
Proving Information Flow Security
for Concurrent Programs

Marco Eilers
Thibault Dardinier
Peter Müller

Proving Information Flow Security
for Concurrent Programs

Marco Eilers
Thibault Dardinier
Peter Müller

(Automatic) Program Verification

(Automatic) Program Verification

Source code
(e.g., sort algorithm)

(Automatic) Program Verification

Source code
(e.g., sort algorithm)

Specification
(e.g., the output is sorted)

(Automatic) Program Verification

Source code
(e.g., sort algorithm)

Specification
(e.g., the output is sorted)

Program verifier

(Automatic) Program Verification

Source code
(e.g., sort algorithm)

Specification
(e.g., the output is sorted)

Program verifier

(Automatic) Program Verification

Source code
(e.g., sort algorithm)

Specification
(e.g., the output is sorted)

Program verifier

Program satisfies specification
(in all executions)

(Automatic) Program Verification

Source code
(e.g., sort algorithm)

Specification
(e.g., the output is sorted)

Program verifier

Program satisfies specification
(in all executions)

(Automatic) Program Verification

Source code
(e.g., sort algorithm)

Specification
(e.g., the output is sorted)

Program verifier

Program satisfies specification
(in all executions)

Program might violate specification
(in at least one execution)

(Automatic) Program Verification

Source code
(e.g., sort algorithm)

Specification
(e.g., the output is sorted)

Program verifier

Program satisfies specification
(in all executions)

Program might violate specification
(in at least one execution)

Hints (e.g., loop invariants)

(Automatic) Program Verification

Source code
(e.g., sort algorithm)

Specification
(e.g., the output is sorted)

Program verifier

Program satisfies specification
(in all executions)

Program might violate specification
(in at least one execution)Can include security properties

(e.g., information flow security)

Hints (e.g., loop invariants)

Secure Information Flow: Value Channel

def compute(h: int, l: int):
 if h > 0:
 res = 1
 else:
 res = 2
 return res

Secure Information Flow: Value Channel

def compute(h: int, l: int):
 if h > 0:
 res = 1
 else:
 res = 2
 return res

high-sensitivity (secret)

Secure Information Flow: Value Channel

def compute(h: int, l: int):
 if h > 0:
 res = 1
 else:
 res = 2
 return res

high-sensitivity (secret) low-sensitivity (public)

Secure Information Flow: Value Channel

def compute(h: int, l: int):
 if h > 0:
 res = 1
 else:
 res = 2
 return res

Does res leak information about h?Does res leak information about h?

high-sensitivity (secret) low-sensitivity (public)

Secure Information Flow: Value Channel

res¹ res²

def compute(h: int, l: int):
 if h > 0:
 res = 1
 else:
 res = 2
 return res

lh¹ h² l

Does res leak information about h?Does res leak information about h?

high-sensitivity (secret) low-sensitivity (public)

Secure Information Flow: Value Channel

res¹ res²

def compute(h: int, l: int):
 if h > 0:
 res = 1
 else:
 res = 2
 return res

lh¹ h² l

Does res leak information about h?Does res leak information about h?

high-sensitivity (secret) low-sensitivity (public)

=

Secure Information Flow: Value Channel

res¹ res²

def compute(h: int, l: int):
 if h > 0:
 res = 1
 else:
 res = 2
 return res

lh¹ h² l

Does res leak information about h?Does res leak information about h?

high-sensitivity (secret) low-sensitivity (public)

=

=
?

Secure Information Flow: Value Channel

res¹ res²

def compute(h: int, l: int):
 if h > 0:
 res = 1
 else:
 res = 2
 return res

lh¹ h² l

Does res leak information about h?Does res leak information about h?

high-sensitivity (secret) low-sensitivity (public)

=

3 5

=
?

Secure Information Flow: Value Channel

res¹ res²

def compute(h: int, l: int):
 if h > 0:
 res = 1
 else:
 res = 2
 return res

lh¹ h² l

Does res leak information about h?Does res leak information about h?

high-sensitivity (secret) low-sensitivity (public)

=

3 5

1
=

?

Secure Information Flow: Value Channel

res¹ res²

def compute(h: int, l: int):
 if h > 0:
 res = 1
 else:
 res = 2
 return res

lh¹ h² l

Does res leak information about h?Does res leak information about h?

high-sensitivity (secret) low-sensitivity (public)

=

3 5 0 5

1
=

?

Secure Information Flow: Value Channel

res¹ res²

def compute(h: int, l: int):
 if h > 0:
 res = 1
 else:
 res = 2
 return res

lh¹ h² l

Does res leak information about h?Does res leak information about h?

high-sensitivity (secret) low-sensitivity (public)

=

3 5 0 5

1 2
=

?

Secure Information Flow: Value Channel

res¹ res²

def compute(h: int, l: int):
 if h > 0:
 res = 1
 else:
 res = 2
 return res

lh¹ h² l

Does res leak information about h?Does res leak information about h?

high-sensitivity (secret) low-sensitivity (public)

=

3 5 0 5

1 2
=

?

Secure Information Flow: Value Channel

res¹ res²

def compute(h: int, l: int):
 if h > 0:
 res = 1
 else:
 res = 2
 return res

lh¹ h² l

Does res leak information about h?Does res leak information about h?

high-sensitivity (secret) low-sensitivity (public)

=

3 5 0 5

1 2
=

?

Secure Information Flow: Value Channel

res¹ res²

def compute(h: int, l: int):
 if h > 0:
 res = 1
 else:
 res = 2
 return res

lh¹ h² l

Does res leak information about h?Does res leak information about h?

high-sensitivity (secret) low-sensitivity (public)

=

3 5 0 5

1 2
=

?

Secure Information Flow: Value Channel

res¹ res²

def compute(h: int, l: int):
 if h > 0:
 res = 1
 else:
 res = 2
 return res

lh¹ h² l

Does res leak information about h?Does res leak information about h?

high-sensitivity (secret) low-sensitivity (public)

=

3 5 0 5

1 2
=

?

Secure Information Flow: Timing Channel

Secure Information Flow: Timing Channel

Secure Information Flow: Timing Channel

def compute(h: int, l: int):
 res = 0
 if h > 0:
 res += 1
 res += 4
 res -= 7
 return 1

Secure Information Flow: Timing Channel

def compute(h: int, l: int):
 res = 0
 if h > 0:
 res += 1
 res += 4
 res -= 7
 return 1

Does the execution time
leak information about h?
Does the execution time
leak information about h?

Secure Information Flow: Timing Channel

def compute(h: int, l: int):
 res = 0
 if h > 0:
 res += 1
 res += 4
 res -= 7
 return 1

Does the execution time
leak information about h?
Does the execution time
leak information about h?

l h²h¹ l

=

Secure Information Flow: Timing Channel

def compute(h: int, l: int):
 res = 0
 if h > 0:
 res += 1
 res += 4
 res -= 7
 return 1

Does the execution time
leak information about h?
Does the execution time
leak information about h?

0 5

l h²h¹ l

=

Secure Information Flow: Timing Channel

def compute(h: int, l: int):
 res = 0
 if h > 0:
 res += 1
 res += 4
 res -= 7
 return 1

Does the execution time
leak information about h?
Does the execution time
leak information about h?

0 5 3 5

l h²h¹ l

=

Secure Information Flow: Timing Channel

def compute(h: int, l: int):
 res = 0
 if h > 0:
 res += 1
 res += 4
 res -= 7
 return 1

Does the execution time
leak information about h?
Does the execution time
leak information about h?

0 5 3 5

l h²h¹ l

=

Secure Information Flow: Timing Channel

def compute(h: int, l: int):
 res = 0
 if h > 0:
 res += 1
 res += 4
 res -= 7
 return 1

Does the execution time
leak information about h?
Does the execution time
leak information about h?

0 5 3 5

l h²h¹ l

=

 section .text
_start: mov rax, 1
 mov rdi, 1
 mov rsi, message
 syscall
 ...

The execution time of the compiled
program typically depends on values

Secure Information Flow

l h²

res¹

h¹ l

res²

Value Channel

Secure Information Flow

l h²

res¹

h¹ l

res²

Value Channel

Secure Information Flow

Easy to
reason about

l h²

res¹

h¹ l

res²

Value Channel l h²h¹ lTiming Channel

Secure Information Flow

Easy to
reason about

l h²

res¹

h¹ l

res²

Value Channel l h²h¹ lTiming Channel

Secure Information Flow

Easy to
reason about Hard to

reason about

l h²

res¹

h¹ l

res²

Value Channel l h²h¹ lTiming Channel

Secure Information Flow

Easy to
reason about Hard to

reason about

This talk

Attacker:

Observes final results,

not intermediate state or timing

Shared-Memory Concurrency Ruins Everything

 return shared

while j < 100:
 j += 1
shared = 7

while i < h:
 i += 1
shared = 6

Shared-Memory Concurrency Ruins Everything

 return shared

while j < 100:
 j += 1
shared = 7

while i < h:
 i += 1
shared = 6

Shared-Memory Concurrency Ruins Everything

Secret-dependent
execution time

 return shared

while j < 100:
 j += 1
shared = 7

while i < h:
 i += 1
shared = 6

Shared-Memory Concurrency Ruins Everything

Secret-dependent
execution time

Secret-independent
execution time

 return shared

while j < 100:
 j += 1
shared = 7

while i < h:
 i += 1
shared = 6

Shared-Memory Concurrency Ruins Everything

res¹ res²

h²h¹Secret-dependent
execution time

Secret-independent
execution time

 return shared

while j < 100:
 j += 1
shared = 7

while i < h:
 i += 1
shared = 6

Shared-Memory Concurrency Ruins Everything

res¹ res²

h²h¹Secret-dependent
execution time

Secret-independent
execution time 4

 return shared

while j < 100:
 j += 1
shared = 7

while i < h:
 i += 1
shared = 6

Shared-Memory Concurrency Ruins Everything

res¹ res²

h²h¹

7

Secret-dependent
execution time

Secret-independent
execution time 4

 return shared

while j < 100:
 j += 1
shared = 7

while i < h:
 i += 1
shared = 6

Shared-Memory Concurrency Ruins Everything

res¹ res²

h²h¹

7

Secret-dependent
execution time

Secret-independent
execution time 4 300

 return shared

while j < 100:
 j += 1
shared = 7

while i < h:
 i += 1
shared = 6

Shared-Memory Concurrency Ruins Everything

res¹ res²

h²h¹

7 6

Secret-dependent
execution time

Secret-independent
execution time 4 300

 return shared

while j < 100:
 j += 1
shared = 7

while i < h:
 i += 1
shared = 6

Shared-Memory Concurrency Ruins Everything

res¹ res²

h²h¹

7 6

Secret-dependent
execution time

Secret-independent
execution time 4 300

 return shared

while j < 100:
 j += 1
shared = 7

while i < h:
 i += 1
shared = 6

Shared-Memory Concurrency Ruins Everything

res¹ res²

h²h¹

7 6

Secret-dependent
execution time

Secret-independent
execution time 4 300

Reasoning about Value Channel

Reasoning about Value Channel

Easy

Reasoning about Value Channel

Easy

+ Concurrency

Reasoning about Value Channel

Reasoning about Timing Channel

Easy

+ Concurrency

Reasoning about Value Channel

Reasoning about Timing Channel

Easy

Hard

+ Concurrency

Reasoning about Value Channel

Reasoning about Timing Channel

Easy

Hard

+ Concurrency

 return shared

while i < h:
 i += 1
shared = 6

while j < 100:
 j += 1
shared = 7

Shared-Memory Concurrency Ruins Everything

 return shared

while i < h:
 i += 1
shared = 6

while j < 100:
 j += 1
shared = 7

Shared-Memory Concurrency Ruins Everything

Execution time

Secret value

influences

 return shared

while i < h:
 i += 1
shared = 6

while j < 100:
 j += 1
shared = 7

Shared-Memory Concurrency Ruins Everything

Execution time

Order of modifications of shared data

influences

Secret value

influences

 return shared

while i < h:
 i += 1
shared = 6

while j < 100:
 j += 1
shared = 7

Shared-Memory Concurrency Ruins Everything

Execution time

Order of modifications of shared data

Final result value

influences

influences

Secret value

influences

 return shared

while i < h:
 i += 1
shared = 6

while j < 100:
 j += 1
shared = 7

Shared-Memory Concurrency Ruins Everything

Execution time

Order of modifications of shared data

Final result value

influences

influences

Secret value

influences

 return shared

while i < h:
 i += 1
shared = 6

while j < 100:
 j += 1
shared = 7

Existing (Modular) Solutions

Execution time

Order of modifications of shared data

Final result value

influences

influences

Secret value

influences

 return shared

while i < h:
 i += 1
shared = 6

while j < 100:
 j += 1
shared = 7

Existing (Modular) Solutions

Execution time

Order of modifications of shared data

Final result value

influences

influences

Secret value

influences

 return shared

while i < h:
 i += 1
shared = 6

while j < 100:
 j += 1
shared = 7

Existing (Modular) Solutions

Execution time

Order of modifications of shared data

Final result value

influences

influences

Secret value

influences

 return shared

while i < h:
 i += 1
shared = 6

while j < 100:
 j += 1
shared = 7

Existing (Modular) Solutions
Insecure

Execution time

Order of modifications of shared data

Final result value

influences

influences

Secret value

influences

 return shared

while i < h:
 i += 1
shared = 6

while j < 100:
 j += 1
shared = 7

Existing (Modular) Solutions

 shared = l

 return shared

while j < 100:
 j += 1
atomic:
 shared += 7

while i < h:
 i += 1
atomic:
 shared += 6

Insecure

Execution time

Order of modifications of shared data

Final result value

influences

influences

Secret value

influences

 return shared

while i < h:
 i += 1
shared = 6

while j < 100:
 j += 1
shared = 7

Existing (Modular) Solutions

 shared = l

 return shared

while j < 100:
 j += 1
atomic:
 shared += 7

while i < h:
 i += 1
atomic:
 shared += 6

Insecure

Execution time

Order of modifications of shared data

Final result value

influences

influences

Secret value

influences

 return shared

while i < h:
 i += 1
shared = 6

while j < 100:
 j += 1
shared = 7

Existing (Modular) Solutions

 shared = l

 return shared

while j < 100:
 j += 1
atomic:
 shared += 7

while i < h:
 i += 1
atomic:
 shared += 6

Insecure

Secure

Execution time

Order of modifications of shared data

Final result value

influences

influences

Secret value

influences

Problem Statement

Reason about values in concurrent programs

without reasoning about timing
and without considering all interleavings

Key Idea

Order does not influence result if modifications

commute

Our Solution: Commutativity

Execution time

Order of modifications of shared data

Final result value

influences

influences

Secret values

influence

Our Solution: Commutativity

Execution time

Order of modifications of shared data

Final result value

influences

influences

Secret values

influence

Our Solution: Commutativity

 shared = l

 return shared

while j < 100:
 j += 1
atomic:
 shared += 7

while i < h:
 i += 1
atomic:
 shared += 6

Secure

Execution time

Order of modifications of shared data

Final result value

influences

influences

Secret values

influence

Our Solution: Commutativity

 shared = l

 return shared

while j < 100:
 j += 1
atomic:
 shared += 7

while i < h:
 i += 1
atomic:
 shared += 6

Secure

Execution time

Order of modifications of shared data

Final result value

influences

influences

Secret values

influence

Our Solution: Commutativity

 shared = l

 return shared

while j < 100:
 j += 1
atomic:
 shared += 7

while i < h:
 i += 1
atomic:
 shared += 6

Secure

Execution time

Order of modifications of shared data

Final result value

influences

influences

Secret values

influence

Our Solution: Commutativity

 return shared

while j < 100:
 j += 1
shared = 7

while i < h:
 i += 1
shared = 6

Insecure

 shared = l

 return shared

while j < 100:
 j += 1
atomic:
 shared += 7

while i < h:
 i += 1
atomic:
 shared += 6

Secure

Execution time

Order of modifications of shared data

Final result value

influences

influences

Secret values

influence

Our Solution: Commutativity

 return shared

while j < 100:
 j += 1
shared = 7

while i < h:
 i += 1
shared = 6

Insecure

 shared = l

 return shared

while j < 100:
 j += 1
atomic:
 shared += 7

while i < h:
 i += 1
atomic:
 shared += 6

Secure

Execution time

Order of modifications of shared data

Final result value

influences

influences

Secret values

influence

Our Solution: Commutativity

 return shared

while j < 100:
 j += 1
shared = 7

while i < h:
 i += 1
shared = 6

Insecure

 shared = l

 return shared

while j < 100:
 j += 1
atomic:
 shared += 7

while i < h:
 i += 1
atomic:
 shared += 6

Secure

Execution time

Order of modifications of shared data

Final result value

influences

influences

Secret values

influence

Basic Solution

atomic:
 shared = A
atomic:
 shared = C

atomic:
 shared = B

shared = …

…

Basic Solution

atomic:
 shared = A
atomic:
 shared = C

atomic:
 shared = B

shared = …

…

Basic Solution

A
atomic:
 shared = A
atomic:
 shared = C

atomic:
 shared = B

shared = …

…

Basic Solution

A

B

atomic:
 shared = A
atomic:
 shared = C

atomic:
 shared = B

shared = …

…

Basic Solution

A

C

B

atomic:
 shared = A
atomic:
 shared = C

atomic:
 shared = B

shared = …

…

Basic Solution

A

C

B

atomic:
 shared = A
atomic:
 shared = C

atomic:
 shared = B

shared = …

…

Basic Solution

A

C

B

atomic:
 shared = A
atomic:
 shared = C

atomic:
 shared = B

shared = …

…

B

Basic Solution

A

C

B

atomic:
 shared = A
atomic:
 shared = C

atomic:
 shared = B

shared = …

…

A

C

B

Basic Solution

A

C

B

atomic:
 shared = A
atomic:
 shared = C

atomic:
 shared = B

shared = …

…

A

C

B

If

Basic Solution

A

C

B

atomic:
 shared = A
atomic:
 shared = C

atomic:
 shared = B

shared = …

…

A

C

B

If

(1) shared has the same initial value in both executions

Basic Solution

A

C

B

atomic:
 shared = A
atomic:
 shared = C

atomic:
 shared = B

shared = …

…

A

C

B

If

(1) shared has the same initial value in both executions

Basic Solution

A

C

B

atomic:
 shared = A
atomic:
 shared = C

atomic:
 shared = B

shared = …

…

A

C

B

If

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

Basic Solution

A

C

B

atomic:
 shared = A
atomic:
 shared = C

atomic:
 shared = B

shared = …

…

A

C

B

If

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

Basic Solution

A

C

B

atomic:
 shared = A
atomic:
 shared = C

atomic:
 shared = B

shared = …

…

A

C

B

If

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

Basic Solution

A

C

B

atomic:
 shared = A
atomic:
 shared = C

atomic:
 shared = B

shared = …

…

A

C

B

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

Basic Solution

A

C

B

atomic:
 shared = A
atomic:
 shared = C

atomic:
 shared = B

shared = …

…

A

C

B

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

Basic Solution

atomic:
 shared += 1
atomic:
 shared += 3

...
atomic:
 shared += 5

shared = 0

…

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

Basic Solution

+1

+3

+5

atomic:
 shared += 1
atomic:
 shared += 3

...
atomic:
 shared += 5

shared = 0

…

+1

+3

+5

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

0 0

9 9

Basic Solution

+1

+3

+5

atomic:
 shared += 1
atomic:
 shared += 3

...
atomic:
 shared += 5

shared = 0

…

+1

+3

+5

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

0 0

9 9

Basic Solution

+1

+3

+5

atomic:
 shared += 1
atomic:
 shared += 3

...
atomic:
 shared += 5

shared = 0

…

+1

+3

+5

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

0 0

9 9

Basic Solution

+1

+3

+5

atomic:
 shared += 1
atomic:
 shared += 3

...
atomic:
 shared += 5

shared = 0

…

+1

+3

+5

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

0 0

9 9

Basic Solution

+1

+3

+5

atomic:
 shared += 1
atomic:
 shared += 3

...
atomic:
 shared += 5

shared = 0

…

+1

+3

+5

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

0 0

9 9

Basic Solution

+1

+3

+5

atomic:
 shared += 1
atomic:
 shared += 3

...
atomic:
 shared += 5

shared = 0

…

+1

+3

+5

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

0 0

9 9

Basic Solution

+1

+3

+5

atomic:
 shared += 1
atomic:
 shared += 3

...
atomic:
 shared += 5

shared = 0

…

+1

+3

+5

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

0 0

9 9

Basic Solution

atomic:
 shared = A
atomic:
 shared = C

atomic:
 shared = B
if h > 0:
 atomic:
 shared = B

shared = l

…

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

Basic Solution

atomic:
 shared = A
atomic:
 shared = C

atomic:
 shared = B
if h > 0:
 atomic:
 shared = B

shared = l

…

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

Basic Solution

A

C

B

atomic:
 shared = A
atomic:
 shared = C

atomic:
 shared = B
if h > 0:
 atomic:
 shared = B

shared = l

…

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

Basic Solution

A

C

B

atomic:
 shared = A
atomic:
 shared = C

atomic:
 shared = B
if h > 0:
 atomic:
 shared = B

shared = l

…

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

A

C

B

B

Basic Solution

A

C

B

atomic:
 shared = A
atomic:
 shared = C

atomic:
 shared = B
if h > 0:
 atomic:
 shared = B

shared = l

…

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

A

C

B

B

Basic Solution

A

C

B

atomic:
 shared = A
atomic:
 shared = C

atomic:
 shared = B
if h > 0:
 atomic:
 shared = B

shared = l

…

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

A

C

B

B

Basic Solution

A

C

B

atomic:
 shared = A
atomic:
 shared = C

atomic:
 shared = B
if h > 0:
 atomic:
 shared = B

shared = l

…

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

A

C

B

B

Basic Solution

A

C

B

atomic:
 shared = A
atomic:
 shared = C

atomic:
 shared = B
if h > 0:
 atomic:
 shared = B

shared = l

…

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

A

C

B

B

Basic Solution

A

C

B

atomic:
 shared = A
atomic:
 shared = C

atomic:
 shared = B
if h > 0:
 atomic:
 shared = B

shared = l

…

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

A

C

B

B

Basic Solution

atomic:
 shared *= ...

atomic:
 shared += ...

atomic:
 shared += ...

shared = l

…

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

Basic Solution

atomic:
 shared *= ...

atomic:
 shared += ...

atomic:
 shared += ...

shared = l

…

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

Basic Solution

*

+

+

atomic:
 shared *= ...

atomic:
 shared += ...

atomic:
 shared += ...

shared = l

…

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

*

+

+

Basic Solution

*

+

+

atomic:
 shared *= ...

atomic:
 shared += ...

atomic:
 shared += ...

shared = l

…

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

*

+

+

Basic Solution

*

+

+

atomic:
 shared *= ...

atomic:
 shared += ...

atomic:
 shared += ...

shared = l

…

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

*

+

+

Basic Solution

*

+

+

atomic:
 shared *= ...

atomic:
 shared += ...

atomic:
 shared += ...

shared = l

…

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

*

+

+

Basic Solution

*

+

+

atomic:
 shared *= ...

atomic:
 shared += ...

atomic:
 shared += ...

shared = l

…

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

*

+

+

Back to Program Verification

Verification Approach

Verification Approach

Based on Concurrent Separation Logic (CSL)

Verification Approach

Based on Concurrent Separation Logic (CSL)
● Extension of Hoare Logic to concurrent heap-manipulating programs

Verification Approach

Based on Concurrent Separation Logic (CSL)
● Extension of Hoare Logic to concurrent heap-manipulating programs
● Uses the notion of resource ownership (e.g., read/write permission)

Verification Approach

Based on Concurrent Separation Logic (CSL)
● Extension of Hoare Logic to concurrent heap-manipulating programs
● Uses the notion of resource ownership (e.g., read/write permission)
● Associates resource invariants with shared memory

Verification Approach

 shared = l
share

 unshare
 return shared

while j < 100:
 j += 1

atomic:
 shared += 7

while i < h:
 i += 1

atomic:
 shared += 6

+7

+6

Based on Concurrent Separation Logic (CSL)
● Extension of Hoare Logic to concurrent heap-manipulating programs
● Uses the notion of resource ownership (e.g., read/write permission)
● Associates resource invariants with shared memory

Verification Approach

 shared = l
share

 unshare
 return shared

while j < 100:
 j += 1

atomic:
 shared += 7

while i < h:
 i += 1

atomic:
 shared += 6

+7

+6

Based on Concurrent Separation Logic (CSL)
● Extension of Hoare Logic to concurrent heap-manipulating programs
● Uses the notion of resource ownership (e.g., read/write permission)
● Associates resource invariants with shared memory

Verification Approach

 shared = l
share

 unshare
 return shared

while j < 100:
 j += 1

atomic:
 shared += 7

while i < h:
 i += 1

atomic:
 shared += 6

+7

+6

Prove 1) shared has same value in two executions

Based on Concurrent Separation Logic (CSL)
● Extension of Hoare Logic to concurrent heap-manipulating programs
● Uses the notion of resource ownership (e.g., read/write permission)
● Associates resource invariants with shared memory

Verification Approach

 shared = l
share

 unshare
 return shared

while j < 100:
 j += 1

atomic:
 shared += 7

while i < h:
 i += 1

atomic:
 shared += 6

+7

+6

Prove 1) shared has same value in two executions

Based on Concurrent Separation Logic (CSL)
● Extension of Hoare Logic to concurrent heap-manipulating programs
● Uses the notion of resource ownership (e.g., read/write permission)
● Associates resource invariants with shared memory

Verification Approach

 shared = l
share

 unshare
 return shared

while j < 100:
 j += 1

atomic:
 shared += 7

while i < h:
 i += 1

atomic:
 shared += 6

+7

+6

Prove 1) shared has same value in two executions

Record each modification

Based on Concurrent Separation Logic (CSL)
● Extension of Hoare Logic to concurrent heap-manipulating programs
● Uses the notion of resource ownership (e.g., read/write permission)
● Associates resource invariants with shared memory

Verification Approach

 shared = l
share

 unshare
 return shared

while j < 100:
 j += 1

atomic:
 shared += 7

while i < h:
 i += 1

atomic:
 shared += 6

+7

+6

Prove 1) shared has same value in two executions

Record each modification

Based on Concurrent Separation Logic (CSL)
● Extension of Hoare Logic to concurrent heap-manipulating programs
● Uses the notion of resource ownership (e.g., read/write permission)
● Associates resource invariants with shared memory

Verification Approach

 shared = l
share

 unshare
 return shared

while j < 100:
 j += 1

atomic:
 shared += 7

while i < h:
 i += 1

atomic:
 shared += 6

+7

+6

Prove 1) shared has same value in two executions

Record each modification

Prove 2) “same” modifications
and 3) modifications commute

Based on Concurrent Separation Logic (CSL)
● Extension of Hoare Logic to concurrent heap-manipulating programs
● Uses the notion of resource ownership (e.g., read/write permission)
● Associates resource invariants with shared memory

Verification Approach

 shared = l
share

 unshare
 return shared

while j < 100:
 j += 1

atomic:
 shared += 7

while i < h:
 i += 1

atomic:
 shared += 6

+7

+6

Prove 1) shared has same value in two executions

Record each modification

Prove 2) “same” modifications
and 3) modifications commute

Assume shared has same final value

Based on Concurrent Separation Logic (CSL)
● Extension of Hoare Logic to concurrent heap-manipulating programs
● Uses the notion of resource ownership (e.g., read/write permission)
● Associates resource invariants with shared memory

shared = l

return shared

atomic:
 shared += 7

atomic:
 shared += 6

Verification Approach

shared = l

return shared

atomic:
 shared += 7

atomic:
 shared += 6

Verification Approach

{low(l)}l has the same value in the two executions

shared = l

return shared

atomic:
 shared += 7

atomic:
 shared += 6

Verification Approach

{low(l)}

{low(result)}

l has the same value in the two executions

shared = l

return shared

atomic:
 shared += 7

atomic:
 shared += 6

Verification Approach

{low(l)}

{low(result)}

l has the same value in the two executions

{low(shared)}shared has the same value in the two executions (1)

shared = l

return shared

atomic:
 shared += 7

atomic:
 shared += 6

Verification Approach

{low(l)}

We use resources to
record each modification

{low(result)}

l has the same value in the two executions

{low(shared)}shared has the same value in the two executions (1)

shared = l

return shared

atomic:
 shared += 7

atomic:
 shared += 6

Verification Approach

{low(l)}

We use resources to
record each modification

{low(result)}

l has the same value in the two executions

{low(shared)}shared has the same value in the two executions (1)

Resource (empty multiset)

shared = l

return shared

atomic:
 shared += 7

atomic:
 shared += 6

Verification Approach

{low(l)}

We use resources to
record each modification

{low(result)}

l has the same value in the two executions

{low(shared)}shared has the same value in the two executions (1)

Resource (empty multiset)

shared = l

return shared

atomic:
 shared += 7

atomic:
 shared += 6

Verification Approach

+6

{low(l)}

We use resources to
record each modification

{low(result)}

l has the same value in the two executions

{low(shared)}shared has the same value in the two executions (1)

Resource (empty multiset)

shared = l

return shared

atomic:
 shared += 7

atomic:
 shared += 6

Verification Approach

+6 +7

{low(l)}

We use resources to
record each modification

{low(result)}

l has the same value in the two executions

{low(shared)}shared has the same value in the two executions (1)

Resource (empty multiset)

shared = l

return shared

atomic:
 shared += 7

atomic:
 shared += 6

Verification Approach

+6 +7

{low(l)}

We use resources to
record each modification

{low(result)}

l has the same value in the two executions

{low(shared)}shared has the same value in the two executions (1)

Resource (empty multiset)

+6, +7

shared = l

return shared

atomic:
 shared += 7

atomic:
 shared += 6

Verification Approach

+6 +7

{low(l)}

We use resources to
record each modification

{low(result)}

l has the same value in the two executions

{low(shared)}shared has the same value in the two executions (1)

Resource (empty multiset)

+6, +7Contains all modifications performed (atomically) on shared (2) (3)

shared = l

return shared

atomic:
 shared += 7

atomic:
 shared += 6

Verification Approach

+6 +7

{low(l)}

We use resources to
record each modification

{low(shared)}

{low(result)}

l has the same value in the two executions

{low(shared)}shared has the same value in the two executions (1)

Resource (empty multiset)

+6, +7Contains all modifications performed (atomically) on shared (2) (3)

shared = l

return shared

atomic:
 shared += 7

atomic:
 shared += 6

Verification Approach

+6 +7

{low(l)}

We use resources to
record each modification

{low(shared)}

{low(result)}

l has the same value in the two executions

{low(shared)}shared has the same value in the two executions (1)

Resource (empty multiset)

+6, +7Contains all modifications performed (atomically) on shared (2) (3)

We can do better.

The Limits of Commutativity

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

The Limits of Commutativity

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

[]

The Limits of Commutativity

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

[]

add(6)

add(7)

The Limits of Commutativity

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

[]

[6, 7]

add(6)

add(7)

The Limits of Commutativity

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

[]

[6, 7]

[]

add(6)

add(7) add(6)

add(7)

The Limits of Commutativity

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

[]

[6, 7]

[]

[7, 6]

add(6)

add(7) add(6)

add(7)

The Limits of Commutativity

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

[]

[6, 7]

[]

[7, 6]

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

add(6)

add(7) add(6)

add(7)

The Limits of Commutativity

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

[]

[6, 7]

[]

[7, 6]

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

add(6)

add(7) add(6)

add(7)

The Limits of Commutativity

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

[]

[6, 7]

[]

[7, 6]

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

add(6)

add(7) add(6)

add(7)

The Limits of Commutativity

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

[]

[6, 7]

[]

[7, 6]

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

add(6)

add(7) add(6)

add(7)

The Limits of Commutativity

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

[]

[6, 7]

[]

[7, 6]

If

then shared has the same final value in both executions

(1) shared has the same initial value in both executions

(2) the two executions perform the “same” modifications

(3) the modifications commute

add(6)

add(7) add(6)

add(7)

Secure

Key Idea

Commutativity modulo abstraction

Commutativity Modulo Abstraction (“Abstract Commutativity”)

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

[]

[6, 7]

[]

[7, 6]

add(6)

add(7) add(6)

add(7)

Commutativity Modulo Abstraction (“Abstract Commutativity”)

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

[]

[6, 7]

[]

[7, 6]

add(6)

add(7) add(6)

add(7)

Abstraction α: list →multiset of elements

Commutativity Modulo Abstraction (“Abstract Commutativity”)

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

[]

[6, 7]

[]

[7, 6]

If

add(6)

add(7) add(6)

add(7)

Abstraction α: list →multiset of elements

Commutativity Modulo Abstraction (“Abstract Commutativity”)

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

[]

[6, 7]

[]

[7, 6]

If

(1) shared has the same initial abstraction in both executions

add(6)

add(7) add(6)

add(7)

Abstraction α: list →multiset of elements

Commutativity Modulo Abstraction (“Abstract Commutativity”)

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

α
[]

[6, 7]

[]

[7, 6]

If

(1) shared has the same initial abstraction in both executions

add(6)

add(7) add(6)

add(7)

Abstraction α: list →multiset of elements

Commutativity Modulo Abstraction (“Abstract Commutativity”)

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

α
[]

[6, 7]

[]

[7, 6]

If

(1) shared has the same initial abstraction in both executions

add(6)

add(7) add(6)

add(7)

Abstraction α: list →multiset of elements

Commutativity Modulo Abstraction (“Abstract Commutativity”)

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

α
[]

[6, 7]

[]

[7, 6]

If

(1) shared has the same initial abstraction in both executions

(2) executions perform “same” modifications (modulo abstraction)

add(6)

add(7) add(6)

add(7)

Abstraction α: list →multiset of elements

Commutativity Modulo Abstraction (“Abstract Commutativity”)

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

α
[]

[6, 7]

[]

[7, 6]

If

(1) shared has the same initial abstraction in both executions

(2) executions perform “same” modifications (modulo abstraction)

add(6)

add(7) add(6)

add(7)

Abstraction α: list →multiset of elements

Commutativity Modulo Abstraction (“Abstract Commutativity”)

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

α
[]

[6, 7]

[]

[7, 6]

If

(1) shared has the same initial abstraction in both executions

(2) executions perform “same” modifications (modulo abstraction)

(3) the modifications commute modulo abstraction

add(6)

add(7) add(6)

add(7)

Abstraction α: list →multiset of elements

Commutativity Modulo Abstraction (“Abstract Commutativity”)

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

α
[]

[6, 7]

[]

[7, 6]

If

(1) shared has the same initial abstraction in both executions

(2) executions perform “same” modifications (modulo abstraction)

(3) the modifications commute modulo abstraction

add(6)

add(7) add(6)

add(7)

Abstraction α: list →multiset of elements

Commutativity Modulo Abstraction (“Abstract Commutativity”)

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

α
[]

[6, 7]

[]

[7, 6]

If

then shared has the same final abstraction in both executions

(1) shared has the same initial abstraction in both executions

(2) executions perform “same” modifications (modulo abstraction)

(3) the modifications commute modulo abstraction

add(6)

add(7) add(6)

add(7)

Abstraction α: list →multiset of elements

Commutativity Modulo Abstraction (“Abstract Commutativity”)

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

α

α

[]

[6, 7]

[]

[7, 6]

If

then shared has the same final abstraction in both executions

(1) shared has the same initial abstraction in both executions

(2) executions perform “same” modifications (modulo abstraction)

(3) the modifications commute modulo abstraction

add(6)

add(7) add(6)

add(7)

Abstraction α: list →multiset of elements

Commutativity Modulo Abstraction (“Abstract Commutativity”)

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

α

α

[]

[6, 7]

[]

[7, 6]

If

then shared has the same final abstraction in both executions

(1) shared has the same initial abstraction in both executions

(2) executions perform “same” modifications (modulo abstraction)

(3) the modifications commute modulo abstraction

add(6)

add(7) add(6)

add(7)

Abstraction α: list →multiset of elements

Commutativity Modulo Abstraction (“Abstract Commutativity”)

Abstraction α: list →multiset of elements

Commutativity Modulo Abstraction (“Abstract Commutativity”)

Commutativity Commutativity modulo 𝛼

f and g commute

f and g are the “same”

Abstraction α: list →multiset of elements

Commutativity Modulo Abstraction (“Abstract Commutativity”)

Commutativity Commutativity modulo 𝛼

f and g commute

f and g are the “same”

Abstraction α: list →multiset of elements

Commutativity Modulo Abstraction (“Abstract Commutativity”)

Commutativity Commutativity modulo 𝛼

f and g commute

f and g are the “same”

Abstraction α: list →multiset of elements

Commutativity Modulo Abstraction (“Abstract Commutativity”)

Commutativity Commutativity modulo 𝛼

f and g commute

f and g are the “same”

lists

Abstraction α: list →multiset of elements

Commutativity Modulo Abstraction (“Abstract Commutativity”)

Commutativity Commutativity modulo 𝛼

f and g commute

f and g are the “same”

lists contain same elements

Abstraction α: list →multiset of elements

Commutativity Modulo Abstraction (“Abstract Commutativity”)

Commutativity Commutativity modulo 𝛼

f and g commute

f and g are the “same”

lists contain same elements

add(6) add(7)

Abstraction α: list →multiset of elements

Commutativity Modulo Abstraction (“Abstract Commutativity”)

Commutativity Commutativity modulo 𝛼

f and g commute

f and g are the “same”

lists contain same elements

add(6) add(7)

Abstraction α: list →multiset of elements

Commutativity Modulo Abstraction (“Abstract Commutativity”)

Commutativity Commutativity modulo 𝛼

f and g commute

f and g are the “same”

lists contain same elements

add(6) add(7)

Abstraction α: list →multiset of elements

Abstractions

Abstraction α: list →multiset of elements

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

Abstractions

Abstraction α: list →multiset of elements

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

Abstraction α: list → mean

Abstraction α: list → sum

Abstractions

Abstraction α: list →multiset of elements

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

Abstraction α: list → mean

Abstraction α: list → sum

Abstraction α: list → length

Abstractions

Abstraction α: list →multiset of elements

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

Abstraction α: list → mean

Abstraction α: list → sum

Abstraction α: list → length

…

Abstractions
 shared = new Map()

 return shared.keySet()

while j < 100:
 j += 1
atomic:
 shared.put(1,h)

while i < h:
 i += 1
atomic:
 shared.put(1,8)

Abstraction α: list →multiset of elements

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

Abstraction α: list → mean

Abstraction α: list → sum

Abstraction α: list → length

…

Abstractions
 shared = new Map()

 return shared.keySet()

while j < 100:
 j += 1
atomic:
 shared.put(1,h)

while i < h:
 i += 1
atomic:
 shared.put(1,8)

Abstraction α: map → set of keys
Abstraction α: list →multiset of elements

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

Abstraction α: list → mean

Abstraction α: list → sum

Abstraction α: list → length

…

Abstractions
 shared = new Map()

 return shared.keySet()

while j < 100:
 j += 1
atomic:
 shared.put(1,h)

while i < h:
 i += 1
atomic:
 shared.put(1,8)

Abstraction α: map → set of keys
Abstraction α: list →multiset of elements

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

Abstraction α: list → mean

Abstraction α: list → sum

Abstraction α: list → length

…

Abstractions
 shared = new Map()

 return shared.keySet()

while j < 100:
 j += 1
atomic:
 shared.put(1,h)

while i < h:
 i += 1
atomic:
 shared.put(1,8)

Abstraction α: map → set of keys
Abstraction α: list →multiset of elements

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

Abstraction α: list → mean

Abstraction α: list → sum

Abstraction α: list → length

…

 shared = new Map()

 return shared.keySet()

if h <= 0:
 atomic:
 shared.put(1,h)

if h > 0:
 atomic:
 shared.put(1,8)

Abstractions
 shared = new Map()

 return shared.keySet()

while j < 100:
 j += 1
atomic:
 shared.put(1,h)

while i < h:
 i += 1
atomic:
 shared.put(1,8)

Abstraction α: map → set of keys
Abstraction α: list →multiset of elements

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

Abstraction α: list → mean

Abstraction α: list → sum

Abstraction α: list → length

…

 shared = new Map()

 return shared.keySet()

if h <= 0:
 atomic:
 shared.put(1,h)

if h > 0:
 atomic:
 shared.put(1,8)

“Same” modulo α

Abstractions
 shared = new Map()

 return shared.keySet()

while j < 100:
 j += 1
atomic:
 shared.put(1,h)

while i < h:
 i += 1
atomic:
 shared.put(1,8)

Abstraction α: map → set of keys
Abstraction α: list →multiset of elements

 shared = new List()

 return sort(shared)

while j < 100:
 j += 1
atomic:
 shared.add(7)

while i < h:
 i += 1
atomic:
 shared.add(6)

Abstraction α: list → mean

Abstraction α: list → sum

Abstraction α: list → length

…

 shared = new Map()

 return shared.keySet()

if h <= 0:
 atomic:
 shared.put(1,h)

if h > 0:
 atomic:
 shared.put(1,8)

“Same” modulo α

CommCSL

CommCSL

CommCSL

Program

CommCSL Precondition

Program

Postcondition

CommCSL Precondition

Program

Postcondition

Invariant

CommCSL Precondition

Program

Postcondition

Invariant

CommCSL

CommCSL

● Relational concurrent separation logic

● Support for (abstract) commutativity-based information flow reasoning

● Thread-modular reasoning, mutable heaps

● Other features:

● Low events, standard output…

● More complete support for non-symmetric concurrency

● Formalized and proved sound in Isabelle/HOL

● Challenging soundness argument distinct from existing logics

● Available on the Archive of Formal Proofs

CommCSL

● Relational concurrent separation logic

● Support for (abstract) commutativity-based information flow reasoning

● Thread-modular reasoning, mutable heaps

● Other features:

● Low events, standard output…

● More complete support for non-symmetric concurrency

● Formalized and proved sound in Isabelle/HOL

● Challenging soundness argument distinct from existing logics

● Available on the Archive of Formal Proofs

Non-interference theorem

Implementation

HyperViper

Implementation

Source code

HyperViper

Implementation

Source code

Specification
(e.g., low variables and data)

HyperViper

Implementation

Source code

Specification
(e.g., low variables and data)

Hints (e.g., abstractions)

HyperViper

Implementation

Source code

Specification
(e.g., low variables and data)

No information leak through values
(in all executions)Hints (e.g., abstractions)

HyperViper

Implementation

Source code

Specification
(e.g., low variables and data)

No information leak through values
(in all executions)

Program might leak secret data
(in at least one execution)

Hints (e.g., abstractions)

HyperViper

HyperViper

● Automated, SMT-based verifier

● Based on Viper verification
infrastructure and Z3

● Relational reasoning using Modular
Product Programs

● User provides abstractions, pre- and
postconditions, invariants…

● Supports dynamic thread creation,
multiple shared resources, …

● https://github.com/viperproject/hyperviper

lockType IntLock {

 type Int

 invariant(l, v) = [l.lockInt |-> ?cp && [cp.val |-> v]]

 alpha(v): Int = 0 // we abstract to a constant, so everything commutes

 actions = [(SetValue, Int, duplicable)]

 action SetValue(v, arg)

 requires true

 { arg }

 noLabels = 2

}

...

method worker(l: Lock, lbl: Int)

 requires lowEvent && sguard[IntLock,SetValue](l, Set(lbl))

 requires sguardArgs[IntLock,SetValue](l, Set(lbl)) == Multiset[Int]()

 ensures sguard[IntLock,SetValue](l, Set(lbl))

 ensures allPre[IntLock, SetValue](sguardArgs[IntLock,SetValue](l, Set(lbl)))

{

 var v: Int

 v := lbl

 with[IntLock] l performing SetValue(v) at lbl {

 l.lockInt.val := v

 }

}

method print(i: Int)

 requires lowEvent && low(i)

HyperViper

● Automated, SMT-based verifier

● Based on Viper verification
infrastructure and Z3

● Relational reasoning using Modular
Product Programs

● User provides abstractions, pre- and
postconditions, invariants…

● Supports dynamic thread creation,
multiple shared resources, …

● https://github.com/viperproject/hyperviper

lockType IntLock {

 type Int

 invariant(l, v) = [l.lockInt |-> ?cp && [cp.val |-> v]]

 alpha(v): Int = 0 // we abstract to a constant, so everything commutes

 actions = [(SetValue, Int, duplicable)]

 action SetValue(v, arg)

 requires true

 { arg }

 noLabels = 2

}

...

method worker(l: Lock, lbl: Int)

 requires lowEvent && sguard[IntLock,SetValue](l, Set(lbl))

 requires sguardArgs[IntLock,SetValue](l, Set(lbl)) == Multiset[Int]()

 ensures sguard[IntLock,SetValue](l, Set(lbl))

 ensures allPre[IntLock, SetValue](sguardArgs[IntLock,SetValue](l, Set(lbl)))

{

 var v: Int

 v := lbl

 with[IntLock] l performing SetValue(v) at lbl {

 l.lockInt.val := v

 }

}

method print(i: Int)

 requires lowEvent && low(i)

HyperViper

● Automated, SMT-based verifier

● Based on Viper verification
infrastructure and Z3

● Relational reasoning using Modular
Product Programs

● User provides abstractions, pre- and
postconditions, invariants…

● Supports dynamic thread creation,
multiple shared resources, …

● https://github.com/viperproject/hyperviper

lockType IntLock {

 type Int

 invariant(l, v) = [l.lockInt |-> ?cp && [cp.val |-> v]]

 alpha(v): Int = 0 // we abstract to a constant, so everything commutes

 actions = [(SetValue, Int, duplicable)]

 action SetValue(v, arg)

 requires true

 { arg }

 noLabels = 2

}

...

method worker(l: Lock, lbl: Int)

 requires lowEvent && sguard[IntLock,SetValue](l, Set(lbl))

 requires sguardArgs[IntLock,SetValue](l, Set(lbl)) == Multiset[Int]()

 ensures sguard[IntLock,SetValue](l, Set(lbl))

 ensures allPre[IntLock, SetValue](sguardArgs[IntLock,SetValue](l, Set(lbl)))

{

 var v: Int

 v := lbl

 with[IntLock] l performing SetValue(v) at lbl {

 l.lockInt.val := v

 }

}

method print(i: Int)

 requires lowEvent && low(i)

HyperViper

● Automated, SMT-based verifier

● Based on Viper verification
infrastructure and Z3

● Relational reasoning using Modular
Product Programs

● User provides abstractions, pre- and
postconditions, invariants…

● Supports dynamic thread creation,
multiple shared resources, …

● https://github.com/viperproject/hyperviper

lockType IntLock {

 type Int

 invariant(l, v) = [l.lockInt |-> ?cp && [cp.val |-> v]]

 alpha(v): Int = 0 // we abstract to a constant, so everything commutes

 actions = [(SetValue, Int, duplicable)]

 action SetValue(v, arg)

 requires true

 { arg }

 noLabels = 2

}

...

method worker(l: Lock, lbl: Int)

 requires lowEvent && sguard[IntLock,SetValue](l, Set(lbl))

 requires sguardArgs[IntLock,SetValue](l, Set(lbl)) == Multiset[Int]()

 ensures sguard[IntLock,SetValue](l, Set(lbl))

 ensures allPre[IntLock, SetValue](sguardArgs[IntLock,SetValue](l, Set(lbl)))

{

 var v: Int

 v := lbl

 with[IntLock] l performing SetValue(v) at lbl {

 l.lockInt.val := v

 }

}

method print(i: Int)

 requires lowEvent && low(i)

HyperViper

● Automated, SMT-based verifier

● Based on Viper verification
infrastructure and Z3

● Relational reasoning using Modular
Product Programs

● User provides abstractions, pre- and
postconditions, invariants…

● Supports dynamic thread creation,
multiple shared resources, …

● https://github.com/viperproject/hyperviper

Evaluation

Evaluation

Evaluation

Evaluation

Secret data influences which thread performs which modification

●Modular reasoning about value sensitivity for
concurrent programs

● Independently of timing

● Sound on real hardware

● Key idea is to exploit commutativity modulo
abstraction

● Proved sound in Isabelle/HOL, automated in
prototype verifier

●Will be presented at PLDI’23 by Marco

●Modular reasoning about value sensitivity for
concurrent programs

● Independently of timing

● Sound on real hardware

● Key idea is to exploit commutativity modulo
abstraction

● Proved sound in Isabelle/HOL, automated in
prototype verifier

●Will be presented at PLDI’23 by Marco

●Modular reasoning about value sensitivity for
concurrent programs

● Independently of timing

● Sound on real hardware

● Key idea is to exploit commutativity modulo
abstraction

● Proved sound in Isabelle/HOL, automated in
prototype verifier

●Will be presented at PLDI’23 by Marco

●Modular reasoning about value sensitivity for
concurrent programs

● Independently of timing

● Sound on real hardware

● Key idea is to exploit commutativity modulo
abstraction

● Proved sound in Isabelle/HOL, automated in
prototype verifier

●Will be presented at PLDI’23 by Marco

Thank you for your attention!

●Modular reasoning about value sensitivity for
concurrent programs

● Independently of timing

● Sound on real hardware

● Key idea is to exploit commutativity modulo
abstraction

● Proved sound in Isabelle/HOL, automated in
prototype verifier

●Will be presented at PLDI’23 by Marco

