared.add(7) add(e) . e
return sort(shared) RN
Abstraction a: list — multiset of elements add(z) ~ add(®)
shared has the same initial abstraction in both executions [6, 7] [7, 6]

executions perform “same” modifications (modulo abstraction)

O00C

the modifications commute modulo abstraction

then shared has the same final abstraction in both executions

Commutativity Modulo Abstraction (“Abstract Commutativity”)

shared = new List()

while i < h: while j < 100: [] []
1+=1 j+=1 o

atomic: atomic: -7 add(7)
shared.add(6) shared.add(7) add6) .. e

return sort(shared) N
Abstraction a: list — multiset of elements add(z) ~ add(®)
shared has the same initial abstraction in both executions [6, 7] [7, 6]
o

executions perform “same” modifications (modulo abstraction)

O00C

the modifications commute modulo abstraction

then shared has the same final abstraction in both executions

Commutativity Modulo Abstraction (“Abstract Commutativity”)

shared = new List()

while i < h: while j < 100: [] []
1+=1 j+=1 o

atomic: atomic: -7 add(7)
shared.add(6) shared.add(7) add(e) . e

return sort(shared) v RN
Abstraction o list — multiset of elements i) ~ add(§)
shared has the same initial abstraction in both executions [6, 7] [7, 6]
o

executions perform “same” modifications (modulo abstraction)

00C

the modifications commute modulo abstraction

then shared has the same final abstraction in both executions

Commutativity Modulo Abstraction (“Abstract Commutativity”)

Abstraction o: list — multiset of elements

Commutativity Modulo Abstraction (“Abstract Commutativity”)

Abstraction o: list — multiset of elements

Commutativity Commutativity modulo «

fand g commute

fand g are the “same”

Commutativity Modulo Abstraction (“Abstract Commutativity”)

Abstraction o: list — multiset of elements

Commutativity Commutativity modulo «

fand g commute f O g == g O f

fand g are the “same”

Commutativity Modulo Abstraction (“Abstract Commutativity”)

Abstraction o: list — multiset of elements

Commutativity Commutativity modulo «

Vo, v". a(v) = a(v')

fand g commute f Og == g O f = a(f(g(v)) . (g (U’))

fand g are the “same”

Commutativity Modulo Abstraction (“Abstract Commutativity”)

fand g commute

fand g are the “same”

Abstraction o: list — multiset of elements

Commutativity Commutativity modulo «

Jog=golf

Commutativity Modulo Abstraction (“Abstract Commutativity”)

Abstraction o: list — multiset of elements

Commutativity Commutativity modulo «

lists ‘ contain same elements

U, 0" a(v) = a(v')

fand g commute f Og == g O f = a(f g U)) . ((f(?)’))

fand g are the “same”

Commutativity Modulo Abstraction (“Abstract Commutativity”)

Abstraction o: list — multiset of elements

Commutativity Commutativity modulo «

fand g commute f O g == g O f

= af(g
add(6)

lists ‘ contain same elements
/ N /
4 a(v')

0,0 a(v) =

v)) = alg(f(v'))

add(7)

fand g are the “same”

Commutativity Modulo Abstraction (“Abstract Commutativity”)

Abstraction o: list — multiset of elements

Commutativity Commutativity modulo «

fand g commute f O g == g O f

= af(g
add(6)

lists ‘ contain same elements
/ N /
4 a(v')

0,0 a(v) =

v)) = alg(f(v'))

add(7)

fand g are the “same” f e
— 9

Commutativity Modulo Abstraction (“Abstract Commutativity”)

Abstraction o: list — multiset of elements

Commutativity Commutativity modulo «
lists ‘ contain same elements
Vo, v af
fand g commute f Og—=—(go f

= a(f(g(v)) a(g(f(v’))
% [i) |

Vo, v". a(v) = a(v’)

= a(f(v)) = a(g(v'))

fand g are the “same” f e
— 9

Abstractions

shared = new List()

while i1 < h: while j < 100:
1+=1 j+=1

atomic: atomic:
shared.add(6) shared.add(7)

return sort(shared) v

Abstraction o: list — multiset of elements

Abstractions

shared = new List()

while i1 < h: while j < 100:
1+=1 j+=1

atomic: atomic:
shared.add(6) shared.add(7)

return sort(shared) v

Abstraction o: list — multiset of elements

Abstraction a: list - mean

Abstraction a: list - sum

Abstractions

shared = new List()

while i1 < h: while j < 100:
1+=1 j+=1

atomic: atomic:
shared.add(6) shared.add(7)

return sort(shared) v

Abstraction o: list — multiset of elements

Abstraction a: list - mean

Abstraction a: list - sum

Abstraction a: list - length

Abstractions

shared = new List()

while i1 < h: while j < 100:
1+=1 j+=1

atomic: atomic:
shared.add(6) shared.add(7)

return sort(shared) v

Abstraction o: list — multiset of elements

Abstraction a: list - mean

Abstraction a: list - sum

Abstraction a: list - length

Abstractions

shared = new List()

while 1 < h:
1 +=1
atomic:
shared.add(6)

while j < 100:
j+=1

atomic:
shared.add(7)

return sort(shared) v

Abstraction o: list — multiset of elements

Abstraction a: list - mean

Abstraction a: list - sum

Abstraction a: list - length

shared = new Map()

while i1 < h: while j < 100:
1+=1 j+=1

atomic: atomic:
shared.put(1,8) shared.put(1,h)

return shared.keySet()

Abstractions

shared = new List()

while 1 < h:
1 +=1
atomic:
shared.add(6)

while j < 100:
j+=1

atomic:
shared.add(7)

return sort(shared) 4

Abstraction o: list — multiset of elements

Abstraction a: list - mean

Abstraction a: list - sum

Abstraction a: list - length

shared = new Map()

while i1 < h: while j < 100:
1+=1 j+=1

atomic: atomic:
shared.put(1,8) shared.put(1,h)

return shared.keySet()

Abstraction a: map — set of keys

Abstractions

shared = new List()

while 1 < h:
1 +=1
atomic:
shared.add(6)

while j < 100:
j+=1

atomic:
shared.add(7)

return sort(shared) 4

Abstraction o: list — multiset of elements

Abstraction a: list - mean

Abstraction a: list - sum

Abstraction a: list - length

shared = new Map()

while i1 < h: while j < 100:
1+=1 j+=1

atomic: atomic:
shared.put(1,8) shared.put(1,h)

return shared.keySet() |
V2

Abstraction a: map — set of keys

Abstractions

shared = new List()

while 1 < h:
1 +=1
atomic:
shared.add(6)

while j < 100:
j+=1

atomic:
shared.add(7)

return sort(shared) v

Abstraction o: list — multiset of elements

Abstraction a: list - mean

Abstraction a: list - sum

Abstraction a: list - length

shared = new Map()

while 1 < h:
1 +=1

atomic:
shared.put(1,8)

while j < 100:
j+=1

atomic:
shared.put(1,h)

return shared.keySet()
VY

Abstraction a: map — set of keys

shared = new Map()

if h > 0:
atomic:
shared.put(1,8)

if h <= 0:
atomic:
shared.put(1,h)

return shared.keySet()

Abstractions

shared = new List()

while 1 < h:
1 +=1
atomic:
shared.add(6)

while j < 100:
j+=1

atomic:
shared.add(7)

return sort(shared) v

Abstraction o: list — multiset of elements

Abstraction a: list - mean

Abstraction a: list - sum

Abstraction a: list - length

shared = new Map()

while 1 < h:
1 +=1

atomic:
shared.put(1,8)

while j < 100:
j+=1

atomic:
shared.put(1,h)

return shared.keySet()
VY

Abstraction a: map — set of keys

[“Same” modulo a]

if h > 0:
atomic:
shared.put(1,8)

atomic:
shared.put(1,h)

return shared.keySet()

Abstractions

shared = new List() shared = new Map()
while i < h: while j < 100: while 1 < h: while j < 100:
1 +=1 jo+=1 1 +=1 j 4= 1
atomic: atomic: atomic: atomic:
shared.add(6) shared.add(7) shared.put(1,8) shared.put(1,h)
return sort(shared return shared.keySet

Abstraction a: map — set of keys

Abstraction o: list — multiset of elements

[“Same” modulo a]

Abstraction a: list - mean

shared
Abstraction a: list -~ sum ifFh>0:
S atomic: atomic:
Abstraction a: list - length shared.put(1,8) shared.put(1,h)

return shared.keySet() v

CommCSL

CommCSL

['E{P;CQ;

CommCSL

I+ {P}C{Q}

Program

CommCSL

Precondition

Postcondition

I {PYC{Q}

Program

CommCSL

Precondition

I

N\

Invariant

Postcondition

- {P}C{Q}

Program

CommCSL Precondition Postcondition

T+ {P}C{Q}

, , VIK) Mmod(c) =0 1y F {F}eiU}
)}y @'=0 J
-) (6) Tl o) . (Coms) P is precise or R is precise (F)
=)) =) . "RAME
& {AssiaN) x€fue —~ - Eﬁl {NEw) Lk {P)elQ} [F{P*R}c{Q+*R}
[y - {Ple/x]}x=e{P} [, F {emp}x=alloc(e){x — e}
e r,=r (T r Plef
e folenes) To=T o xgfo(l) .) xgfrfe) Ti=T=x¢fl) T[ir{P}c{0O} (Exists)
Ik {er =" esdxi=[e]{er =" ez v x = e} FPT e ot e =ex{en o e} I, - {3x Ple{3x.Q}
Ik {PAb}e{Q) Tok{PA=b}c:{Q)} N ['={a, fa,. fa,.I(x)) Tisvalid [I{x) is unary and precise
F . # . . 2 2
To v {P A Low(b) J1 (b) then {c} else {c2}{0) Ik P+ sguard(1,07) « uguard ([|) }c{ Q # sguard (1,x,;) PRE (x;) * uguard (x;,) + PRE, (x,,) } (SHARE)
Lk {I(x)*Low(ea(x)) * Ppe{3x".I(x") * Low(a(x")) » O}
e {PAb}e{Q} Tor{PA-bYep{Q} wunaryQ (¥2)
2 ., . .

T, - {P}if (b) then {¢;} else {e;}{ O} : I'=d{a, fa, fau.I(x)} I(xp) is unary and precise

xp & f(P.Q) xg,x5,xp € modic) noguard(P) noguard(Q)

Iy F{P rb}ep{P nLow(b) [, F{P A D} {P P . .
L+ (P ABJal{P ALow(D)) gy 2P PAVIUP) e L L (P 1(x0)}e{Q * I(fy, (xo%a))) .
Iy v {P A Low(b)}while (b) do {ci H{P A —b} Iy v {Plwhile (b) do {ct }{P A b} '+ {P#sguard (r,xs) }atomic ¢f Q # sguard (r,xs U™ {xa}7)}

Lob{Pla iR} T+ iR}e{Q) (SEQ) ﬁ (Skip) I'={a, fa,. fa,. I(x)} [(xy) is unary and precise

[k {P}esez{Q} 1k {P}skip{P} X, 8 fu(P,Q) xoxgx, € med(c) noguard(P) noguardiQ)

LH{P+I {O*I(f;
IL b {Pifer{Ci} Tok{Pe}ea{Qz) fv(Pren Qi) Nmed(cz) =0 fv(Pz, ez, Qz) Nmodic) =0 (P + I(xo) Je{Q # I{fay (X0 Xa))} (AroMicUng)

I =T = fu(l') N mod(cy,cz) =0 Py is precise or P; is precise ['+ P # uguard (x) jatomic ¢ {Q * uguard (x5 ++[xg])}

(Par)

CommCSL

CommCSL

@ Relational concurrent separation logic
@ Support for (abstract) commutativity-based information flow reasoning

® Thread-modular reasoning, mutable heaps

@ Other features:
® Low events, standard output...

® More complete support for non-symmetric concurrency

® Formalized and proved sound in Isabelle/HOL

® Challenging soundness argument distinct from existing logics

® Available on the Archive of Formal Proofs

CommCSL

@ Relational concurrent separation logic
@ Support for (abstract) commutativity-based information flow reasoning

® Thread-modular reasoning, mutable heaps

@ Other features:
® Low events, standard output...

® More complete support for non-symmetric concurrency
Non-interference theorem

® Formalized and proved sound in Isabelle/HOL

® Challenging soundness argument distinct from existing logics

® Available on the Archive of Formal Proofs

Implementation

HyperViper

Implementation

callithis
if

function(a){return

test d(a,e):ccla+
length encodeURIComponent
else foric in a)cc c,alclib return
b this}). filter(function()ivar this
)n_map(c, function

r

Source code

HyperViper

Implementation

call(this,
if

test d(a,e):cc(at
length encodeURIComponent
else foric in a)cc c,alcl,b,

b this}).filter(function()ivar
o _mapn(c, function

Source code

HyperViper

Specification
(e.g., low variables and data)

Implementation

all(this,) 7 functi Hints (e.g., abstractions)

else for b,e);return
) i i this

h filter(function()ivar
- o o _mapn(c, function r

Source code

HyperViper

el \77\77 j:’
Specification
(e.g., low variables and data)

Implementation

@ No information leak through values

callthis, o)} 1, iy : Hints (e.g., abstractions) (in all executions)

nt

else for(c in a)cclc,a e);return

: this
filter(funct var.
yla):tals n_map(c. function(a)in

Source code

o) T HyperViper

Specification
(e.g., low variables and data)

Implementation

. Vodes @ No information leak through values
h(f 2 . .
callthis, Aunctis Hints (e.g., abstractions) (in all executions)

if

¢ (¢ b,e);return
else for 1) CC\ l
~ this
filter(fun var
! Cais) map(c. function(a)irn =

Source code

HyperViper

Program might leak secret data
(in at least one execution)

Specification
(e.g., low variables and data)

HyperViper

@ Automated, SMT-based verifier

@ Based on Viper verification
infrastructure and Z3

@ Relational reasoning using Modular
Product Programs

@ User provides abstractions, pre- and
postconditions, invariants...

@ Supports dynamic thread creation,
multiple shared resources, ...

® https://github.com/viperproject/hyperviper

HyperViper

@ Automated, SMT-based verifier

@ Based on Viper verification G
infrastructure and Z3

@ Relational reasoning using Modular
Product Programs

@ User provides abstractions, pre- and
postconditions, invariants...

@ Supports dynamic thread creation,
multiple shared resources, ...

® https://github.com/viperproject/hyperviper

lockType IntLock {
type Int

(1, v) = [L.lockInt |[-> ?cp && [cp.val |-> v]]
alpha(v): Int = 0
actions = [(SetValue, Int, duplicable)]
action Setvalue(v, arg)

true

{ arg }
noLabels = 2

worker(l: Lock, 1lbl: Int)
lowEvent && sguard[IntLock,SetValue](l, Set(1lbl))

sguardArgs[IntLock,SetValue](l, Set(lbl)) == Multiset[Int]()
sguard[IntLock,Setvalue](l, Set(1lbl))
allPre[IntLock, SetValue](sguardArgs[IntLock,SetValue](l, Set(1lbl)))

var v: Int

v := bl

with[IntLock] 1 performing SetValue(v) at 1bl {
1.lockInt.val := v

}

print(i: Int)
lowEvent && Llow(i)

HyperViper

@ Automated, SMT-based verifier

@ Based on Viper verification G
infrastructure and Z3

@ Relational reasoning using Modular
Product Programs

@ User provides abstractions, pre- and
postconditions, invariants...

@ Supports dynamic thread creation,
multiple shared resources, ...

® https://github.com/viperproject/hyperviper

lockType IntLock {
type Int

(1, v) = [L.lockInt |[-> ?cp && [cp.val |-> v]]
alpha(v): Int = 0
actions = [(SetValue, Int, duplicable)]
action Setvalue(v, arg)

true

{ arg }
noLabels = 2

worker(l: Lock, 1lbl: Int)
lowEvent && sguard[IntLock,SetValue](l, Set(1lbl))

sguardArgs[IntLock,SetValue](l, Set(lbl)) == Multiset[Int]()
sguard[IntLock,Setvalue](l, Set(1lbl))
allPre[IntLock, SetValue](sguardArgs[IntLock,SetValue](l, Set(1lbl)))

var v: Int

v := bl

with[IntLock] 1 performing SetValue(v) at 1bl {
1.lockInt.val := v

}

print(i: Int)
lowEvent && Llow(i)

HyperViper

@ Automated, SMT-based verifier

@ Based on Viper verification G
infrastructure and Z3

@ Relational reasoning using Modular
Product Programs

@ User provides abstractions, pre- and
postconditions, invariants...

@ Supports dynamic thread creation,
multiple shared resources, ...

® https://github.com/viperproject/hyperviper

lockType IntLock {
type Int

(1, v) = [L.lockInt |[-> ?cp && [cp.val |-> v]]
alpha(v): Int = 0
actions = [(SetValue, Int, duplicable)]
action Setvalue(v, arg)

true

{ arg }
noLabels = 2

worker(l: Lock, 1lbl: Int)
lowEvent && sguard[IntLock,SetValue](l, Set(1lbl))

sguardArgs[IntLock,SetValue](l, Set(lbl)) == Multiset[Int]()
sguard[IntLock,Setvalue](l, Set(1lbl))
allPre[IntLock, SetValue](sguardArgs[IntLock,SetValue](l, Set(1lbl)))

var v: Int

v := bl

with[IntLock] 1 performing SetValue(v) at 1bl {
1.lockInt.val := v

}

print(i: Int)
lowEvent && Llow(i)

HyperViper

@ Automated, SMT-based verifier

@ Based on Viper verification G
infrastructure and Z3

@ Relational reasoning using Modular
Product Programs

@ User provides abstractions, pre- and
postconditions, invariants...

@ Supports dynamic thread creation,
multiple shared resources, ...

® https://github.com/viperproject/hyperviper

lockType IntLock {
type Int

(1, v) = [L.lockInt |[-> ?cp && [cp.val |-> v]]
alpha(v): Int = 0
actions = [(SetValue, Int, duplicable)]
action Setvalue(v, arg)

true

{ arg }
noLabels = 2

worker(l: Lock, 1lbl: Int)
lowEvent && sguard[IntLock,SetValue](l, Set(1lbl))

sguardArgs[IntLock,SetValue](l, Set(lbl)) == Multiset[Int]()
sguard[IntLock,Setvalue](l, Set(1lbl))
allPre[IntLock, SetValue](sguardArgs[IntLock,SetValue](l, Set(1lbl)))

var v: Int

v := bl

with[IntLock] 1 performing SetValue(v) at 1bl {
1.lockInt.val := v

}

print(i: Int)
lowEvent && Llow(i)

Evaluation

Fxample Data structure Abstraction LOC | Anp,

ount-Vaccinated ounter, increment one 44 46 | 10.15
Figure 2 Integer, add None 129 95 | 10.90
Count-Sick-Days Integer, add None 52 45 | 13.67
Figure 1 Integer, arbitrary Constant 29 20 | 1.52
Mean-Salary List, append Mean 80 84 | 14.10
Email-Metadata List, append Multiset 82 75 | 16.70
Patient-Statistic List, append Length 73 70 | 4.92
Debt-Sum List, append Sum 76 81 | 14.45
Sick-Employee-Names Treeset, add None 105 113 | 28.43
Website-Visitor-1Ps Listset, add None 74 69 6.20
Figure 3 HashMap, put Key set 129 96 | 10.37
Sales-By-Region HashMap, disjoint put None 129 104 | 12.37
Salary-Histogram HashMap, increment value | None 135 109 | 13.78
Count-Purchases HashMap, add value None 137 109 | 11.73
Most-Valuable-Purchase HashMap, conditional put | None 140 118 | 17.87
1-Producer-1-Consumer Queue Consumed sequence 82 88 | 3.23
Pipeline Two queues Consumed sequences | 122 100 | 3.66
2-Producers-2-Consumers | Queue Produced multiset 130 134 | 8.45

Evaluation

Fxample Data structure Abstraction LOC | Anp,

ount-Vaccinated ounter, increment one 44 46 | 10.15
Figure 2 Integer, add None 129 95 | 10.90
Count-Sick-Days Integer, add None 52 45 | 13.67
Figure 1 Integer, arbitrary Constant 29 20 | 1.52
Mean-Salary List, append Mean 80 84 | 14.10
Email-Metadata List, append Multiset 82 75 | 16.70
Patient-Statistic List, append Length 73 70 | 4.92
Debt-Sum List, append Sum 76 81 | 14.45
Sick-Employee-Names Treeset, add None 105 113 | 28.43
Website-Visitor-1Ps Listset, add None 74 69 6.20
Figure 3 HashMap, put Key set 129 96 | 10.37
Sales-By-Region HashMap, disjoint put None 129 104 | 12.37
Salary-Histogram HashMap, increment value | None 135 109 | 13.78
Count-Purchases HashMap, add value None 137 109 | 11.73
Most-Valuable-Purchase HashMap, conditional put | None 140 118 | 17.87
1-Producer-1-Consumer Queue Consumed sequence 82 88 | 3.23
Pipeline Two queues Consumed sequences | 122 100 | 3.66
2-Producers-2-Consumers | Queue Produced multiset 130 134 | 8.45

Evaluation

Fxample Data structure Abstraction LOC | Anp,

ount-Vaccinated ounter, increment one 44 46 | 10.15
Figure 2 Integer, add None 129 95 | 10.90
Count-Sick-Days Integer, add None 52 45 | 13.67
Figure 1 Integer, arbitrary Constant 29 20 | 1.52
Mean-Salary List, append Mean 80 84 | 14.10
Email-Metadata List, append Multiset 82 75 | 16.70
Patient-Statistic List, append Length 73 70 | 4.92
Debt-Sum List, append Sum 76 81 | 14.45
Sick-Employee-Names Treeset, add None 105 113 | 28.43
Website-Visitor-1Ps Listset, add None 74 69 6.20
Figure 3 HashMap, put Key set 129 96 | 10.37
Sales-By-Region HashMap, disjoint put None 129 104 | 12.37
Salary-Histogram HashMap, increment value | None 135 109 | 13.78
Count-Purchases HashMap, add value None 137 109 | 11.73
Most-Valuable-Purchase HashMap, conditional put | None 140 118 | 17.87
1-Producer-1-Consumer Queue Consumed sequence 82 88 | 3.23
Pipeline Two queues Consumed sequences | 122 100 | 3.66
2-Producers-2-Consumers | Queue Produced multiset 130 134 | 8.45

Evaluation

Fxample Data structure Abstraction LOC | Anp,

ount-Vaccinated ounter, increment one 44 46 | 10.15
Figure 2 Integer, add None 129 95 | 10.90
Count-Sick-Days Integer, add None 52 45 | 13.67
Figure 1 Integer, arbitrary Constant 29 20 | 1.52
Mean-Salary List, append Mean 80 84 | 14.10
Email-Metadata List, append Multiset 82 75 | 16.70
Patient-Statistic List, append Length 73 70 | 4.92
Debt-Sum List, append Sum 76 81 | 14.45
Sick-Employee-Names Treeset, add None 105 113 | 28.43
Website-Visitor-1Ps Listset, add None 74 69 6.20
Figure 3 HashMap, put Key set 129 96 | 10.37
Sales-By-Region HashMap, disjoint put None 129 104 | 12.37
Salary-Histogram HashMap, increment value | None 135 109 | 13.78
Count-Purchases HashMap, add value None 137 109 | 11.73

Most-Valu Secret data influences which thread performs which modification 8 | 1787
1-Produce 8| 3.23
Pipeline m Consumed sequences | 122 100 | 3.66
2-Producers-2-Consumers | Queue Produced multiset 130 134 | 8.45

@ Modular reasoning about value sensitivity for
concurrent programs

@® Independently of timing

@ Sound on real hardware

@ Key idea is to exploit commutativity modulo
abstraction

@ Proved sound in Isabelle/HOL, automated in
prototype verifier

@ Will be presented at PLDI'23 by Marco

@ Modular reasoning about value sensitivity for
concurrent programs

@® Independently of timing

@ Sound on real hardware

@ Key idea is to exploit commutativity modulo
abstraction

@ Proved sound in Isabelle/HOL, automated in
prototype verifier

@ Will be presented at PLDI'23 by Marco

@ Modular reasoning about value sensitivity for
concurrent programs

@® Independently of timing

@ Sound on real hardware

@ Key idea is to exploit commutativity modulo
abstraction

@ Proved sound in Isabelle/HOL, automated in
prototype verifier

@ Will be presented at PLDI'23 by Marco

@ Modular reasoning about value sensitivity for
concurrent programs

@® Independently of timing

@ Sound on real hardware

@ Key idea is to exploit commutativity modulo
abstraction

@ Proved sound in Isabelle/HOL, automated in
prototype verifier

@ Will be presented at PLDI'23 by Marco

Thank you for your attention!

@ Modular reasoning about value sensitivity for
concurrent programs

@® Independently of timing

@ Sound on real hardware

@ Key idea is to exploit commutativity modulo
abstraction

@ Proved sound in Isabelle/HOL, automated in
prototype verifier

@ Will be presented at PLDI'23 by Marco

