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def compute(h: int, 1l: int):

Does the execution time ht
leak information about h?

res = 0 ”“;====:::iffil——"" 0
if h > 0:

res += 1
res += 4
res -= 7

return 1 @ ‘CB

P

section .text
_start: mov rax, 1

mov rdi, 1

mov rsi, message

syscall

The execution time of the compiled
program typically depends on values
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Attacker:
Observes final results,
not intermediate state or timing
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Problem Statement

Reason about valuesin concurrent programs
without reasoning about timing
and without considering all interleavings



Key Idea

Order does not influence result if modifications
commute
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shared = new List() shared = new Map()
while i < h: while j < 100: while 1 < h: while j < 100:
1 +=1 jo+=1 1 +=1 j 4= 1
atomic: atomic: atomic: atomic:
shared.add(6) shared.add(7) shared.put(1,8) shared.put(1,h)
return sort(shared return shared.keySet

Abstraction a: map — set of keys

Abstraction o: list — multiset of elements

[ “Same” modulo a ]

Abstraction a: list - mean

shared
Abstraction a: list -~ sum ifFh>0:
S atomic: atomic:
Abstraction a: list - length shared.put(1,8) shared.put(1,h)
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@ Relational concurrent separation logic
@ Support for (abstract) commutativity-based information flow reasoning

® Thread-modular reasoning, mutable heaps

@ Other features:
® Low events, standard output...

® More complete support for non-symmetric concurrency

® Formalized and proved sound in Isabelle/HOL

® Challenging soundness argument distinct from existing logics

® Available on the Archive of Formal Proofs



CommCSL

@ Relational concurrent separation logic
@ Support for (abstract) commutativity-based information flow reasoning

® Thread-modular reasoning, mutable heaps

@ Other features:
® Low events, standard output...

® More complete support for non-symmetric concurrency
Non-interference theorem

® Formalized and proved sound in Isabelle/HOL

® Challenging soundness argument distinct from existing logics

® Available on the Archive of Formal Proofs
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@ Automated, SMT-based verifier

@ Based on Viper verification
infrastructure and Z3

@ Relational reasoning using Modular
Product Programs

@ User provides abstractions, pre- and
postconditions, invariants...

@ Supports dynamic thread creation,
multiple shared resources, ...

® https://github.com/viperproject/hyperviper
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lockType IntLock {
type Int

(1, v) = [L.lockInt |[-> ?cp && [cp.val |-> v]]
alpha(v): Int = 0
actions = [(SetValue, Int, duplicable)]
action Setvalue(v, arg)

true

{ arg }
noLabels = 2

worker(l: Lock, 1lbl: Int)
lowEvent && sguard[IntLock,SetValue](l, Set(1lbl))

sguardArgs[IntLock,SetValue](l, Set(lbl)) == Multiset[Int]()
sguard[IntLock,Setvalue](l, Set(1lbl))
allPre[IntLock, SetValue](sguardArgs[IntLock,SetValue](l, Set(1lbl)))

var v: Int

v := bl

with[IntLock] 1 performing SetValue(v) at 1bl {
1.lockInt.val := v

}

print(i: Int)
lowEvent && Llow(i)
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Evaluation

Fxample Data structure Abstraction LOC | Anp,

ount-Vaccinated ounter, increment one 44 46 | 10.15
Figure 2 Integer, add None 129 95 | 10.90
Count-Sick-Days Integer, add None 52 45 | 13.67
Figure 1 Integer, arbitrary Constant 29 20 | 1.52
Mean-Salary List, append Mean 80 84 | 14.10
Email-Metadata List, append Multiset 82 75 | 16.70
Patient-Statistic List, append Length 73 70 | 4.92
Debt-Sum List, append Sum 76 81 | 14.45
Sick-Employee-Names Treeset, add None 105 113 | 28.43
Website-Visitor-1Ps Listset, add None 74 69 6.20
Figure 3 HashMap, put Key set 129 96 | 10.37
Sales-By-Region HashMap, disjoint put None 129 104 | 12.37
Salary-Histogram HashMap, increment value | None 135 109 | 13.78
Count-Purchases HashMap, add value None 137 109 | 11.73
Most-Valuable-Purchase HashMap, conditional put | None 140 118 | 17.87
1-Producer-1-Consumer Queue Consumed sequence 82 88 | 3.23
Pipeline Two queues Consumed sequences | 122 100 | 3.66
2-Producers-2-Consumers | Queue Produced multiset 130 134 | 8.45
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@ Modular reasoning about value sensitivity for
concurrent programs

@® Independently of timing

@ Sound on real hardware

@ Key idea is to exploit commutativity modulo
abstraction

@ Proved sound in Isabelle/HOL, automated in
prototype verifier

@ Will be presented at PLDI'23 by Marco
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Thank you for your attention!

@ Modular reasoning about value sensitivity for
concurrent programs

@® Independently of timing

@ Sound on real hardware

@ Key idea is to exploit commutativity modulo
abstraction

@ Proved sound in Isabelle/HOL, automated in
prototype verifier

@ Will be presented at PLDI'23 by Marco




