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def compute(h: int, l: int):
  res = 0
  if h > 0:
    res += 1
    res += 4
    res -= 7
  return 1

Does the execution time 
leak information about h?
Does the execution time 
leak information about h?

0 5 3 5

l h²h¹ l

=

          section   .text
_start:   mov       rax, 1        
          mov       rdi, 1        
          mov       rsi, message 
          syscall           
          ...

The execution time of the compiled 
program typically depends on values
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Attacker:

Observes final results,

not intermediate state or timing
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Problem Statement

Reason about values in concurrent programs

without reasoning about timing
and without considering all interleavings



Key Idea
 

Order does not influence result if modifications 

commute
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Key Idea
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lockType IntLock {

 type Int

 invariant(l, v) = [l.lockInt |-> ?cp && [cp.val |-> v]]

 alpha(v): Int = 0  // we abstract to a constant, so everything commutes

 actions = [(SetValue, Int, duplicable)]

 action SetValue(v, arg)

   requires true

 { arg }

 noLabels = 2

}

...

method worker(l: Lock, lbl: Int)

 requires lowEvent && sguard[IntLock,SetValue](l, Set(lbl))

 requires sguardArgs[IntLock,SetValue](l, Set(lbl)) == Multiset[Int]()

 ensures sguard[IntLock,SetValue](l, Set(lbl))

 ensures allPre[IntLock, SetValue](sguardArgs[IntLock,SetValue](l, Set(lbl)))

{

   var v: Int

   v := lbl

   with[IntLock] l performing SetValue(v) at lbl {

       l.lockInt.val := v

   }

}

method print(i: Int)

 requires lowEvent && low(i)
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Thank you for your attention!
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